A STUDY RELATED DOCUMENTS

A1 Salt Marsh Restoration Plan from USACOE

Santa Ana River Tide Gates

- o There are two tide gates installed in the east levee: one at Sta. 17+80 (approximately 100' upstream of the PCH bridge) and the other at Sta. 32+87 (approx. 1300' upstream of the PCH bridge).
- The purpose of the gates is allow the circulation of natural tidal flows in and out of the marsh restoration area and to prevent increased inflow of the river's storm water into the marsh. (The term "increased" is used because as the river stage rises, some storm flow will enter the marsh until the water surface reaches the elevation that triggers closing of the gates). Please refer to the table below for the design actuating elevations.
- o The natural position of the gates is open, assuming natural tidal ebb and flows.
- o The water level in the marsh controls the opening and closing of the gates, not the stage in the river. However, during a rising river stage (open gate), the water surface elevation on the marsh side of the gate will be equal to the river stage, so in a way, a rising river stage can close the gate. Once closed, only the drop in water level on the marsh side could re-open the gate. Please refer to the table below for the design actuating elevations.
- o There are nine outlet pipes at sta. 19+00 (seven, 42" RCPs included in the original plans and two, 48" RCPs built by change order) which are flapgated on the river side constructed to drain the marsh when the tide gates are closed and river storm flow stage subsides sufficiently.

	Gate 1	Gate 2
Station	17+80	32+87
Intake Elevation	-4.0' MSL	-1.0' MSL
Maximum marsh design water level	6.0' MSL	6.0' MSL
Gate remains completely open until marsh water level rises above	3.0' MSL	3.0' MSL
Gate completely closed when marsh water level reaches	3.5' MSL	3.5' MSL
Gates begin to open when marsh water level falls below	3.5' MSL	3.5' MSL
Top of SAR levee Elevation	10.4'	13.6′
Design water surface w/sediment	8′ <u>+</u>	9.5′ <u>+</u>
Design water surface wo/sed	5.5′ <u>+</u>	7.5′±

ENVERORMENTAL EVENAMENT

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevation (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevation (BFEs) shown on this map apply only landward of 0.0' North American Vertical Datum (NAVD). Users of this FIRM should be aware that coastal flood elevations may also be provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this community. Elevations shown in the Summary of Stillwater Elevations table should be used for construction, and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures in this jurisdiction.

The projection used in the preparation of this map is Universal Tranverse Mercator (UTM) zone 11. The horizontal datum is NAD83, GRS1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of the FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

Spatial Reference System Division National Geodetic Survey, NOAA Silver Spring Metro Center 1315 East-West Highway Silver Spring, Maryland 20910 (301) 713-3191

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit their website at www.ngs.noaa.gov.

Base map information shown on this FIRM was provided in digital format by Orange County GIS Department.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

An accompanying Flood Insurance Study report, Letters of Map Revision or Letters of Map Amendment revising portions of this panel, and digital versions of this PANEL may be available. Contact the FEMA Map Service Center at the following phone numbers and Internet address for information on all related products available from FEMA;

Phone: 800-358-9616 FAX: 800-358-9620 www.fema.gov/msc

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at www.fema.gov.

This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood insurance Study report may reflect stream channel distances that differ from what is shown on this map.

SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD EVENT The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas

of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water surface elevation of the 1% annual chance flood. No base flood elevations determined. ZONE AE Base flood elevations determined. Flood depths of 1 to 3 feet (usually areas of ponding); base flood Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities

Area of special flood hazard formerly protected from the 1% annual chance flood event by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance of greater flood event. Area to be protected from 1% annual chance flood event by a Federal

flood protection system under construction; no base flood elevations Coastal flood zone with velocity hazard (wave action); no base flood elevations determined.

Coastal flood zone with velocity hazard (wave action); base flood elevations

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS

ZONE X Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance

OTHER AREAS

ZONE VE

ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. Floodplain boundary

Floodway boundary Zone D boundary ************* CBRS and OPA boundary

oundary dividing Special Flood Hazard Areas of different ase Flood Elevations, flood depths or velocities Base Flood Elevation line and value; elevation in feet*

~~~5*13*~~~~~ Base Flood Elevation value where uniform within zone; elevation in feet\* \*Referenced to the North American Vertical Datum of 1988

(23)-----(23) Transect Line Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 97°07'30", 32°22'30"

Cross Section Line

this FIRM panel).

M1.5

1000-meter Universal Transverse Mercator grid values, zone 11 4276000M 600000 FT 5000-foot grid ticks DX5510× Bench mark (see explanation in Notes to Users section of

> MAP REPOSITORY Refer to Repository Listing on Index Map

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP SEPTEMBER 15, 1989 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL

February 18, 2004: to update corporate limits, to add special flood hazard areas, to change zone designations, to update map format, to incorporate previously

PANEL 0264H

MAP REVISED:

**FEBRUARY 18, 2004** 

Federal Emergency Management Agency

issued letters of map revision, to update roads and road names.

February 5, 1992 November 3, 1993 January 3, 1997

For community map revision history prior to countywide mapping, refer to the Community Map History table located in the Flood Insurance Study report for this jurisdiction

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood insurance Program at (800) 638-6620.

MAP SCALE 1" = 500"

250 0 500 1000 FEET 

# **FIRM** FLOOD INSURANCE RATE MAP ملك ORANGE COUNTY, CALIFORNIA AND INCORPORATED AREAS PANEL 264 OF 550 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: PANEL SUFFIX COMMUNITY HUNTINGTON BEACH, CITY OF ORANGE COUNTY, UNINCORPORATED AREAS COSTA MESA, CITY OF NEWFORT BEACH, CITY OF Notice to User: The Man Number shown below should be used when placing map orders; the Community Number shown above should be used an insurance applications for the subject Т-П-Ш MAP NUMBER 06059C0264H

### HYDROLOGY CALCULATIONS

В

B1 Existing Condition Rational Method Calculations

a) High Confidence Events

i. HC 100-Year Storm Event

## Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X100 A.DAT
 TIME/DATE OF STUDY: 16:12 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                            106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.605
 SUBAREA TC AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                   Fp
                                            Аp
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             0.68
                                            0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.79
 TOTAL AREA(ACRES) =
                    0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
      _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH(FEET) = 11.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.68
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.62
 STREET FLOW TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) =
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.869
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                          D
                                                       0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.89
EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.16
 FLOW VELOCITY(FEET/SEC.) = 1.79 DEPTH*VELOCITY(FT*FT/SEC.) = 0.71 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.47
   HALFSTREET FLOOD WIDTH(FEET) = 17.07
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96
 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 13.45
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.510
 SUBAREA LOSS RATE DATA(AMC III):
                                           Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                       0.200
                                                                91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 10.59
EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.65
 FLOW VELOCITY(FEET/SEC.) = 2.23 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                  4.00 = 800.00 FEET.
******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

4.75

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         25.60
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.48
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.46
 STREET FLOW TRAVEL TIME(MIN.) = 2.06 Tc(MIN.) =
                                                    15.51
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.234
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE GROUD (ACRES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                                    0.200
                                   6.51
                                            0.20
                                                             91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 18.71 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED FM(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.13
 FLOW VELOCITY(FEET/SEC.) = 2.67 DEPTH*VELOCITY(FT*FT/SEC.) = 1.68 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                          1110.00 FEET.
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 44.77
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.69
   HALFSTREET FLOOD WIDTH(FEET) = 30.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.85
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.95
STREET FLOW TRAVEL TIME(MIN.) = 2.57 Tc(MIN.) = 18.08
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.962
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 91
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 22.22

EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 32.41
 FLOW VELOCITY(FEET/SEC.) = 3.02 DEPTH*VELOCITY(FT*FT/SEC.) = 2.16
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 35.89
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.41
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.68
STREET FLOW TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) =
                                                     19.84
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.809
  SUBAREA LOSS RATE DATA(AMC 111, DEVELOPMENT TYPE/ SCS SOIL AREA FP AP LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN D 18.43 0.20 0.100 91
  SUBAREA LOSS RATE DATA(AMC III):
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 46.26 EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.57
 FLOW VELOCITY(FEET/SEC.) = 3.67 DEPTH*VELOCITY(FT*FT/SEC.) = 3.07
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 71.9 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                                7.00 = 1910.00 FEET.
******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.04
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                           NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 96.49
PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) =
                                               20.45
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.45
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.760
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                          D
  COMMERCIAL
                                   0.81 0.20
                                                       0.100
 NATURAL FAIR COVER
                           D
                                4.99 0.20
6.24 0.20
                                                    1.000
0.100
  "OPEN BRUSH"
                                                                 96
 COMMERCIAL
                           D
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 28.89

EFFECTIVE AREA(ACRES) = 50.57 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                         50.6
                                    PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.1000
FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 21.9 INCHES
```

```
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 123.70
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                            9.00 =
                                                      2600.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
-----
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1180.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.550
 SUBAREA LOSS RATE DATA(AMC III):
                  SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                25.52
                                        0.20
                                                1.000
                        D
 NATURAL POOR COVER
                                6.51 0.20 1.000
 "BARREN"
                        D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.66
 AVERAGE FLOW DEPTH(FEET) = 0.91 TRAVEL TIME(MIN.) = 2.95
 Tc(MIN.) = 23.48
 SUBAREA AREA(ACRES) = 32.03 SUBAREA RUNOFF(CFS) = 67.75 EFFECTIVE AREA(ACRES) = 82.60 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.52
 TOTAL AREA(ACRES) = 82.6
                              PEAK FLOW RATE(CFS) =
                                                         181.89
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.00 FLOW VELOCITY(FEET/SEC.) = 7.02
                                           10.00 =
                                                    3780.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 _____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.445
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                                1.000
 "OPEN BRUSH"
                        D
                               29.92
                                        0.20
 NATURAL POOR COVER
                               14.41
                                        0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.13
AVERAGE FLOW DEPTH(FEET) = 1.40 TRAVEL TIME(MIN.) = 1.79
 Tc(MIN.) = 25.28
 SUBAREA AREA(ACRES) = 44.33 SUBAREA RUNOFF(CFS) = 89.56 EFFECTIVE AREA(ACRES) = 126.93 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) =
                      126.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.54 FLOW VELOCITY(FEET/SEC.) = 6.47
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                           11.00 =
                                                    4440.00 FEET.
*************************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 580.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150

CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000

MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.367
```

PIPE-FLOW VELOCITY(FEET/SEC.) = 29.54

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fp
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 14.64 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                   1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.60
 AVERAGE FLOW DEPTH(FEET) = 1.58 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 26.74
 SUBAREA AREA(ACRES) = 14.64 SUBAREA RUNOFF(CFS) = 28.56 EFFECTIVE AREA(ACRES) = 141.57 AREA-AVERAGED Fm(INCH/HR) = 0.14 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
 TOTAL AREA(ACRES) = 141.6
                                  PEAK FLOW RATE(CFS) =
                                                            283.31
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.61 FLOW VELOCITY(FEET/SEC.) = 6.63
                                                      5020.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                             12.00 =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 62
      -----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.94
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 8.22
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 7.72
 STREET FLOW TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) =
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.323
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                    Aρ
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                  1.83
                                           0.40
                                                    1.000
                         Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 3.17

EFFECTIVE AREA(ACRES) = 143.40 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
TOTAL AREA(ACRES) = 143.4 PEAK FLOW RATE(CFS) =
                                                            283.31
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.94 HALFSTREET FLOOD WIDTH(FEET) = 43.58
 FLOW VELOCITY(FEET/SEC.) = 8.20 DEPTH*VELOCITY(FT*FT/SEC.) = 7.70 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FE
                                             20.00 = 5460.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00
ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =

SUBAREA LOSS RATE DATA(AMC III):

```
SUBAREA TC AND LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA FP

TAND USE GROUD (ACRES) (INCH/E
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                 3.17
                                           0.20
                                                                  9.37
                                                    0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 12.20
 TOTAL AREA(ACRES) =
                        3.17 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
-----
 REPRESENTATIVE SLOPE = 0.0500
 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.62
ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.20
 PIPE TRAVEL TIME(MIN.) = 2.19 Tc(MIN.) =
                                            11.56
 LONGEST FLOWPATH FROM NODE
                            13.00 TO NODE
                                              15.00 =
**********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 11.56
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.827
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 RESIDENTIAL
"11+ DWELLINGS/ACRE" B
                                31.84
                                           0.30
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 31.84 SUBAREA RUNOFF(CFS) = 107.94

EFFECTIVE AREA(ACRES) = 35.01 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.20
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 35.0
***********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0400
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.702
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Fρ
                                                    qΑ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                11.64
                                          0.20
 NATURAL FAIR COVER
                                                  1.000
                             13.96 0.40
2.65 0.20
 "OPEN BRUSH"
  COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.586
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 18.88
 AVERAGE FLOW DEPTH(FEET) = 2.08 TRAVEL TIME(MIN.) = 0.69
 Tc(MIN.) = 12.25
 SUBAREA AREA(ACRES) = 28.25 SUBAREA RUNOFF(CFS) = 88.63

EFFECTIVE AREA(ACRES) = 63.26 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.37
                        63.3
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 2.26 FLOW VELOCITY(FEET/SEC.) = 19.90
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                             16.00 =
*******************
 FLOW PROCESS FROM NODE
                         16.00 TO NODE 17.00 IS CODE = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

\* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.316

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 66.0 INCH PIPE IS 49.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.74
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 66.00
 PIPE-FLOW(CFS) =
                 203.44
 PIPE TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 14.60
                        13.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                      17.00 =
                                                4320.00 FEET.
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
_____
                                   -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.60
  100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.349
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                     D
                            44.48
                                    0.20
                                           1.000
 RESIDENTIAL
                    A 6.11 0.40 0.200
A 4.75 0.40 0.100
 "11+ DWELLINGS/ACRE"
 COMMERCIAL
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.834
 SUBAREA AREA(ACRES) = 55.34 SUBAREA RUNOFF(CFS) = 158.17 
EFFECTIVE AREA(ACRES) = 118.60 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 118.6
                            PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 69.0 INCH PIPE IS 53.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.72
 ESTIMATED PIPE DIAMETER(INCH) = 69.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 341.49
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) =
                                      14.88
                                       18.00 =
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                                4590.00 FEET.
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.88
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.312
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fρ
                                            Ap
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL POOR COVER
 "BARREN"
                            4.65
                                    0.40
                                           1.000
 RESIDENTIAL
                     A 13.94 0.40
 "11+ DWELLINGS/ACRE"
                                           0.200
                                                   52
 COMMERCIAL
                             2.82
                                     0.40
                                            0.100
 NATURAL FAIR COVER
 "OPEN BRUSH"
                            2.64
                      Α
                                            1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.431
 SUBAREA AREA(ACRES) = 24.05 SUBAREA RUNOFF(CFS) = 67.95 EFFECTIVE AREA(ACRES) = 142.65 AREA-AVERAGED Fm(INCH/HR) =
                            AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.56
 TOTAL AREA(ACRES) = 142.7
                             PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100

CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000

MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
```

\* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.190

```
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  NATURAL FAIR COVER
  "OPEN BRUSH"
                                Α
                                           2.68
                                                      0.40
                                                                1,000
  RESTDENTIAL
  "11+ DWELLINGS/ACRE" A
  "11+ DWELLINGS/ACRE" A 9.73 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, fp(INCH/HR) = 0.40
                                                               0.200
                                                                           52
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 10.16
  AVERAGE FLOW DEPTH(FEET) = 1.12 TRAVEL TIME(MIN.) = 1.00
  Tc(MIN.) = 15.88
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 33.97

EFFECTIVE AREA(ACRES) = 155.06 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.55
  TOTAL AREA(ACRES) = 155.1 PEAK FLOW RATE(CFS) =
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 1.12 FLOW VELOCITY(FEET/SEC.) = 10.18
  LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                         19.00 =
                                                                     5200.00 FEET.
********************
  FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51
  >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
  MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.981
  SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.01
  AVERAGE FLOW DEPTH(FEET) = 1.05 TRAVEL TIME(MIN.) = 2.00
  Tc(MIN.) = 17.88
 SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 4.18

EFFECTIVE AREA(ACRES) = 156.64 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.54

TOTAL AREA(ACRES) = 156.6 PEAK FLOW RATE(CFS) = 423.90
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 1.04 FLOW VELOCITY(FEET/SEC.) = 3.01
  LONGEST FLOWPATH FROM NODE
                                    13.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 423.90 17.88 2.981 0.28(0.15) 0.54 156.6 13.00
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5560.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 283.31 27.63 2.323 0.20(0.15) 0.72 143.4 1.00
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FEET.
  ** PEAK FLOW RATE TABLE **
   TOTAL AREA(ACRES) =
                                 300.0
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 662.66 Tc(MIN.) = 17.881

EFFECTIVE AREA(ACRES) = 249.43 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.61
  TOTAL AREA(ACRES) = 300.0
```

SUBAREA LOSS RATE DATA(AMC III):

```
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.757
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fρ
                                                  Αp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               11.87
                                        0.40
 NATURAL FAIR COVER
                       D
 "OPEN BRUSH"
                           16.10 0.20 1.000
1.56 0.40 0.100
                                                         96
 COMMERCIAL
                                                         52
                        Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.631
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.63
 AVERAGE FLOW DEPTH(FEET) = 1.40 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 20.50
 SUBAREA AREA(ACRES) = 29.53 SUBAREA RUNOFF(CFS) = 69.46 EFFECTIVE AREA(ACRES) = 278.96 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.61
TOTAL AREA(ACRES) = 329.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.36 FLOW VELOCITY(FEET/SEC.) = 3.56
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                     6130.00 FEET.
                                           21.00 =
************************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                       22.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.563
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                        0.40
                        Α
                                1.73
                                                0.100
 NATURAL FAIR COVER
 "OPEN BRUSH" D 8.52 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.848
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 673.68
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.59
AVERAGE FLOW DEPTH(FEET) = 1.37 TRAVEL TIME(MIN.) = 2.78
 Tc(MIN.) = 23.28
 SUBAREA AREA(ACRES) = 10.25 SUBAREA RUNOFF(CFS) = 22.05 EFFECTIVE AREA(ACRES) = 289.21 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
 TOTAL AREA(ACRES) = 339.8
                                PEAK FLOW RATE(CES) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.36  FLOW VELOCITY(FEET/SEC.) =
                                             3.56
                                           22.00 =
                                                    6730.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
```

```
REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.440
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                           Fρ
                                                      Αр
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                  3.62
                                           0.40
                         A
 NATURAL FAIR COVER
              D 4.47 0.20 1.000
A 1.68 0.40 0.100
 "OPEN BRUSH"
                                                              96
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.549
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.59
AVERAGE FLOW DEPTH(FEET) = 1.37 TRAVEL TIME(MIN.) = 2.09
 Tc(MIN.) = 25.37
 SUBAREA AREA(ACRES) = 9.77 SUBAREA RUNOFF(CFS) = 20.33
EFFECTIVE AREA(ACRES) = 298.98 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
TOTAL AREA(ACRES) = 349.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.36 FLOW VELOCITY(FEET/SEC.) =
                                                 3.56
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7180.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 349.6 TC(MIN.) = 25.37

EFFECTIVE AREA(ACRES) = 298.98 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.617
 PEAK FLOW RATE(CFS) =
                          662.66
 ** PEAK FLOW RATE TABLE **
  ______
______
```

END OF RATIONAL METHOD ANALYSIS

## Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X100 B.DAT
 TIME/DATE OF STUDY: 16:13 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.913
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                             Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 91 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                     2.38
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                           CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) = 8.59
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65
  STREET FLOW TRAVEL TIME(MIN.) = 2.82 Tc(MIN.) = 10.29
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.091
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                         Аp
                                               Fρ
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 91
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 2.31
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.47
 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) = 0.71 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FE
                                                  52.00 = 650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.59
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.27
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80
STREET FLOW TRAVEL TIME(MIN.) = 2.93 Tc(MIN.) = 13.23
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.543
  SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 91
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 2.28

EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED FM(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.9
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.13
 FLOW VELOCITY (FEET/SEC.) = 2.30 DEPTH*VELOCITY (FT*FT/SEC.) = 0.83 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                 53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 16.76
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.88
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.33
  STREET FLOW TRAVEL TIME(MIN.) = 2.89 Tc(MIN.) = 16.12
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.164
  SUBAREA LOSS RATE DATA(AMC III):
                   E DATA(APIC III).

E/ SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 6.76 0.20 0.100 91
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 19.13

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.12
 FLOW VELOCITY(FEET/SEC.) = 3.21 DEPTH*VELOCITY(FT*FT/SEC.) = 1.68 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 ________
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 22.93
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.49
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.99
  STREET FLOW TRAVEL TIME(MIN.) = 2.87 Tc(MIN.) = 18.99
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.880
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 91

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 19.20 EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 24.80
 FLOW VELOCITY(FEET/SEC.) = 3.65 DEPTH*VELOCITY(FT*FT/SEC.) = 2.21
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                             43.25
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.61
    HALFSTREET FLOOD WIDTH(FEET) = 25.20
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.69
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.26
  STREET FLOW TRAVEL TIME(MIN.) = 2.26 Tc(MIN.) =
                                                        21.25
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.701
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 91

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 3.55
EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
                                                                   42.41
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 25.04
 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY(FT*FT/SEC.) = 2.23 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPLITED LISTING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.66
   HALFSTREET FLOOD WIDTH(FEET) = 27.93
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.60
 STREET FLOW TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) = 23.71 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.536
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fp
                                                          Αp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 91
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 27.81
EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                            29.9
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.51
 FLOW VELOCITY(FEET/SEC.) = 4.11 DEPTH*VELOCITY(FT*FT/SEC.) = 2.86 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                    57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.79
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.84
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.82
 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 26.05
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.403
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 91
D 9.91 0.20 0.600 91
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 84.30 EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.55
 FLOW VELOCITY(FEET/SEC.) = 5.33 DEPTH*VELOCITY(FT*FT/SEC.) = 4.57
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 144.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.82
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 148.35
 PIPE TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 27.03
 LONGEST FLOWPATH FROM NODE
                            50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.03
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.353
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 24.02

EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                     81.0
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.29
ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 169.19
```

```
PIPE TRAVEL TIME(MIN.) = 0.73 Tc(MIN.) = 27.76
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                          5250.00 FEET.
******************
 FLOW PROCESS FROM NODE
                          60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.76
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.317
 * 100 YEAR RAID....

SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 15.82 0.20 0.100 91
 SUBAREA LOSS RATE DATA(AMC III):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                          D
                                   4.45
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.122
 SUBAREA AREA(ACRES) = 20.27 SUBAREA RUNOFF(CFS) = 41.82 EFFECTIVE AREA(ACRES) = 101.29 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 101.3
                                    PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 950.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.242
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                          D
                                   20.98
                                            0.20
                                                     1,000
                                                               96
 NATURAL POOR COVER
                                             0.20
                           D
                                  12.82
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 9.66
AVERAGE FLOW DEPTH(FEET) = 1.31 TRAVEL TIME(MIN.) = 1.64
 Tc(MIN.) = 29.40
 SUBAREA AREA(ACRES) = 33.80 SUBAREA RUNOFF(CFS) = 62.12 EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR) = 0.07 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                      135.1
                                                               263.72
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.38 FLOW VELOCITY(FEET/SEC.) = 9.95
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 =
                                                         6200.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 135.1 TC(MIN.) = 29.40
EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR)= 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.365 PEAK FLOW RATE(CFS) = 263.72
______
```

------

# Drainage C

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100 C.DAT
 TIME/DATE OF STUDY: 16:13 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                            107.00 DOWNSTREAM(FEET) = 104.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.912
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.593
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                     Fρ
                                            Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                              2.27
                                            1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 6.93
 TOTAL AREA(ACRES) =
                     2.27 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.23
 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 15.01
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.295
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
                           D
  "BARREN"
                                    4.61
                                              0.20
                                                       1,000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.61 SUBAREA RUNOFF(CFS) = 12.84
EFFECTIVE AREA(ACRES) = 6.88 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.24
 FLOW VELOCITY(FEET/SEC.) = 3.03 DEPTH*VELOCITY(FT*FT/SEC.) = 1.48 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                            650.00 FEET.
************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0200
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.48
   HALFSTREET FLOOD WIDTH(FEET) = 17.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.02
 STREET FLOW TRAVEL TIME(MIN.) = 1.58 Tc(MIN.) = 16.60
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.111
 SUBAREA LOSS RATE DATA(AMC III):
                       SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                           D
                                    4.74
                                              0.20
                                                                96
                                                       1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.74 SUBAREA RUNOFF(CFS) = 12.42

EFFECTIVE AREA(ACRES) = 11.62 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                          11.6
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.10
 FLOW VELOCITY(FEET/SEC.) = 4.41 DEPTH*VELOCITY(FT*FT/SEC.) = 2.22
 LONGEST FLOWPATH FROM NODE
                               80.00 TO NODE
                                                83.00 = 1050.00 FEET.
************************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.1200
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

13.36

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         40.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 14.88
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 9.32
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.99
  STREET FLOW TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 17.40
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.028
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACRES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                          D
                                   7.90
                                            0.20
                                                      1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF(CFS) = 20.11 EFFECTIVE AREA(ACRES) = 19.52 AREA-AVERAGED Fm(INCH/HR) = 0.20
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 19.5
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.21
 FLOW VELOCITY(FEET/SEC.) = 9.78 DEPTH*VELOCITY(FT*FT/SEC.) = 4.42 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 84.00 = 1500.00 FE
                                                         1500.00 FEET.
*******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0900
 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 104.66
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.16
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 10.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 6.05
 STREET FLOW TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) =
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.971
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                           D
  "OPEN BRUSH"
                                   34.33
                                             0.20
                                                     1.000
                                                               96
 NATURAL POOR COVER
                                  9.76 0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 44.09 SUBAREA RUNOFF(CFS) = 109.95

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) =

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                    AREA-AVERAGED Fm(INCH/HR) = 0.20
 TOTAL AREA(ACRES) =
                         63.6
                                    PEAK FLOW RATE(CFS) =
                                                              158.62
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.23
 FLOW VELOCITY(FEET/SEC.) = 11.64 DEPTH*VELOCITY(FT*FT/SEC.) = 7.55
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 85.00 = 1870.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA (ACRES) = 63.6 TC(MIN.) = 17.99

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.000

PEAK FLOW RATE(CFS) = 158.62
______
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

\_\_\_\_\_\_

# Drainage D

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100 D.DAT
 TIME/DATE OF STUDY: 10:01 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00
                             95.00 DOWNSTREAM(FEET) = 83.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.794
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.686
 SUBAREA TC AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                            Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 5.59
 TOTAL AREA(ACRES) =
                     1.10 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 420.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      15.14
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 16.60
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.85
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.31
 STREET FLOW TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) =
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.644
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                  4.58
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.58 SUBAREA RUNOFF(CFS) = 18.98

EFFECTIVE AREA(ACRES) = 5.68 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 19.80
 FLOW VELOCITY(FEET/SEC.) = 3.18 DEPTH*VELOCITY(FT*FT/SEC.) = 1.64 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 700.00 FE
*******************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 740.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0600
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.096
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                                     1.000
                          D
                                   8.61
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.10
 AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 2.02
 Tc(MIN.) = 10.27
 SUBAREA AREA(ACRES) = 8.61 SUBAREA RUNOFF(CFS) = 30.19
EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR) = 0.14
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.68
 TOTAL AREA(ACRES) = 14.3
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 6.75
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 1440.00 FEET.
______
 END OF STUDY SUMMARY:
                             14.3 TC(MIN.) =
 TOTAL AREA(ACRES) =
                                                 10.27
 EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR)= 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.682
PEAK FLOW RATE(CFS) = 50.92
-----
______
```

# Drainage E

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100 E.DAT
 TIME/DATE OF STUDY: 16:35 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            105.00 DOWNSTREAM(FEET) = 103.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.376
 SUBAREA TC AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                   Fp
                                            Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                     D
                              2.39
                                             0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 9.33
 TOTAL AREA(ACRES) =
                     2.39 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 16.84
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.88
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.34
 STREET FLOW TRAVEL TIME(MIN.) = 2.89 Tc(MIN.) = 12.04
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.739
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                          D
                                   3.83
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.83 SUBAREA RUNOFF(CFS) = 12.75

EFFECTIVE AREA(ACRES) = 6.22 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 18.87
 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 1.53
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 830.00 FE
                                                           830.00 FEET.
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.66
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.27
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.74
 STREET FLOW TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 14.33
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.384
 SUBAREA LOSS RATE DATA(AMC III):
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                    3.65
                                             0.20
                                                      0.200
                                                               91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.65 SUBAREA RUNOFF(CFS) = 10.98
EFFECTIVE AREA(ACRES) = 9.87 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                           9.9
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.76
 FLOW VELOCITY(FEET/SEC.) = 3.36 DEPTH*VELOCITY(FT*FT/SEC.) = 1.85
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                              103.00 = 1280.00 FEET.
******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

15.72

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                             52.16
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.65
    HALFSTREET FLOOD WIDTH(FEET) = 27.15
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.85
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.49
  STREET FLOW TRAVEL TIME(MIN.) = 1.56 Tc(MIN.) = 15.89
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.189
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                           D
 COMMERCIAL
                                     6.18 0.20
                                                         0.100
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                      9.62
                                                         0.200
                                                0.20
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.161
 SUBAREA AREA(ACRES) = 15.80 SUBAREA RUNOFF(CFS) = 44.90 EFFECTIVE AREA(ACRES) = 25.67 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 25.7
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 32.16
 FLOW VELOCITY(FEET/SEC.) = 4.22 DEPTH*VELOCITY(FT*FT/SEC.) = 3.00
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 360.0 FT WITH ELEVATION-DROP = 3.6 FT, IS 66.5 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 104.00
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                                 104.00 = 1640.00 FEET.
******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 1090.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
    ***STREET FLOWING FULL***
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) = 34.79
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.64
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.54
 STREET FLOW TRAVEL TIME(MIN.) = 3.91 Tc(MIN.) = 19.81
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.811
  SUBAREA LOSS RATE DATA(AMC III):
                                             Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 16.93 0.20 0.100 91
      LAND USE
 COMMERCIAL
  "11+ DWELLINGS/ACRE"
                                      1.76
                                                 0.20
                             D
                                                          0.200
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.109
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 46.92
EFFECTIVE AREA(ACRES) = 44.36 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) =
                            44.4
                                        PEAK FLOW RATE(CFS) =
                                                                   111.06
  END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 36.25
  FLOW VELOCITY(FEET/SEC.) = 4.86 DEPTH*VELOCITY(FT*FT/SEC.) = 3.85
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 1090.0 FT WITH ELEVATION-DROP = 10.9 FT, IS 61.1 \text{ CFS}, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 105.00
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2730.00 FEET.
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.81
   HALFSTREET FLOOD WIDTH(FEET) = 37.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.04
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.10
 STREET FLOW TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) = 22.12
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.639
 SUBAREA LOSS RATE DATA(AMC III):
                                          Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
                        D 2.36 0.20 0.200
D 8.10 0.20 0.100
  "11+ DWELLINGS/ACRE"
                                                             91
 COMMERCIAL
                                                             91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.123
 SUBAREA AREA(ACRES) = 10.46 SUBAREA RUNOFF(CFS) = 24.61
EFFECTIVE AREA(ACRES) = 54.82 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.14
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                        54.8
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 37.84
 FLOW VELOCITY(FEET/SEC.) = 5.11 DEPTH*VELOCITY(FT*FT/SEC.) = 4.21 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 3430.00 FE
                                             106.00 = 3430.00 FEET.
*******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 630.00
                               CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 135.56
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.84
   HALFSTREET FLOOD WIDTH(FEET) = 38.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.19
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.34
 STREET FLOW TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) =
                                                    24.14
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.510
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                          Fρ
                                                     Аp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE" D
                                   6.09
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.09 SUBAREA RUNOFF(CFS) = 13.54
```

```
EFFECTIVE AREA(ACRES) = 60.91 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                                                       135.96
 TOTAL AREA(ACRES) = 60.9
                            PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.51
 FLOW VELOCITY(FEET/SEC.) = 5.18 DEPTH*VELOCITY(FT*FT/SEC.) = 4.34 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 4060.00 FE
                                        107.00 = 4060.00 FEET.
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
      ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.130
 DEPTH OF FLOW IN 114.0 INCH PIPE IS 92.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.20
 ESTIMATED PIPE DIAMETER(INCH) = 114.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 135.96
 PIPE TRAVEL TIME(MIN.) = 1.89
                               Tc(MIN.) = 26.04
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 108.00 = 4310.00 FEET.
*******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81
     ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 26.04
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.404
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                                qΑ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 4.84 0.20 0.100 91
     LAND USE
 COMMERCIAL
 "11+ DWELLINGS/ACRE" D 14.79 0.20 0 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.175
 SUBAREA AREA(ACRES) = 19.63 SUBAREA RUNOFF(CFS) = 41.85

EFFECTIVE AREA(ACRES) = 80.54 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) =
                       80.5
                                PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
  ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.31
 ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 171.98
 PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 26.63
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 109.00 =
                                                   4780.00 FEET.
************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 26.63
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.373
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                               1.000 96
 "OPEN BRUSH"
                       D
                              16.62
                                       0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 16.62 SUBAREA RUNOFF(CFS) = 32.50 EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.30
 TOTAL AREA(ACRES) = 97.2
                              PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
                          97.2 \text{ TC}(MIN.) =
 TOTAL AREA(ACRES) =
 TOTAL AREA(ACRES) = 97.12 IC(MIN.) - 20.03

EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.300
 PEAK FLOW RATE(CFS) = 202.26
```

\_\_\_\_\_\_

# Drainage F

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100_F.DAT
 TIME/DATE OF STUDY: 16:35 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                      (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                               (FT)
                                                (FT)
1 30.0
        20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              9.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.737
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                  Fp
                                           Ар
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             5.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 24.31
 TOTAL AREA(ACRES) =
                    5.80 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                        5.8 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) = 5.8 TC(MIN.) = 7.97
EFFECTIVE AREA(ACRES) = 5.80 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 24.31
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage G

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100_G.DAT
 TIME/DATE OF STUDY: 16:35 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                      (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                               (FT)
                                                (FT)
1 30.0
        20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              9.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.690
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                  Fp
                                           Ар
                                                SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                            1.75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 7.26
                    1.75 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                        1.8 \text{ TC(MIN.)} =
                                         8.11
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 8.11
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 7.26
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage H

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X100_H.DAT
 TIME/DATE OF STUDY: 16:35 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
                            10.00 DOWNSTREAM(FEET) = 9.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.187
 SUBAREA To AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fp
                                           Аp
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                            0.63
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 3.46
                    0.63 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 31
      ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 680.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.14
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.46
PIPE TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        210.00 TO NODE
                                      212.00 =
******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 81
```

\_\_\_\_\_\_

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.20
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.019
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                       Fρ
                                                Αp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               3.53
                                        0.40
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.53 SUBAREA RUNOFF(CFS) = 15.69
EFFECTIVE AREA(ACRES) = 4.16 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                     4.2
                               PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.68
                                     NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
 PIPE-FLOW(CFS) = 18.49
PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) =
                                          8.07
                                          213.00 = 1150.00 FEET.
 LONGEST FLOWPATH FROM NODE
                          210.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 8.07
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.702
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                               Ap
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                2.82
                                        0.40
                                               0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 0.200
SUBAREA AREA(ACRES) = 2.82 SUBAREA RUNOFF(CFS) = 11.73
EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED AP = 0.20
PEAK FLOW RATE(CFS) = 29.04
______
 END OF STUDY SUMMARY:
                          7.0 \text{ TC}(MIN.) =
 TOTAL AREA(ACRES)
                                             8.07
 TOTAL AREA(ACRES) = 7.0 IC(MIN.) = 0.07

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
 PEAK FLOW RATE(CFS) = 29.04
______
______
```

# Drainage I

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100 I.DAT
 TIME/DATE OF STUDY: 16:36 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 250.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                               8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.815
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                             Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              0.47
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.00
                     0.47 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.10
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.28
    HALFSTREET FLOOD WIDTH(FEET) =
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.70
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75
  STREET FLOW TRAVEL TIME(MIN.) = 1.79 Tc(MIN.) = * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.273
                                                          9.54
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  RESIDENTIAL
  "11+ DWELLINGS/ACRE" A
                                       0.58
                                                            0.200
                                                  0.40
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 2.19
EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
  TOTAL AREA(ACRES) = 1.0
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.59
 FLOW VELOCITY (FEET/SEC.) = 2.80 DEPTH*VELOCITY (FT*FT/SEC.) = 0.83
LONGEST FLOWPATH FROM NODE 215.00 TO NODE 217.00 = 540.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.0 TC(MIN.) = 9.54

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 3.96
______
______
```

# Drainage J

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100 J.DAT
 TIME/DATE OF STUDY: 16:36 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.642
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.522
 SUBAREA To AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                            Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             1.55
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 6.20
 TOTAL AREA(ACRES) =
                     1.55 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         12.19
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.12
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.73
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18
  STREET FLOW TRAVEL TIME(MIN.) = 2.44 Tc(MIN.) = 11.09
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.921
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                    3.46
                                              0.40
                                                        0.200
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.46 SUBAREA RUNOFF(CFS) = 11.96
EFFECTIVE AREA(ACRES) = 5.01 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.54
 FLOW VELOCITY(FEET/SEC.) = 2.94 DEPTH*VELOCITY(FT*FT/SEC.) = 1.40 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 222.00 = 700.00 FE
*******************
 FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.82
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.27
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.75
  STREET FLOW TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 13.38
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.520
  SUBAREA LOSS RATE DATA(AMC III):
                                           Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           Α
                                     5.98
                                              0.40
                                                       0.200
                                                                 52
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 5.98 SUBAREA RUNOFF(CFS) = 18.51
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                      PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                          11.0
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.93
 FLOW VELOCITY(FEET/SEC.) = 3.48 DEPTH*VELOCITY(FT*FT/SEC.) = 1.99 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 223.00 = 1150.00 FEET.
______
 END OF STUDY SUMMARY:
                              11.0 TC(MIN.) =
 TOTAL AREA(ACRES)
 TOTAL AREA(ACRES) = 11.0 TC(MIN.) = 13.38
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 34.03
______
______
```

# Drainage K

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X100 K.DAT
 TIME/DATE OF STUDY: 16:36 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               7.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.376
 SUBAREA To AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                            Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             1.53
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 5.92
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0150
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       14.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 14.88
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.41
 STREET FLOW TRAVEL TIME(MIN.) = 1.67 Tc(MIN.) = 10.82
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.975
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                  4.77
                                            0.40
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.77 SUBAREA RUNOFF(CFS) = 16.72

EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.77
 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY(FT*FT/SEC.) = 1.76
LONGEST FLOWPATH FROM NODE 225.00 TO NODE 227.00 = 660.00 FE
                                                          660.00 FEET.
*******************
 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.11
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 22.08
 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 11.17 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 228.00 = 830.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                             6.3 \quad TC(MIN.) =
                                                 11.17
 TOTAL AREA(ACRES) = 6.3 TC(MIN.) = 11.17
EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 22.08
______
______
 END OF RATIONAL METHOD ANALYSIS
```

ii. HC 25-Year Storm Event

# Drainage A

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 A.DAT
 TIME/DATE OF STUDY: 16:13 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                             106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                              0.68
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.18
 TOTAL AREA(ACRES) =
                     0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55
 STREET FLOW TRAVEL TIME(MIN.) = 3.16 Tc(MIN.) = * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.007
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  "11+ DWELLINGS/ACRE"
                                                        0.200
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.02

EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.84
 FLOW VELOCITY(FEET/SEC.) = 1.67 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.85
  STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 13.76
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.720
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 8.18
EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.70
 FLOW VELOCITY(FEET/SEC.) = 2.10 DEPTH*VELOCITY(FT*FT/SEC.) = 1.00
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                  4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

3.69

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         19.75
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 21.21
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.35
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.27
 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 15.96
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.501
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                                   0.200 75
                                   6.51
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 14.42 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED FM(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 23.63
 FLOW VELOCITY(FEET/SEC.) = 2.50 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.63
   HALFSTREET FLOOD WIDTH(FEET) = 26.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.68
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 18.70
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.286
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 17.11
EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 28.16
 FLOW VELOCITY(FEET/SEC.) = 2.80 DEPTH*VELOCITY(FT*FT/SEC.) = 1.87 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
********************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.73
   HALFSTREET FLOOD WIDTH(FEET) = 33.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.29
STREET FLOW TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) =
                                                    20.62
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.163
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                            Fρ
                                                      Αp
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN IERCIAL D 18.43 0.20 0.100 75
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 35.55
EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.58
 FLOW VELOCITY(FEET/SEC.) = 3.39 DEPTH*VELOCITY(FT*FT/SEC.) = 2.64
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 56.2 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 1910.00 FEET.
******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.15
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    74.11
 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) =
                                              21.27
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.27
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.126
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                         D
                                  0.81 0.20
 NATURAL FAIR COVER
                         D
                               4.99 0.20
6.24 0.20
                                                  1.000
0.100
  "OPEN BRUSH"
                                                              83
 COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 22.01

EFFECTIVE AREA(ACRES) = 50.57 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.21
                        50.6
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.1000
FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES
```

```
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 94.81
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                            9.00 =
                                                      2600.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1180.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.956
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                25.52
                                         0.20
                                                 1.000
                        D
 NATURAL POOR COVER
                                6.51 0.20 1.000
 "BARREN"
                        D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                120.15
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.01
 AVERAGE FLOW DEPTH(FEET) = 0.78 TRAVEL TIME(MIN.) = 3.27
 Tc(MIN.) = 24.63
 SUBAREA AREA(ACRES) = 32.03 SUBAREA RUNOFF(CFS) = 50.63 EFFECTIVE AREA(ACRES) = 82.60 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.52
 TOTAL AREA(ACRES) = 82.6
                              PEAK FLOW RATE(CFS) =
                                                         137.75
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 FLOW VELOCITY(FEET/SEC.) = 6.32
                                           10.00 =
                                                    3780.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 _____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.872
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                                1.000
 "OPEN BRUSH"
                        D
                                29.92
                                        0.20
                                                          83
 NATURAL POOR COVER
                               14.41
                                         0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.51
AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 2.00
 Tc(MIN.) = 26.62
 SUBAREA AREA(ACRES) = 44.33 SUBAREA RUNOFF(CFS) = 66.71 EFFECTIVE AREA(ACRES) = 126.93 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) =
                      126.9
                                   PEAK FLOW RATE(CFS) =
                                                          198.18
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.29 FLOW VELOCITY(FEET/SEC.) = 5.82
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                           11.00 =
                                                    4440.00 FEET.
*************************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                      12.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 580.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150

CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000

MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.810
```

PIPE-FLOW VELOCITY(FEET/SEC.) = 27.66

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                          SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 14.64 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                    1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.95
 AVERAGE FLOW DEPTH(FEET) = 1.33 TRAVEL TIME(MIN.) = 1.62
 Tc(MIN.) = 28.25
 SUBAREA AREA(ACRES) = 14.64 SUBAREA RUNOFF(CFS) = 21.22 EFFECTIVE AREA(ACRES) = 141.57 AREA-AVERAGED Fm(INCH/HR) = 0.14 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
 TOTAL AREA(ACRES) = 141.6
                                  PEAK FLOW RATE(CFS) =
                                                            212.35
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.35 FLOW VELOCITY(FEET/SEC.) = 5.98
                                                      5020.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                             12.00 =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 62
      -----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.86
   HALFSTREET FLOOD WIDTH(FEET) = 39.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 7.56
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 6.52
 STREET FLOW TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) =
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.776
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                    An
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                  1.83
                                           0.40
                                                    1.000
                                                            46
                         Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 2.27

EFFECTIVE AREA(ACRES) = 143.40 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
TOTAL AREA(ACRES) = 143.4 PEAK FLOW RATE(CFS) =
                                                            212.35
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.73
 FLOW VELOCITY(FEET/SEC.) = 7.55 DEPTH*VELOCITY(FT*FT/SEC.) = 6.50 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FE
                                             20.00 = 5460.00 FEET.
********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00
ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =

SUBAREA LOSS RATE DATA(AMC II):

```
SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP

LAND USE GROUP (ACRES) (INCH/E
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                 3.17
                                           0.20
                                                    0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 9.53
 TOTAL AREA(ACRES) = 3.17 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0500
 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.07
ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.53
PIPE TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                             13.00 TO NODE
                                             15.00 =
********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 11.67
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.986
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                       В
 "11+ DWELLINGS/ACRE"
                                31.84
                                           0.30
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 31.84 SUBAREA RUNOFF(CFS) = 83.86

EFFECTIVE AREA(ACRES) = 35.01 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.20
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 35.0
***********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0400
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.885
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Fρ
                                                    qΑ
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                11.64
                                          0.20
 NATURAL FAIR COVER
                                                  1.000
                             13.96 0.40
2.65 0.20
 "OPEN BRUSH"
  COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.586
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 17.71
 AVERAGE FLOW DEPTH(FEET) = 1.89 TRAVEL TIME(MIN.) = 0.73
 Tc(MIN.) = 12.40
 SUBAREA AREA(ACRES) = 28.25 SUBAREA RUNOFF(CFS) = 67.86 EFFECTIVE AREA(ACRES) = 63.26 AREA-AVERAGED Fm(INCH/HR) = 0.13 AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.37
                        63.3
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 2.05 FLOW VELOCITY(FEET/SEC.) = 18.68
                                             16.00 =
                                                      2810.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.380

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 156.93
 PIPE TRAVEL TIME(MIN.) = 2.50 Tc(MIN.) = 14.90
                        13.00 TO NODE
                                       17.00 =
                                                4320.00 FEET.
 LONGEST FLOWPATH FROM NODE
***********************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
                                   _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.90
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.600
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
 DEVELOPMENT TYPE/
                            AREA
    LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                     D
                            44.48
                                    0.20
                                           1.000 83
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                    A 6.11 0.40 0.200
                                     0.40
 COMMERCIAL
                      Α
                             4.75
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.834
 SUBAREA AREA(ACRES) = 55.34 SUBAREA RUNOFF(CFS) = 120.88 EFFECTIVE AREA(ACRES) = 118.60 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 118.6
                            PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 48.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.77
 ESTIMATED PIPE DIAMETER(INCH) = 63.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               261.59
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                      15.20
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                                4590.00 FEET.
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.20
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.570
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fρ
                                            Аp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL POOR COVER
 "BARREN"
                     A
                            4.65
                                    0.40
                                           1.000
 RESIDENTIAL
                     A 13.94 0.40
 "11+ DWELLINGS/ACRE"
                                           0.200
                                                   32
 COMMERCIAL
                             2.82
                                     0.40
                                            0.100
 NATURAL FAIR COVER
 "OPEN BRUSH"
                            2.64
                      Α
                                            1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.431
 SUBAREA AREA(ACRES) = 24.05 SUBAREA RUNOFF(CFS) = 51.91 EFFECTIVE AREA(ACRES) = 142.65 AREA-AVERAGED FM(INCH/HR) =
                             AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.56
 TOTAL AREA(ACRES) = 142.7
                             PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
```

\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.471

```
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
   NATURAL FAIR COVER
    "OPEN BRUSH"
                                                      Α
                                                                       2.68
                                                                                           0.40
                                                                                                            1.000
   RESTDENTIAL
   "11+ DWELLINGS/ACRE" A 9.73 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, fp(INCH/HR) = 0.40
   "11+ DWELLINGS/ACRE" A
                                                                                                         0.200
                                                                                                                              32
   SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
   TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 9.21
   AVERAGE FLOW DEPTH(FEET) = 0.95 TRAVEL TIME(MIN.) =
   Tc(MIN.) = 16.31
   SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 25.93
EFFECTIVE AREA(ACRES) = 155.06 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.55
   TOTAL AREA(ACRES) = 155.1 PEAK FLOW RATE(CFS) =
   END OF SUBAREA CHANNEL FLOW HYDRAULICS:
   DEPTH(FEET) = 0.95 FLOW VELOCITY(FEET/SEC.) = 9.22
   LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                                                                19.00 =
                                                                                                                   5200.00 FEET.
*********************
   FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51
   >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
   >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
   CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
   REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
   MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
   * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.299
   SUBAREA LOSS RATE DATA(AMC II):
   DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.40
   SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
   TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.72
   AVERAGE FLOW DEPTH(FEET) = 0.89 TRAVEL TIME(MIN.) = 2.21
   Tc(MIN.) = 18.52
   SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 3.21

EFFECTIVE AREA(ACRES) = 156.64 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.54

TOTAL AREA(ACRES) = 156.6 PEAK FLOW RATE(CFS) = 323.44
   NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
   END OF SUBAREA CHANNEL FLOW HYDRAULICS:
   DEPTH(FEET) = 0.89 FLOW VELOCITY(FEET/SEC.) = 2.71
   LONGEST FLOWPATH FROM NODE
                                                           13.00 TO NODE
*******************
   FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
   ** MAIN STREAM CONFLUENCE DATA **
   STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 323.44 18.52 2.299 0.28(0.15) 0.54 156.6 13.00
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5560.00 FEET.
    ** MEMORY BANK # 1 CONFLUENCE DATA **
   STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 212.35 29.22 1.776 0.20(0.15) 0.72 143.4 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FEET.
    ** PEAK FLOW RATE TABLE **
     | Team | Color | Team | Table | Team 
       TOTAL AREA(ACRES) =
                                                        300.0
   COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
   PEAK FLOW RATE(CFS) = 501.23 Tc(MIN.) = 18.515

EFFECTIVE AREA(ACRES) = 247.52 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.61
   TOTAL AREA(ACRES) = 300.0
```

SUBAREA LOSS RATE DATA(AMC II):

```
************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.117
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fρ
                                                  Αp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               11.87
                                        0.40
 NATURAL FAIR COVER
                       D
 "OPEN BRUSH"
                           16.10 0.20 1.000
1.56 0.40 0.100
                                                         83
                                                         32
 COMMERCIAL
                        Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.631
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.27
 AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 21.42
 SUBAREA AREA(ACRES) = 29.53 SUBAREA RUNOFF(CFS) = 52.46 EFFECTIVE AREA(ACRES) = 277.05 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.61
TOTAL AREA(ACRES) = 329.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                    6130.00 FEET.
                                           21.00 =
************************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                       22.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.961
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                        0.40
                        Α
                               1.73
                                                0.100
 NATURAL FAIR COVER
 "OPEN BRUSH" D 8.52 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.848
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 509.48
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.23
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 3.10
 Tc(MIN.) = 24.52
 SUBAREA AREA(ACRES) = 10.25 SUBAREA RUNOFF(CFS) = 16.50 EFFECTIVE AREA(ACRES) = 287.30 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
 TOTAL AREA(ACRES) = 339.8
                                PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) =
                                             3.21
                                           22.00 =
                                                    6730.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
```

```
REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.863
 SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                            Fρ
                                                       Αр
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                   3.62
                                            0.40
                          A
 NATURAL FAIR COVER
              D 4.47 0.20 1.000
A 1.68 0.40 0.100
 "OPEN BRUSH"
                                                               83
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.549
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.22
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 2.33
 Tc(MIN.) = 26.85
 SUBAREA AREA(ACRES) = 9.77 SUBAREA RUNOFF(CFS) = 15.26 EFFECTIVE AREA(ACRES) = 297.07 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
TOTAL AREA(ACRES) = 349.6 PEAK FLOW RATE(CFS) =
                                                               501.23
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) =
                                                  3.21
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7180.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 349.6 TC(MIN.) = 26.85

EFFECTIVE AREA(ACRES) = 297.07 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.617
 PEAK FLOW RATE(CFS) =
                           501.23
 ** PEAK FLOW RATE TABLE **
  ______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 B.DAT
 TIME/DATE OF STUDY: 16:14 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.841
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.86
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58
  STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 10.44
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.180
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Аp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.79
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.34
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) = 0.64 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FEE
                                                52.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 9.41
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.14
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 13.56
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                                                        Дp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 1.76
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 9.84
 FLOW VELOCITY (FEET/SEC.) = 2.19 DEPTH*VELOCITY (FT*FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 16.63
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.443
  SUBAREA LOSS RATE DATA(AMC II):
                  E DATA (APIC 11).

E/ SCS SOIL AREA FP AP SCS

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 6.76 0.20 0.100 75
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 14.74

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.16
 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 ________
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.73
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 19.70
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.220
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 14.77

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.38
 FLOW VELOCITY(FEET/SEC.) = 3.42 DEPTH*VELOCITY(FT*FT/SEC.) = 1.92
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                            33.26
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.57
    HALFSTREET FLOOD WIDTH(FEET) = 22.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.96
  STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) =
                                                        22.12
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.079
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 2.72 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.54
 FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY(FT*FT/SEC.) = 1.95 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.20
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.69
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.26
 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 24.74 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.951
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fp
                                                          Аp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 75
      LAND USE
  COMMERCIAL
                                                        0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 21.34
EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                            29.9
                                       PEAK FLOW RATE(CFS) =
                                                                  51.90
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.07
 FLOW VELOCITY(FEET/SEC.) = 3.85 DEPTH*VELOCITY(FT*FT/SEC.) = 2.49 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                    57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) = 33.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.55 Tc(MIN.) = 27.29
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.846
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 64.38 EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 36.44
 FLOW VELOCITY(FEET/SEC.) = 4.91 DEPTH*VELOCITY(FT*FT/SEC.) = 3.90
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 112.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.84
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 113.45
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) =
                                           28.36
 LONGEST FLOWPATH FROM NODE
                            50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 28.36
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.806
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 18.39
EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                     81.0
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.34
ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 129.35
```

```
PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 29.15
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                         5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                          60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 29.15
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.779
 * 25 YEAR RAID.....

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 15.82 0.20 0.100 75
 SUBAREA LOSS RATE DATA(AMC II):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                          D
                                   4.45
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.122
 SUBAREA AREA(ACRES) = 20.27 SUBAREA RUNOFF(CFS) = 32.00 EFFECTIVE AREA(ACRES) = 101.29 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 101.3
                                    PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 950.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.719
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                          D
                                   20.98
                                            0.20
                                                     1,000
                                                               83
 NATURAL POOR COVER
                                             0.20
                           D
                                  12.82
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 182.45
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.83
AVERAGE FLOW DEPTH(FEET) = 1.12 TRAVEL TIME(MIN.) = 1.79
 Tc(MIN.) = 30.94
 SUBAREA AREA(ACRES) = 33.80 SUBAREA RUNOFF(CFS) = 46.22 EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR) = 0.07 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                      135.1
                                                               200.17
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.19 FLOW VELOCITY(FEET/SEC.) = 9.10
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 =
                                                         6200.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 135.1 TC(MIN.) = 30.94
EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR)= 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.365 PEAK FLOW RATE(CFS) = 200.17
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 C.DAT
 TIME/DATE OF STUDY: 16:14 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                             107.00 DOWNSTREAM(FEET) = 104.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.912
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.819
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                              2.27
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 5.35
 TOTAL AREA(ACRES) =
                     2.27 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.10
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.61
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
 STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 15.15
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.576
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
 "BARREN" D 4.61 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                       1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.61 SUBAREA RUNOFF(CFS) = 9.86
EFFECTIVE AREA(ACRES) = 6.88 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37
 FLOW VELOCITY(FEET/SEC.) = 2.84 DEPTH*VELOCITY(FT*FT/SEC.) = 1.29
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                           650.00 FEET.
************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0200
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 15.90
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.77
 STREET FLOW TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 16.83
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.427
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                           Fp
 NATURAL FAIR COVER
  "OPEN BRUSH"
                           D
                                    4.74
                                             0.20
                                                                83
                                                       1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.74 SUBAREA RUNOFF(CFS) = 9.50

EFFECTIVE AREA(ACRES) = 11.62 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                          11.6
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.15
 FLOW VELOCITY(FEET/SEC.) = 4.13 DEPTH*VELOCITY(FT*FT/SEC.) = 1.94
 LONGEST FLOWPATH FROM NODE
                               80.00 TO NODE
                                                83.00 = 1050.00 FEET.
******************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.1200
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

10.28

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         30.97
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 13.24
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 8.80
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.51
 STREET FLOW TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) =
                                                    17.68
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.360
 SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                          D
                                   7.90
                                            0.20
                                                      1.000
                                                               83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF(CFS) = 15.36 EFFECTIVE AREA(ACRES) = 19.52 AREA-AVERAGED Fm(INCH/HR) = 0.20
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 19.5
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.49
 FLOW VELOCITY(FEET/SEC.) = 9.17 DEPTH*VELOCITY(FT*FT/SEC.) = 3.86
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 84.00 = 1500.00 FE
                                                         1500.00 FEET.
********************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0900
 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 79.90
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.82
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 9.83
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 5.25
 STREET FLOW TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.314
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                           D
  "OPEN BRUSH"
                                   34.33
                                             0.20
                                                     1.000
                                                               83
 NATURAL POOR COVER
                                  9.76 0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 44.09 SUBAREA RUNOFF(CFS) = 83.89

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) =

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                   AREA-AVERAGED Fm(INCH/HR) = 0.20
 TOTAL AREA(ACRES) =
                         63.6
                                    PEAK FLOW RATE(CFS) =
                                                              121.03
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 24.57
 FLOW VELOCITY(FEET/SEC.) = 10.84 DEPTH*VELOCITY(FT*FT/SEC.) = 6.52
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 85.00 = 1870.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA (ACRES) = 63.6 TC(MIN.) = 18.31

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.000

PEAK FLOW RATE(CFS) = 121.03
______
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

# Drainage D

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 D.DAT
 TIME/DATE OF STUDY: 10:05 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00
                              95.00 DOWNSTREAM(FEET) = 83.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.794
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.438
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.35
 TOTAL AREA(ACRES) =
                     1.10 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 420.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.73
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 14.88
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.70
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16
 STREET FLOW TRAVEL TIME(MIN.) = 2.59 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.600
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                  4.58
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.58 SUBAREA RUNOFF(CFS) = 14.67

EFFECTIVE AREA(ACRES) = 5.68 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.85
 FLOW VELOCITY(FEET/SEC.) = 2.99 DEPTH*VELOCITY(FT*FT/SEC.) = 1.44 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 700.00 FE
********************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 740.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0600
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.153
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                                     1.000
                          D
                                   8.61
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.57
 AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 2.21
 Tc(MIN.) = 10.60
 SUBAREA AREA(ACRES) = 8.61 SUBAREA RUNOFF(CFS) = 22.88

EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR) = 0.14

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.68
 TOTAL AREA(ACRES) = 14.3
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 6.12
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 1440.00 FEET.
______
 END OF STUDY SUMMARY:
                             14.3 TC(MIN.) =
 TOTAL AREA(ACRES) =
                                                 10.60
 EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR)= 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.682
PEAK FLOW RATE(CFS) = 38.79
-----
-----
```

END OF RATIONAL METHOD ANALYSIS

# Drainage E

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 E.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                             105.00 DOWNSTREAM(FEET) = 103.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               2.39
                                              0.200 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 7.28
 TOTAL AREA(ACRES) =
                     2.39 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.20
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18
 STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.909
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                          D
                                   3.83
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.83 SUBAREA RUNOFF(CFS) = 9.89
EFFECTIVE AREA(ACRES) = 6.22 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 16.99
 FLOW VELOCITY(FEET/SEC.) = 2.90 DEPTH*VELOCITY(FT*FT/SEC.) = 1.35
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 830.00 FE
                                                           830.00 FEET.
********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 18.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.52
 STREET FLOW TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 14.67
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.623
 SUBAREA LOSS RATE DATA(AMC II):
                                          Fp
                       SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                          D
                                    3.65
                                             0.20
                                                      0.200 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.65 SUBAREA RUNOFF(CFS) = 8.48
EFFECTIVE AREA(ACRES) = 9.87 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                           9.9
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.65
 FLOW VELOCITY(FEET/SEC.) = 3.15 DEPTH*VELOCITY(FT*FT/SEC.) = 1.62
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                              103.00 = 1280.00 FEET.
*******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

12.24

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                           40.27
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.49
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.63
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.18
  STREET FLOW TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 16.33
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.469
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 6.18 0.20 0.100 75
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                     9.62
                                               0.20
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.161
 SUBAREA AREA(ACRES) = 15.80 SUBAREA RUNOFF(CFS) = 34.65

EFFECTIVE AREA(ACRES) = 25.67 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 25.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.93
 FLOW VELOCITY(FEET/SEC.) = 3.93 DEPTH*VELOCITY(FT*FT/SEC.) = 2.60 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1640.00 FE
                                                104.00 = 1640.00 FEET.
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 1090.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
  STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
    ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.71
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.03
  STREET FLOW TRAVEL TIME(MIN.) = 4.28 Tc(MIN.) = 20.61
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.164
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  COMMERCIAL
                           D
                                    16.93 0.20
  RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.76 0.20 0
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                      0.200 75
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.109
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 36.03

EFFECTIVE AREA(ACRES) = 44.36 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                           44.4
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.57
 FLOW VELOCITY(FEET/SEC.) = 4.46 DEPTH*VELOCITY(FT*FT/SEC.) = 3.29 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2730.00 FE
                                                  105.00 = 2730.00 FEET.
*************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.61
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.50
 STREET FLOW TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) = 23.13
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.027
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 2.36 0.20 0.200 COMMERCIAL D 8.10 0.20 0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.123
 SUBAREA AREA(ACRES) = 10.46 SUBAREA RUNOFF(CFS) = 18.85

EFFECTIVE AREA(ACRES) = 54.82 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.14
                                                                 98.59
 TOTAL AREA(ACRES) =
                          54.8
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.77 HALFSTREET FLOOD WIDTH(FEET) = 34.97
 FLOW VELOCITY(FEET/SEC.) = 4.69 DEPTH*VELOCITY(FT*FT/SEC.) = 3.59 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 3430.00 FEET.
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
      _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 630.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 35.52
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.70
 STREET FLOW TRAVEL TIME(MIN.) = 2.21 Tc(MIN.) = 25.34
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.925
 SUBAREA LOSS RATE DATA(AMC II):
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                            D
                                     6.09
                                               0.20
                                                        0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.09 SUBAREA RUNOFF(CFS) = 10.33
EFFECTIVE AREA(ACRES) = 60.91 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 60.9 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.52
```

\_\_\_\_\_\_

```
FLOW VELOCITY(FEET/SEC.) = 4.77 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                      107.00 = 4060.00 FEET.
******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.130
 DEPTH OF FLOW IN 108.0 INCH PIPE IS 78.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.10
 ESTIMATED PIPE DIAMETER(INCH) = 108.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 103.90
 PIPE TRAVEL TIME(MIN.) = 1.98 Tc(MIN.) =
                                       27.32
                                      108.00 =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                                 4310.00 FEET.
************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.32
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.845
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                      D
                             4.84 0.20
                                           0.100
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 14.79 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                             0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.175
 SUBAREA AREA(ACRES) = 19.63 SUBAREA RUNOFF(CFS) = 31.97

EFFECTIVE AREA(ACRES) = 80.54 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) =
                  80.5
                              PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.35
 ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 131.46
 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =
                                       27.96
 LONGEST FLOWPATH FROM NODE
                        100.00 TO NODE
********************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.96
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.821
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
 DEVELOPMENT TYPE/
                                    Fρ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL FAIR COVER
                            16.62 0.20
 "OPEN BRUSH"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 16.62 SUBAREA RUNOFF(CFS) = 24.24 EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) =
                             AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.30
 TOTAL AREA(ACRES) = 97.2 PEAK FLOW RATE(CFS) =
                                                   153.98
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 97.2 TC(MIN.) = 27.96 
EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.300
 PEAK FLOW RATE(CFS) = 153.98
______
------
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage F

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025_F.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                       (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                                (FT)
                                                 (FT)
1 30.0
         20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               9.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                            Ар
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              5.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 18.92
 TOTAL AREA(ACRES) =
                     5.80 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                         5.8 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) = 5.8 TC(MIN.) = 7.97
EFFECTIVE AREA(ACRES) = 5.80 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 18.92
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage G

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025_G.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                                                 (FT)
1 30.0
         20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               9.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                            Ар
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             1.75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 5.65
                     1.75 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                         1.8 \text{ TC(MIN.)} =
                                          8.11
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 8.11
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 5.65
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage H

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025_H.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
                            10.00 DOWNSTREAM(FEET) = 9.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Аp
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                            0.63
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.69
                    0.63 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 31
      ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 680.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.78
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.69
PIPE TRAVEL TIME(MIN.) = 2.37 Tc(MIN.) =
                                      7.37
 LONGEST FLOWPATH FROM NODE
                        210.00 TO NODE
                                      212.00 =
******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 81
______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.37
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.872
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                       Fр
                              AREA
                                                 Αp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               3.53
                                        0.40
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.53 SUBAREA RUNOFF(CFS) = 12.05

EFFECTIVE AREA(ACRES) = 4.16 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                     4.2
                               PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.11
                                     NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
 PIPE-FLOW(CFS) = 14.20
PIPE TRAVEL TIME(MIN.) = 0.94 Tc(MIN.) =
                                          8.31
                                                  1150.00 FEET.
                          210.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                          213.00 =
*******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 8.31
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.618
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                               Аp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                2.82
                                        0.40
                                                0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.200

SUBAREA AREA(ACRES) = 2.82 SUBAREA RUNOFF(CFS) = 8.98

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20

PEAK FLOW RATE(CFS) = 22.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
______
 END OF STUDY SUMMARY:
                           7.0 \text{ TC}(MIN.) =
 TOTAL AREA(ACRES)
                                             8.31
 TOTAL AREA(ACRES) = 7.0 IC(MIN.) = 0.31

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
 PEAK FLOW RATE(CFS) = 22.23
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage I

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X025 I.DAT
 TIME/DATE OF STUDY: 16:39 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 250.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Аp
                                                    SCS Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              0.47
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 1.56
 TOTAL AREA(ACRES) =
                     0.47 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.41
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.26
    HALFSTREET FLOOD WIDTH(FEET) =
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.61
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68
  STREET FLOW TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) = * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.335
                                                            9.60
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  RESIDENTIAL
  "11+ DWELLINGS/ACRE" A
                                       0.58
                                                  0.40
                                                            0.200 32
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 1.70
EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
  TOTAL AREA(ACRES) = 1.0
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.53
 FLOW VELOCITY(FEET/SEC.) = 2.68 DEPTH*VELOCITY(FT*FT/SEC.) = 0.75 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 217.00 = 540.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.0 TC(MIN.) = 9.60

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 3.08
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage J

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X025 J.DAT
 TIME/DATE OF STUDY: 16:39 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.642
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Аp
                                                    SCS Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              1.55
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.83
 TOTAL AREA(ACRES) =
                      1.55 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.63
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.55
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.04
 STREET FLOW TRAVEL TIME(MIN.) = 2.61 TC(MIN.) = 11.25 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.048
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                     3.46
                                               0.40
                                                         0.200
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.46 SUBAREA RUNOFF(CFS) = 9.24
EFFECTIVE AREA(ACRES) = 5.01 AREA-AVERAGED FM(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                     PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.74
 FLOW VELOCITY(FEET/SEC.) = 2.78 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 222.00 = 700.00 FE
********************
 FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 18.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.53
  STREET FLOW TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 13.70
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.726
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                         SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                            Α
                                     5.98
                                               0.40
                                                        0.200
                                                                  32
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 5.98 SUBAREA RUNOFF(CFS) = 14.24 EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           11.0
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.66
 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 223.00 = 1150.00 FEET.
______
 END OF STUDY SUMMARY:
                              11.0 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES)
 TOTAL AREA(ACRES) = 11.0 TC(MIN.) = 13.70
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 26.18
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage K

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X025 K.DAT
 TIME/DATE OF STUDY: 16:39 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                7.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              1.53
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.61
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0150
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.10
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 13.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.25
 STREET FLOW TRAVEL TIME(MIN.) = 1.76 TC(MIN.) = 10.91 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.101
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                   4.77
                                             0.40
                                                       0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.77 SUBAREA RUNOFF(CFS) = 12.97

EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.05
 FLOW VELOCITY(FEET/SEC.) = 3.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.54 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 227.00 = 660.00 FE
*******************
 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.59
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 17.13
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 11.29 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 228.00 = 830.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                             6.3 \text{ TC(MIN.)} =
                                                  11.29
 TOTAL AREA(ACRES) = 6.3 TC(MIN.) = 11.29
EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 17.13
______
______
 END OF RATIONAL METHOD ANALYSIS
```

iii. HC 10-Year Storm Event

# Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X010 A.DAT
 TIME/DATE OF STUDY: 16:24 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                             106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                              0.68
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 1.82
 TOTAL AREA(ACRES) =
                     0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.53
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.51
  STREET FLOW TRAVEL TIME(MIN.) = 3.27 Tc(MIN.) = 11.64
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.502
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  "11+ DWELLINGS/ACRE"
                          D
                                                        0.200
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 2.50
EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.82
 FLOW VELOCITY(FEET/SEC.) = 1.62 DEPTH*VELOCITY(FT*FT/SEC.) = 0.58
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 14.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.77
  STREET FLOW TRAVEL TIME(MIN.) = 2.33 Tc(MIN.) = 13.97
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.253
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 6.75

EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37
 FLOW VELOCITY(FEET/SEC.) = 2.00 DEPTH*VELOCITY(FT*FT/SEC.) = 0.91 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 800.00 FE
                                                   4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         16.29
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 19.65
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15
 STREET FLOW TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) =
                                                    16.28
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.064
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                   6.51
                                                    0.200
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 11.86 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.91
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.32 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 28.36
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.49
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.55
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.53
STREET FLOW TRAVEL TIME(MIN.) = 2.87 Tc(MIN.) = 19.15
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.881
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 14.05

EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.13
 FLOW VELOCITY(FEET/SEC.) = 2.66 DEPTH*VELOCITY(FT*FT/SEC.) = 1.67 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) = 31.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.90
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.03
STREET FLOW TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) =
                                                     21.22
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.773
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                            Fρ
                                                      Αp
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN IERCIAL D 18.43 0.20 0.100 75
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 29.08 EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.63
 FLOW VELOCITY(FEET/SEC.) = 3.16 DEPTH*VELOCITY(FT*FT/SEC.) = 2.34
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 47.0 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                               7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.42
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    60.59
 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) =
                                              21.90
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.90
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.741
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                         D
                                  0.81 0.20
 NATURAL FAIR COVER
                          D
                               4.99 0.20
6.24 0.20
                                                   1.000
0.100
  "OPEN BRUSH"
                                                               83
 COMMERCIAL
                           D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 17.84

EFFECTIVE AREA(ACRES) = 50.57 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                        50.6
                                   PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.1000
FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.8 INCHES
```

```
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 77.32
 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                            9.00 =
                                                      2600.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1180.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.595
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                25.52
                                         0.20
                                                 1.000
                        D
 NATURAL POOR COVER
 "BARREN"
                                6.51
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.55
 AVERAGE FLOW DEPTH(FEET) = 0.68 TRAVEL TIME(MIN.) = 3.54
 Tc(MIN.) = 25.54
 SUBAREA AREA(ACRES) = 32.03 SUBAREA RUNOFF(CFS) = 40.21 EFFECTIVE AREA(ACRES) = 82.60 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.52
                   82.6
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                          110.86
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 FLOW VELOCITY(FEET/SEC.) = 5.80
                                           10.00 =
                                                    3780.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.522
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                                1.000
 "OPEN BRUSH"
                        D
                                29.92
                                        0.20
                                                          83
 NATURAL POOR COVER
                               14.41
                                         0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.09
AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 2.16
 Tc(MIN.) = 27.70
 SUBAREA AREA(ACRES) = 44.33 SUBAREA RUNOFF(CFS) = 52.75 EFFECTIVE AREA(ACRES) = 126.93 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) =
                      126.9
                                   PEAK FLOW RATE(CFS) =
                                                          158.22
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.13 FLOW VELOCITY(FEET/SEC.) = 5.35
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                           11.00 =
*************************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                      12.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 580.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150

CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000

MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.469
```

PIPE-FLOW VELOCITY (FEET/SEC.) = 26.14

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 14.64 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                    1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.47
 AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 29.46
 SUBAREA AREA(ACRES) = 14.64 SUBAREA RUNOFF(CFS) = 16.72 EFFECTIVE AREA(ACRES) = 141.57 AREA-AVERAGED Fm(INCH/HR) = 0.14 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
 TOTAL AREA(ACRES) = 141.6
                                  PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.17 FLOW VELOCITY(FEET/SEC.) = 5.51
                                                      5020.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                             12.00 =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 62
      -----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.81
   HALFSTREET FLOOD WIDTH(FEET) = 37.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 7.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 5.71
 STREET FLOW TRAVEL TIME(MIN.) = 1.04 Tc(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.440
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                    Aρ
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                  1.83
                                           0.40
                                                    1.000
                                                            46
                         Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 1.71
EFFECTIVE AREA(ACRES) = 143.40 AREA-AVERAGED FM(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
TOTAL AREA(ACRES) = 143.4 PEAK FLOW RATE(CFS) =
                                                            168.89
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.81 HALFSTREET FLOOD WIDTH(FEET) = 36.98
 FLOW VELOCITY(FEET/SEC.) = 7.06 DEPTH*VELOCITY(FT*FT/SEC.) = 5.69 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FE
                                             20.00 = 5460.00 FEET.
**********************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00
ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =

SUBAREA LOSS RATE DATA(AMC II):

```
SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP

LAND USE GROUP (ACRES) (INCH/F
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                 3.17
                                                          75
                                           0.20
                                                    0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 7.97
 TOTAL AREA(ACRES) = 3.17 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 REPRESENTATIVE SLOPE = 0.0500
 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.58
ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.97
PIPE TRAVEL TIME(MIN.) = 2.39 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                             13.00 TO NODE
                                             15.00 =
*********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 11.76
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.487
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                       В
 "11+ DWELLINGS/ACRE"
                                31.84
                                           0.30
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 31.84 SUBAREA RUNOFF(CFS) = 69.53

EFFECTIVE AREA(ACRES) = 35.01 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.20
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 35.0
***********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0400
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.398
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Fρ
                                                    Дp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                11.64
                                          0.20
 NATURAL FAIR COVER
                                                  1.000
                             13.96 0.40
2.65 0.20
 "OPEN BRUSH"
  COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.586
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 16.87
 AVERAGE FLOW DEPTH(FEET) = 1.76 TRAVEL TIME(MIN.) = 0.77
 Tc(MIN.) = 12.53
 SUBAREA AREA(ACRES) = 28.25 SUBAREA RUNOFF(CFS) = 55.47 

EFFECTIVE AREA(ACRES) = 63.26 AREA-AVERAGED Fm(INCH/HR) = 0.13 

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.37
                        63.3
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.90 FLOW VELOCITY(FEET/SEC.) = 17.81
                                             16.00 =
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

\* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.832

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 43.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.45
 ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 129.19
 PIPE TRAVEL TIME(MIN.) = 2.66 Tc(MIN.) = 15.19
                                       17.00 =
                                                4320.00 FEET.
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.19
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.147
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
 DEVELOPMENT TYPE/
                            AREA
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                     D
                            44.48
                                    0.20
                                           1.000 83
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        6.11 0.40 0.200
                     Α
 COMMERCIAL
                      Α
                             4.75
                                     0.40
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.834
 SUBAREA AREA(ACRES) = 55.34 SUBAREA RUNOFF(CFS) = 98.33
EFFECTIVE AREA(ACRES) = 118.60 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 118.6
                            PEAK FLOW RATE(CFS) =
                                                   213.25
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 46.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.86
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               213.25
 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) =
                                      15.52
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                                4590.00 FEET.
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.52
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.121
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                            Аp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL POOR COVER
 "BARREN"
                     A
                            4.65
                                    0.40
                                           1.000
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                     A 13.94 0.40
                                           0.200
                                                    32
 COMMERCIAL
                             2.82
                                     0.40
                                            0.100
 NATURAL FAIR COVER
 "OPEN BRUSH"
                             2.64
                      Α
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.431
 SUBAREA AREA(ACRES) = 24.05 SUBAREA RUNOFF(CFS) = 42.19
EFFECTIVE AREA(ACRES) = 142.65 AREA-AVERAGED Fm(INCH/HR) =
                             AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.56
 TOTAL AREA(ACRES) = 142.7
                             PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
```

\* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.033

```
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  NATURAL FAIR COVER
  "OPEN BRUSH"
                                   Α
                                               2.68
                                                            0.40
                                                                       1.000
  RESTDENTIAL
  "11+ DWELLINGS/ACRE" A 9.73 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, fp(INCH/HR) = 0.40
  "11+ DWELLINGS/ACRE" A
                                                                     0.200
                                                                                   32
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.52
  AVERAGE FLOW DEPTH(FEET) = 0.84 TRAVEL TIME(MIN.) =
  Tc(MIN.) = 16.71
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 21.04

EFFECTIVE AREA(ACRES) = 155.06 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.55
  TOTAL AREA(ACRES) = 155.1 PEAK FLOW RATE(CFS) =
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 0.84 FLOW VELOCITY(FEET/SEC.) = 8.49
  LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                               19.00 =
                                                                            5200.00 FEET.
********************
  FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51
  >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
  REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
  MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.884
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.52
  AVERAGE FLOW DEPTH(FEET) = 0.78 TRAVEL TIME(MIN.) = 2.39
  Tc(MIN.) = 19.10
 SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 2.62

EFFECTIVE AREA(ACRES) = 156.64 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.54

TOTAL AREA(ACRES) = 156.6 PEAK FLOW RATE(CFS) = 262.40
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 0.78 FLOW VELOCITY(FEET/SEC.) = 2.50
  LONGEST FLOWPATH FROM NODE
                                       13.00 TO NODE
*******************
  FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        262.40
        19.10
        1.884
        0.28(0.15)
        0.54
        156.6
        13.00

        LONGEST
        FLOWPATH
        FROM
        NODE
        13.00
        TO
        NODE
        20.00
        =
        5560.00
        FEET.

  ** MEMORY BANK # 1 CONFLUENCE DATA **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 168.89 30.50 1.440 0.20(0.15) 0.72 143.4 1.00
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FEET.
  ** PEAK FLOW RATE TABLE **
   TOTAL AREA(ACRES) =
                                     300.0
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 404.39 Tc(MIN.) = 19.098

EFFECTIVE AREA(ACRES) = 246.43 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.61
  TOTAL AREA(ACRES) = 300.0
```

SUBAREA LOSS RATE DATA(AMC II):

```
************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.726
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fρ
                                                  Αp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               11.87
                                        0.40
 NATURAL FAIR COVER
                       D
 "OPEN BRUSH"
                           16.10 0.20 1.000
1.56 0.40 0.100
                                                         83
                                                         32
 COMMERCIAL
                        Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.631
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.02
 AVERAGE FLOW DEPTH(FEET) = 1.04 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 22.25
 SUBAREA AREA(ACRES) = 29.53 SUBAREA RUNOFF(CFS) = 42.06 EFFECTIVE AREA(ACRES) = 275.96 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.61
TOTAL AREA(ACRES) = 329.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.01 FLOW VELOCITY(FEET/SEC.) = 2.96
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                    6130.00 FEET.
                                           21.00 =
************************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                       22.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.592
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                        0.40
                        Α
                               1.73
                                                0.100
 NATURAL FAIR COVER
 "OPEN BRUSH" D 8.52 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.848
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 410.93
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.97
AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 3.37
 Tc(MIN.) = 25.62
 SUBAREA AREA(ACRES) = 10.25 SUBAREA RUNOFF(CFS) = 13.09 EFFECTIVE AREA(ACRES) = 286.21 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
 TOTAL AREA(ACRES) = 339.8
                                PEAK FLOW RATE(CES) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.01 FLOW VELOCITY(FEET/SEC.) =
                                             2.96
                                           22.00 =
                                                    6730.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
*****************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
```

```
REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.508
 SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                            Fρ
                                                       Αр
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                   3.62
                                            0.40
                          A
 NATURAL FAIR COVER
              D 4.47 0.20 1.000
A 1.68 0.40 0.100
 "OPEN BRUSH"
                                                               83
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.549
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.96
AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 2.53
 Tc(MIN.) = 28.15
 SUBAREA AREA(ACRES) = 9.77 SUBAREA RUNOFF(CFS) = 12.14
EFFECTIVE AREA(ACRES) = 295.98 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
TOTAL AREA(ACRES) = 349.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.01 FLOW VELOCITY(FEET/SEC.) =
                                                  2.96
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7180.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 349.6 TC(MIN.) = 28.15

EFFECTIVE AREA(ACRES) = 295.98 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.616
 PEAK FLOW RATE(CFS) =
                           404.39
 ** PEAK FLOW RATE TABLE **
  ______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X010 B.DAT
 TIME/DATE OF STUDY: 16:26 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.56
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) = 6.78
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.54
  STREET FLOW TRAVEL TIME(MIN.) = 3.06 Tc(MIN.) = 10.54
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.648
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Аp
                                                               SCS
                                             Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.49
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.53
 FLOW VELOCITY(FEET/SEC.) = 1.98 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FE
                                                52.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) = 8.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.07
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65
STREET FLOW TRAVEL TIME(MIN.) = 3.22 Tc(MIN.) = 13.75
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.273
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                                                        Дp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 1.46
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.97
 FLOW VELOCITY(FEET/SEC.) = 2.10 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.87
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.59
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
  STREET FLOW TRAVEL TIME(MIN.) = 3.21 Tc(MIN.) = 16.97
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.016
  SUBAREA LOSS RATE DATA(AMC II):
                  E DATA (APIC 11).

E/ SCS SOIL AREA FP AP SCS

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 6.76 0.20 0.100 75
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 12.14

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.76
 FLOW VELOCITY(FEET/SEC.) = 2.88 DEPTH*VELOCITY(FT*FT/SEC.) = 1.33
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 ________
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 19.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.57
  STREET FLOW TRAVEL TIME(MIN.) = 3.22 Tc(MIN.) = 20.19
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.825
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 12.12

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.66
 FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                            27.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 21.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.28
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.77
  STREET FLOW TRAVEL TIME(MIN.) = 2.54 Tc(MIN.) =
                                                        22.72
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.705
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 2.23 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.82
 FLOW VELOCITY(FEET/SEC.) = 3.28 DEPTH*VELOCITY(FT*FT/SEC.) = 1.75 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                           35.37
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.03
 STREET FLOW TRAVEL TIME(MIN.) = 2.76 Tc(MIN.) = 25.48 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.597
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                              Fp
                                                         Αp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 17.42

EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                           29.9
                                       PEAK FLOW RATE(CFS) =
                                                                  42.37
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 25.04
 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY(FT*FT/SEC.) = 2.23 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                   57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.12
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.88
 STREET FLOW TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.505
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 52.21
EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 34.30
 FLOW VELOCITY(FEET/SEC.) = 4.59 DEPTH*VELOCITY(FT*FT/SEC.) = 3.45
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 93.9 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.30
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 92.13
PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 29.36
 LONGEST FLOWPATH FROM NODE
                             50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 29.36
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.472
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 14.95

EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                      81.0
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.78
ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 105.00
```

```
PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 30.18
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                         5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                          60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 30.18
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.449
 * 10 YEAR RAID....

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 15.82 0.20 0.100 75
 SUBAREA LOSS RATE DATA(AMC II):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                          D
                                   4.45
                                             0.20
                                                     0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.122
 SUBAREA AREA(ACRES) = 20.27 SUBAREA RUNOFF(CFS) = 25.99
EFFECTIVE AREA(ACRES) = 101.29 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 101.3
                                   PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 950.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.399
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                          D
                                  20.98
                                           0.20
                                                    1.000
                                                               83
 NATURAL POOR COVER
                                            0.20
                          D
                                  12.82
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 147.55
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.25
AVERAGE FLOW DEPTH(FEET) = 0.99 TRAVEL TIME(MIN.) = 1.92
 Tc(MIN.) = 32.10
 SUBAREA AREA(ACRES) = 33.80 SUBAREA RUNOFF(CFS) = 36.47

EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                      135.1
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.05 FLOW VELOCITY(FEET/SEC.) = 8.48
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 =
                                                         6200.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 135.1 TC(MIN.) = 32.10 
EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR)= 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.365
 PEAK FLOW RATE(CFS) = 161.20
______
```

------

END OF RATIONAL METHOD ANALYSIS

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: X010 C.DAT
 TIME/DATE OF STUDY: 16:15 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                             107.00 DOWNSTREAM(FEET) = 104.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.912
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.357
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                               2.27
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 4.41
 TOTAL AREA(ACRES) =
                     2.27 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 12.93
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.98
 STREET FLOW TRAVEL TIME(MIN.) = 2.33 Tc(MIN.) = 15.24
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.143
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
  "BARREN"
                           D
                                    4.61
                                              0.20
                                                       1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.61 SUBAREA RUNOFF(CFS) = 8.06

EFFECTIVE AREA(ACRES) = 6.88 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.04
 FLOW VELOCITY(FEET/SEC.) = 2.72 DEPTH*VELOCITY(FT*FT/SEC.) = 1.17
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                            650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0200
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.90
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 14.65
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.77
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.60
 STREET FLOW TRAVEL TIME(MIN.) = 1.77 Tc(MIN.) = 17.01
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.013
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                           D
                                    4.74
                                              0.20
                                                                83
                                                       1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.74 SUBAREA RUNOFF(CFS) = 7.73

EFFECTIVE AREA(ACRES) = 11.62 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                          11.6
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.74
 FLOW VELOCITY(FEET/SEC.) = 3.94 DEPTH*VELOCITY(FT*FT/SEC.) = 1.75
 LONGEST FLOWPATH FROM NODE
                               80.00 TO NODE
                                                83.00 = 1050.00 FEET.
************************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.1200
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         25.19
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.38
   HALFSTREET FLOOD WIDTH(FEET) = 12.15
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 8.33
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.16
 STREET FLOW TRAVEL TIME(MIN.) = 0.90 Tc(MIN.) = 17.91
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.954
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                                            Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                          D
                                   7.90
                                            0.20
                                                      1.000
                                                               83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF(CFS) = 12.47 EFFECTIVE AREA(ACRES) = 19.52 AREA-AVERAGED Fm(INCH/HR) = 0.20
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 19.5
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.24
 FLOW VELOCITY(FEET/SEC.) = 8.76 DEPTH*VELOCITY(FT*FT/SEC.) = 3.49 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 84.00 = 1500.00 FE
                                                         1500.00 FEET.
*******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0900
 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 64.82
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 19.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 9.32
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 4.71
 STREET FLOW TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.914
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                           D
                                   34.33
                                             0.20
                                                      1.000
                                                               83
 NATURAL POOR COVER
                                   9.76 0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 44.09 SUBAREA RUNOFF(CFS) = 68.00 EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) = AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                    AREA-AVERAGED Fm(INCH/HR) = 0.20
 TOTAL AREA(ACRES) =
                         63.6
                                    PEAK FLOW RATE(CFS) =
                                                               98.11
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.62
 FLOW VELOCITY(FEET/SEC.) = 10.30 DEPTH*VELOCITY(FT*FT/SEC.) = 5.84
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 85.00 = 1870.00 FEET.
______
 END OF STUDY SUMMARY:
 END OF STUDY SUMMAR:

TOTAL AREA(ACRES) = 63.6 TC(MIN.) = 18.5/

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.000

DPAK FT.OW RATE(CFS) = 98.11
______
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

# Drainage D

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010 D.DAT
 TIME/DATE OF STUDY: 10:05 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00
                              95.00 DOWNSTREAM(FEET) = 83.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.794
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 3.65
 TOTAL AREA(ACRES) =
                     1.10 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 420.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.79
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
 STREET FLOW TRAVEL TIME(MIN.) = 2.71 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.995
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                   4.58
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.58 SUBAREA RUNOFF(CFS) = 12.18
EFFECTIVE AREA(ACRES) = 5.68 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.52
 FLOW VELOCITY(FEET/SEC.) = 2.87 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 700.00 FE
*******************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 740.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0600
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.602
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                                      1.000
                           D
                                   8.61
                                             0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.22
 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 2.36
 Tc(MIN.) = 10.86
 SUBAREA AREA(ACRES) = 8.61 SUBAREA RUNOFF(CFS) = 18.62
EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR) = 0.14
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.68
 TOTAL AREA(ACRES) = 14.3
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 5.71
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 1440.00 FEET.
______
 END OF STUDY SUMMARY:
                             14.3 TC(MIN.) =
 TOTAL AREA(ACRES) =
                                                  10.86
 EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR)= 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.682
PEAK FLOW RATE(CFS) = 31.71
-----
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage E

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010 E.DAT
 TIME/DATE OF STUDY: 16:40 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                             105.00 DOWNSTREAM(FEET) = 103.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                               2.39
                                              0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 6.09
 TOTAL AREA(ACRES) =
                     2.39 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.02
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.62
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
 STREET FLOW TRAVEL TIME(MIN.) = 3.19 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.419
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                          D
                                   3.83
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.83 SUBAREA RUNOFF(CFS) = 8.20

EFFECTIVE AREA(ACRES) = 6.22 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.74
 FLOW VELOCITY(FEET/SEC.) = 2.77 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 830.00 FE
                                                           830.00 FEET.
********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.47
   HALFSTREET FLOOD WIDTH(FEET) = 17.30
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.38
 STREET FLOW TRAVEL TIME(MIN.) = 2.56 Tc(MIN.) = 14.89
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.172
 SUBAREA LOSS RATE DATA(AMC II):
                                           Fp
                       SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                    3.65
                                             0.20
                                                      0.200 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.65 SUBAREA RUNOFF(CFS) = 7.00

EFFECTIVE AREA(ACRES) = 9.87 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                           9.9
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.16
 FLOW VELOCITY(FEET/SEC.) = 3.02 DEPTH*VELOCITY(FT*FT/SEC.) = 1.47
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                              103.00 = 1280.00 FEET.
*******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

10.20

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 22.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.46
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.97
  STREET FLOW TRAVEL TIME(MIN.) = 1.73 Tc(MIN.) = 16.63
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.039
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 6.18 0.20 0.100 75
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                    9.62
                                             0.20
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.161
 SUBAREA AREA(ACRES) = 15.80 SUBAREA RUNOFF(CFS) = 28.54

EFFECTIVE AREA(ACRES) = 25.67 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 25.7
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 25.90
 FLOW VELOCITY(FEET/SEC.) = 3.74 DEPTH*VELOCITY(FT*FT/SEC.) = 2.34 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1640.00 FE
                                              104.00 = 1640.00 FEET.
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 1090.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
  STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.68
   HALFSTREET FLOOD WIDTH(FEET) = 29.29
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.02
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.72
  STREET FLOW TRAVEL TIME(MIN.) = 4.52 Tc(MIN.) = 21.15
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.777
  SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL
                                   AREA Fp Ap
                                                               SCS
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                                                      0.100
 COMMERCIAL
                           D
                                   16.93
                                             0.20
  RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.76 0.20 0
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.109
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 29.52 EFFECTIVE AREA(ACRES) = 44.36 AREA-AVERAGED Fm(INCH/HR) = AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                                   AREA-AVERAGED Fm(INCH/HR) = 0.03
 TOTAL AREA(ACRES) =
                         44.4
                                    PEAK FLOW RATE(CFS) =
                                                                69.75
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.80
 FLOW VELOCITY(FEET/SEC.) = 4.16 DEPTH*VELOCITY(FT*FT/SEC.) = 2.92
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2730.00 FEET.
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
```

```
STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 77.45
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.72
   HALFSTREET FLOOD WIDTH(FEET) = 32.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.31
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.11
  STREET FLOW TRAVEL TIME(MIN.) = 2.71 Tc(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.658
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP
                                                       Аp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                         D 2.36 0.20
D 8.10 0.20
                                                     0.200 75
0.100 75
  "11+ DWELLINGS/ACRE"
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.123
 SUBAREA AREA(ACRES) = 10.46 SUBAREA RUNOFF(CFS) = 15.38 EFFECTIVE AREA(ACRES) = 54.82 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.14
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 54.8
                                                                80.41
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 33.02
 FLOW VELOCITY(FEET/SEC.) = 4.38 DEPTH*VELOCITY(FT*FT/SEC.) = 3.18 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 3430.00 FEET.
******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 630.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.45
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.28
  STREET FLOW TRAVEL TIME(MIN.) = 2.36 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.571
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                    6.09
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.09 SUBAREA RUNOFF(CFS) = 8.39

EFFECTIVE AREA(ACRES) = 60.91 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) =
                          60.9
                                      PEAK FLOW RATE(CFS) =
                                                                84.49
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.51
 FLOW VELOCITY(FET/SEC.) = 4.44 DEPTH*VELOCITY(FT*FT/SEC.) = 3.27
```

REPRESENTATIVE SLOPE = 0.0100

```
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 4060.00 FEET.
```

```
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHEAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.130 DEPTH OF FLOW IN 96.0 INCH PIPE IS 76.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 1.96
 ESTIMATED PIPE DIAMETER(INCH) = 96.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 84.49

PIPE TRAVEL TIME(MIN.) = 2.12 Tc(MIN.) =

LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                               Tc(MIN.) =
                                            28.34
                                           108.00 =
                                                      4310.00 FEET.
************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 28.34
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.502
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fρ
                                                         SCS
                                                  Αp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                4.84
 COMMERCIAL
                       D
                                        0.20
                                                 0.100
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                                0.200
                        D
                               14.79
                                         0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.175
 SUBAREA AREA(ACRES) = 19.63 SUBAREA RUNOFF(CFS) = 25.92
EFFECTIVE AREA(ACRES) = 80.54 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) =
                    80.5
                                PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.80
ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 106.66
PIPE TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 29.00
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 109.00
                                           109.00 = 4780.00 FEET.
*******************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81
      ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 29.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.483
 SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL
                                     Fp
                                             Ар
                                AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                16.62
                                          0.20
                                                  1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 16.62 SUBAREA RUNOFF(CFS) = 19.19
EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED FM(INCH/HR) = 0.06
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.30
 TOTAL AREA(ACRES) = 97.2 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 97.2 TC(MIN.) = 29.00

EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.300

PEAK FLOW RATE(CFS) = 124.41
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage F

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010_F.DAT
 TIME/DATE OF STUDY: 16:41 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                        (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                                (FT)
                                                 (FT)
1 30.0
         20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               9.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.108
 SUBAREA To AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                            Ар
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              5.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 15.81
 TOTAL AREA(ACRES) =
                     5.80 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                         5.8 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) = 5.8 TC(MIN.) = 7.97
EFFECTIVE AREA(ACRES) = 5.80 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 15.81
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage G

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010_G.DAT
 TIME/DATE OF STUDY: 16:41 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                                                 (FT)
1 30.0
         20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               9.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.110
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fρ
                                            Ар
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             1.75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.72
                     1.75 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                        1.8 \text{ TC(MIN.)} =
                                          8.11
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 8.11
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 4.72
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage H

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010_H.DAT
 TIME/DATE OF STUDY: 16:41 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
                            10.00 DOWNSTREAM(FEET) = 9.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.060
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Аp
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                            0.63
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.26
                    0.63 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 31
      ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 680.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.61
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.26
PIPE TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        210.00 TO NODE
                                      212.00 =
******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 81
______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.46
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.228
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                       Fρ
                                                 Αp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               3.53
                                        0.40
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.53 SUBAREA RUNOFF(CFS) = 10.00
EFFECTIVE AREA(ACRES) = 4.16 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                     4.2
                               PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.92
                                     NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
 PIPE-FLOW(CFS) = 11.79
PIPE TRAVEL TIME(MIN.) = 0.96 Tc(MIN.) =
                                          8.42
                                          213.00 = 1150.00 FEET.
                          210.00 TO NODE
 LONGEST FLOWPATH FROM NODE
*******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 8.42
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.011
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                               Аp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                2.82
                                        0.40
                                                0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.200

SUBAREA AREA(ACRES) = 2.82 SUBAREA RUNOFF(CFS) = 7.44

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20

PEAK FLOW RATE(CFS) = 18.41
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
______
 END OF STUDY SUMMARY:
                           7.0 \text{ TC}(MIN.) =
 TOTAL AREA(ACRES)
                                             8.42
 TOTAL AREA(ACRES) = 7.0 IC(MIN.) = 0.42

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
 PEAK FLOW RATE(CFS) = 18.41
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage I

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010 I.DAT
 TIME/DATE OF STUDY: 16:42 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 250.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Аp
                                                    SCS Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              0.47
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 1.30
 TOTAL AREA(ACRES) =
                     0.47 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.01
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.25
    HALFSTREET FLOOD WIDTH(FEET) =
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.56
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.63
  STREET FLOW TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) = * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.788
                                                            9.64
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  RESIDENTIAL
  "11+ DWELLINGS/ACRE" A
                                       0.58
                                                  0.40
                                                            0.200 32
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 1.41

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
  TOTAL AREA(ACRES) = 1.0
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 5.72
 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC.) = 0.70 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 217.00 = 540.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.0 TC(MIN.) = 9.64

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 2.56
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage J

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010 J.DAT
 TIME/DATE OF STUDY: 16:42 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.967
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Аp
                                                    SCS Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              1.55
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.03
 TOTAL AREA(ACRES) =
                      1.55 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 12.54
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.46
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95
 STREET FLOW TRAVEL TIME(MIN.) = 2.71 Tc(MIN.) = 11.35 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.538
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                    3.46
                                              0.40
                                                        0.200
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.46 SUBAREA RUNOFF(CFS) = 7.65

EFFECTIVE AREA(ACRES) = 5.01 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.57
 FLOW VELOCITY(FEET/SEC.) = 2.65 DEPTH*VELOCITY(FT*FT/SEC.) = 1.12
LONGEST FLOWPATH FROM NODE 220.00 TO NODE 222.00 = 700.00 FE
********************
 FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.47
   HALFSTREET FLOOD WIDTH(FEET) = 17.38
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.39
  STREET FLOW TRAVEL TIME(MIN.) = 2.56 Tc(MIN.) = 13.91
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.259
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           Α
                                     5.98
                                              0.40
                                                        0.200
                                                                 32
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 5.98 SUBAREA RUNOFF(CFS) = 11.73
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                      PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                          11.0
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.10
 FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) = 1.57 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 223.00 = 1150.00 FEET.
______
 END OF STUDY SUMMARY:
                              11.0 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES)
 TOTAL AREA(ACRES) = 11.0 TC(MIN.) = 13.91
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 21.55
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage K

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X010 K.DAT
 TIME/DATE OF STUDY: 16:42 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                7.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.871
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              1.53
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 3.84
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0150
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.38
   HALFSTREET FLOOD WIDTH(FEET) = 12.30
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.98
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.14
 STREET FLOW TRAVEL TIME(MIN.) = 1.84 Tc(MIN.) = 10.99
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.585
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                   4.77
                                             0.40
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.77 SUBAREA RUNOFF(CFS) = 10.75

EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 14.80
 FLOW VELOCITY(FEET/SEC.) = 3.30 DEPTH*VELOCITY(FT*FT/SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 227.00 = 660.00 FE
                                                           660.00 FEET.
********************
 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.11
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.20
 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 11.39 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 228.00 = 830.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                             6.3 \quad TC(MIN.) =
                                                  11.39
 TOTAL AREA(ACRES) = 6.3 TC(MIN.) = 11.39
EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 14.20
______
______
```

END OF RATIONAL METHOD ANALYSIS

b) Expected Value (50% Confidence) Events

i. EV 100-Year Storm Event

# Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 A.DAT
 TIME/DATE OF STUDY: 16:13 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                             106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                              0.68
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.18
 TOTAL AREA(ACRES) =
                     0.68 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55
 STREET FLOW TRAVEL TIME(MIN.) = 3.16 Tc(MIN.) = * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.007
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  "11+ DWELLINGS/ACRE"
                                                        0.200
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.02

EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.84
 FLOW VELOCITY(FEET/SEC.) = 1.67 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.85
  STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 13.76
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.720
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 8.18
EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.70
 FLOW VELOCITY(FEET/SEC.) = 2.10 DEPTH*VELOCITY(FT*FT/SEC.) = 1.00
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                  4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

3.69

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         19.75
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 21.21
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.35
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.27
 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 15.96
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.501
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                                   0.200 75
                                   6.51
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 14.42 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 23.63
 FLOW VELOCITY(FEET/SEC.) = 2.50 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.63
   HALFSTREET FLOOD WIDTH(FEET) = 26.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.68
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 18.70
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.286
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 17.11
EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 28.16
 FLOW VELOCITY(FEET/SEC.) = 2.80 DEPTH*VELOCITY(FT*FT/SEC.) = 1.87 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.73
   HALFSTREET FLOOD WIDTH(FEET) = 33.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.29
STREET FLOW TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) =
                                                    20.62
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.163
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                            Fρ
                                                      Αp
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN IERCIAL D 18.43 0.20 0.100 75
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 35.55
EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.58
 FLOW VELOCITY(FEET/SEC.) = 3.39 DEPTH*VELOCITY(FT*FT/SEC.) = 2.64
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 56.2 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.15
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    74.11
 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) =
                                              21.27
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.27
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.126
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                         D
                                  0.81 0.20
 NATURAL FAIR COVER
                         D
                               4.99 0.20
6.24 0.20
                                                  1.000
0.100
  "OPEN BRUSH"
                                                              83
 COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 22.01

EFFECTIVE AREA(ACRES) = 50.57 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.21
                        50.6
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.1000
FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES
```

```
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 94.81
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                            9.00 =
                                                      2600.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1180.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.956
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                25.52
                                         0.20
                                                 1.000
                        D
 NATURAL POOR COVER
                                6.51 0.20 1.000
 "BARREN"
                        D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                120.15
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.01
 AVERAGE FLOW DEPTH(FEET) = 0.78 TRAVEL TIME(MIN.) = 3.27
 Tc(MIN.) = 24.63
 SUBAREA AREA(ACRES) = 32.03 SUBAREA RUNOFF(CFS) = 50.63 EFFECTIVE AREA(ACRES) = 82.60 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.52
 TOTAL AREA(ACRES) = 82.6
                              PEAK FLOW RATE(CFS) =
                                                         137.75
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 FLOW VELOCITY(FEET/SEC.) = 6.32
                                           10.00 =
                                                    3780.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 _____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.872
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                                1.000
 "OPEN BRUSH"
                        D
                                29.92
                                        0.20
                                                          83
 NATURAL POOR COVER
                               14.41
                                         0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.51
AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 2.00
 Tc(MIN.) = 26.62
 SUBAREA AREA(ACRES) = 44.33 SUBAREA RUNOFF(CFS) = 66.71 EFFECTIVE AREA(ACRES) = 126.93 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) =
                      126.9
                                   PEAK FLOW RATE(CFS) =
                                                          198.18
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.29 FLOW VELOCITY(FEET/SEC.) = 5.82
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                           11.00 =
                                                    4440.00 FEET.
*************************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                      12.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 580.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150

CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000

MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.810
```

PIPE-FLOW VELOCITY (FEET/SEC.) = 27.66

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                          SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 14.64 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                    1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.95
 AVERAGE FLOW DEPTH(FEET) = 1.33 TRAVEL TIME(MIN.) = 1.62
 Tc(MIN.) = 28.25
 SUBAREA AREA(ACRES) = 14.64 SUBAREA RUNOFF(CFS) = 21.22 EFFECTIVE AREA(ACRES) = 141.57 AREA-AVERAGED Fm(INCH/HR) = 0.14 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
 TOTAL AREA(ACRES) = 141.6
                                  PEAK FLOW RATE(CFS) =
                                                            212.35
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.35 FLOW VELOCITY(FEET/SEC.) = 5.98
                                                      5020.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                             12.00 =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 62
      -----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.86
   HALFSTREET FLOOD WIDTH(FEET) = 39.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 7.56
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 6.52
 STREET FLOW TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) =
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.776
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                    An
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                  1.83
                                           0.40
                                                    1.000
                                                            46
                         Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 2.27

EFFECTIVE AREA(ACRES) = 143.40 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
TOTAL AREA(ACRES) = 143.4 PEAK FLOW RATE(CFS) =
                                                            212.35
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.73
 FLOW VELOCITY(FEET/SEC.) = 7.55 DEPTH*VELOCITY(FT*FT/SEC.) = 6.50 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FE
                                             20.00 = 5460.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00
ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =

SUBAREA LOSS RATE DATA(AMC II):

```
SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP

LAND USE GROUP (ACRES) (INCH/E
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                  3.17
                                           0.20
                                                    0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 9.53
 TOTAL AREA(ACRES) = 3.17 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0500
 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.07
ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.53
PIPE TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                             13.00 TO NODE
                                              15.00 =
************************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 11.67
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.986
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                       В
 "11+ DWELLINGS/ACRE"
                                31.84
                                           0.30
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 31.84 SUBAREA RUNOFF(CFS) = 83.86

EFFECTIVE AREA(ACRES) = 35.01 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.20
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 35.0
***********************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0400
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.885
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Fρ
                                                    qΑ
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                11.64
                                          0.20
 NATURAL FAIR COVER
                                                  1.000
                             13.96 0.40
2.65 0.20
 "OPEN BRUSH"
  COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.586
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 17.71
 AVERAGE FLOW DEPTH(FEET) = 1.89 TRAVEL TIME(MIN.) = 0.73
 Tc(MIN.) = 12.40
 SUBAREA AREA(ACRES) = 28.25 SUBAREA RUNOFF(CFS) = 67.86 EFFECTIVE AREA(ACRES) = 63.26 AREA-AVERAGED Fm(INCH/HR) = 0.13 AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.37
                        63.3
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 2.05 FLOW VELOCITY(FEET/SEC.) = 18.68
                                             16.00 =
                                                      2810.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.380

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 156.93
 PIPE TRAVEL TIME(MIN.) = 2.50 Tc(MIN.) = 14.90
                        13.00 TO NODE
                                       17.00 =
                                                4320.00 FEET.
 LONGEST FLOWPATH FROM NODE
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
                                   _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.90
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.600
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
 DEVELOPMENT TYPE/
                            AREA
    LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                     D
                            44.48
                                    0.20
                                           1.000 83
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                    A 6.11 0.40 0.200
                                     0.40
 COMMERCIAL
                      Α
                             4.75
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.834
 SUBAREA AREA(ACRES) = 55.34 SUBAREA RUNOFF(CFS) = 120.88 EFFECTIVE AREA(ACRES) = 118.60 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 118.6
                            PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 48.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.77
 ESTIMATED PIPE DIAMETER(INCH) = 63.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               261.59
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                      15.20
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                                4590.00 FEET.
*********************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.20
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.570
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fρ
                                            Аp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL POOR COVER
 "BARREN"
                     A
                            4.65
                                    0.40
                                           1.000
 RESIDENTIAL
                     A 13.94 0.40
 "11+ DWELLINGS/ACRE"
                                           0.200
                                                    32
 COMMERCIAL
                             2.82
                                     0.40
                                            0.100
 NATURAL FAIR COVER
 "OPEN BRUSH"
                            2.64
                      Α
                                            1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.431
 SUBAREA AREA(ACRES) = 24.05 SUBAREA RUNOFF(CFS) = 51.91 EFFECTIVE AREA(ACRES) = 142.65 AREA-AVERAGED FM(INCH/HR) =
                             AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.56
 TOTAL AREA(ACRES) = 142.7
                             PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
```

\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.471

```
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
   NATURAL FAIR COVER
    "OPEN BRUSH"
                                                      Α
                                                                       2.68
                                                                                           0.40
                                                                                                            1.000
   RESTDENTIAL
   "11+ DWELLINGS/ACRE" A 9.73 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, fp(INCH/HR) = 0.40
   "11+ DWELLINGS/ACRE" A
                                                                                                         0.200
                                                                                                                              32
   SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
   TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 9.21
   AVERAGE FLOW DEPTH(FEET) = 0.95 TRAVEL TIME(MIN.) =
   Tc(MIN.) = 16.31
   SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 25.93
EFFECTIVE AREA(ACRES) = 155.06 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.55
   TOTAL AREA(ACRES) = 155.1 PEAK FLOW RATE(CFS) =
   END OF SUBAREA CHANNEL FLOW HYDRAULICS:
   DEPTH(FEET) = 0.95 FLOW VELOCITY(FEET/SEC.) = 9.22
   LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                                                                19.00 =
                                                                                                                   5200.00 FEET.
********************
   FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51
   >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
   >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
   CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
   REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
   MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
   * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.299
   SUBAREA LOSS RATE DATA(AMC II):
   DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.40
   SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
   TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.72
   AVERAGE FLOW DEPTH(FEET) = 0.89 TRAVEL TIME(MIN.) = 2.21
   Tc(MIN.) = 18.52
   SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 3.21

EFFECTIVE AREA(ACRES) = 156.64 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.54

TOTAL AREA(ACRES) = 156.6 PEAK FLOW RATE(CFS) = 323.44
   NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
   END OF SUBAREA CHANNEL FLOW HYDRAULICS:
   DEPTH(FEET) = 0.89 FLOW VELOCITY(FEET/SEC.) = 2.71
   LONGEST FLOWPATH FROM NODE
                                                           13.00 TO NODE
*******************
   FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
   ** MAIN STREAM CONFLUENCE DATA **
   STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 323.44 18.52 2.299 0.28(0.15) 0.54 156.6 13.00
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5560.00 FEET.
    ** MEMORY BANK # 1 CONFLUENCE DATA **
   STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 212.35 29.22 1.776 0.20(0.15) 0.72 143.4 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FEET.
    ** PEAK FLOW RATE TABLE **
     | Team | Color | Team | Table | Team 
       TOTAL AREA(ACRES) =
                                                        300.0
   COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
   PEAK FLOW RATE(CFS) = 501.23 Tc(MIN.) = 18.515

EFFECTIVE AREA(ACRES) = 247.52 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.61
   TOTAL AREA(ACRES) = 300.0
```

SUBAREA LOSS RATE DATA(AMC II):

```
************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.117
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fρ
                                                  Αp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               11.87
                                        0.40
 NATURAL FAIR COVER
                       D
 "OPEN BRUSH"
                           16.10 0.20 1.000
1.56 0.40 0.100
                                                         83
                                                         32
 COMMERCIAL
                        Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.631
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.27
 AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 21.42
 SUBAREA AREA(ACRES) = 29.53 SUBAREA RUNOFF(CFS) = 52.46 EFFECTIVE AREA(ACRES) = 277.05 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.61
TOTAL AREA(ACRES) = 329.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                    6130.00 FEET.
                                           21.00 =
************************
 FLOW PROCESS FROM NODE 21.00 TO NODE
                                       22.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.961
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                        0.40
                        Α
                               1.73
                                                0.100
 NATURAL FAIR COVER
 "OPEN BRUSH" D 8.52 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.848
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 509.48
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.23
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 3.10
 Tc(MIN.) = 24.52
 SUBAREA AREA(ACRES) = 10.25 SUBAREA RUNOFF(CFS) = 16.50 EFFECTIVE AREA(ACRES) = 287.30 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
 TOTAL AREA(ACRES) = 339.8
                                PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) =
                                             3.21
                                           22.00 =
                                                    6730.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
```

```
REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.863
 SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                            Fρ
                                                       Αр
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                   3.62
                                            0.40
                          A
 NATURAL FAIR COVER
              D 4.47 0.20 1.000
A 1.68 0.40 0.100
 "OPEN BRUSH"
                                                               83
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.549
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.22
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 2.33
 Tc(MIN.) = 26.85
 SUBAREA AREA(ACRES) = 9.77 SUBAREA RUNOFF(CFS) = 15.26 EFFECTIVE AREA(ACRES) = 297.07 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
TOTAL AREA(ACRES) = 349.6 PEAK FLOW RATE(CFS) =
                                                               501.23
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) =
                                                  3.21
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7180.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 349.6 TC(MIN.) = 26.85

EFFECTIVE AREA(ACRES) = 297.07 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.617
 PEAK FLOW RATE(CFS) =
                           501.23
 ** PEAK FLOW RATE TABLE **
  ______
______
```

# Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 B.DAT
 TIME/DATE OF STUDY: 16:14 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.841
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.86
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58
  STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 10.44
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.180
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Аp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.79
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.34
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) = 0.64 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FEE
                                                52.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 9.41
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.14
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 13.56
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                                                        Дp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 1.76
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 9.84
 FLOW VELOCITY (FEET/SEC.) = 2.19 DEPTH*VELOCITY (FT*FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 16.63
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.443
  SUBAREA LOSS RATE DATA(AMC II):
                  E DATA (APIC 11).

E/ SCS SOIL AREA FP AP SCS

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 6.76 0.20 0.100 75
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 14.74

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.16
 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 _______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.73
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 19.70
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.220
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 14.77

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.38
 FLOW VELOCITY(FEET/SEC.) = 3.42 DEPTH*VELOCITY(FT*FT/SEC.) = 1.92
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                            33.26
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.57
    HALFSTREET FLOOD WIDTH(FEET) = 22.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.96
  STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) =
                                                        22.12
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.079
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 2.72 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.54
 FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY(FT*FT/SEC.) = 1.95 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.20
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.69
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.26
 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 24.74 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.951
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fp
                                                          Аp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 75
      LAND USE
  COMMERCIAL
                                                        0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 21.34
EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                            29.9
                                       PEAK FLOW RATE(CFS) =
                                                                  51.90
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.07
 FLOW VELOCITY(FEET/SEC.) = 3.85 DEPTH*VELOCITY(FT*FT/SEC.) = 2.49 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                    57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) = 33.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.55 Tc(MIN.) = 27.29
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.846
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 64.38 EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 36.44
 FLOW VELOCITY(FEET/SEC.) = 4.91 DEPTH*VELOCITY(FT*FT/SEC.) = 3.90
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 112.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.84
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 113.45
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) =
                                           28.36
 LONGEST FLOWPATH FROM NODE
                            50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 28.36
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.806
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 18.39
EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                     81.0
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.34
ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 129.35
```

```
PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 29.15
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                         5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                          60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 29.15
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.779
 * 25 YEAR RAID.....

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 15.82 0.20 0.100 75
 SUBAREA LOSS RATE DATA(AMC II):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                          D
                                   4.45
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.122
 SUBAREA AREA(ACRES) = 20.27 SUBAREA RUNOFF(CFS) = 32.00 EFFECTIVE AREA(ACRES) = 101.29 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 101.3
                                    PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 950.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.719
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                          D
                                   20.98
                                            0.20
                                                     1,000
                                                               83
 NATURAL POOR COVER
                                             0.20
                           D
                                  12.82
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 182.45
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.83
AVERAGE FLOW DEPTH(FEET) = 1.12 TRAVEL TIME(MIN.) = 1.79
 Tc(MIN.) = 30.94
 SUBAREA AREA(ACRES) = 33.80 SUBAREA RUNOFF(CFS) = 46.22 EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR) = 0.07 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                      135.1
                                                               200.17
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.19 FLOW VELOCITY(FEET/SEC.) = 9.10
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 =
                                                         6200.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 135.1 TC(MIN.) = 30.94
EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR)= 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.365 PEAK FLOW RATE(CFS) = 200.17
______
```

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 C.DAT
 TIME/DATE OF STUDY: 16:14 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                             107.00 DOWNSTREAM(FEET) = 104.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.912
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.819
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                               2.27
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 5.35
 TOTAL AREA(ACRES) =
                     2.27 PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.10
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.61
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
 STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 15.15
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.576
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
 "BARREN" D 4.61 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                       1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.61 SUBAREA RUNOFF(CFS) = 9.86
EFFECTIVE AREA(ACRES) = 6.88 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37
 FLOW VELOCITY(FEET/SEC.) = 2.84 DEPTH*VELOCITY(FT*FT/SEC.) = 1.29
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                           650.00 FEET.
************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0200
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 15.90
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.77
 STREET FLOW TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 16.83
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.427
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                           Fp
 NATURAL FAIR COVER
  "OPEN BRUSH"
                           D
                                    4.74
                                             0.20
                                                                83
                                                       1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.74 SUBAREA RUNOFF(CFS) = 9.50

EFFECTIVE AREA(ACRES) = 11.62 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                          11.6
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.15
 FLOW VELOCITY(FEET/SEC.) = 4.13 DEPTH*VELOCITY(FT*FT/SEC.) = 1.94
 LONGEST FLOWPATH FROM NODE
                               80.00 TO NODE
                                                83.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.1200
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

10.28

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         30.97
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 13.24
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 8.80
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.51
 STREET FLOW TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) =
                                                    17.68
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.360
 SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                          D
                                   7.90
                                            0.20
                                                      1.000
                                                               83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF(CFS) = 15.36 EFFECTIVE AREA(ACRES) = 19.52 AREA-AVERAGED Fm(INCH/HR) = 0.20
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 19.5
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.49
 FLOW VELOCITY(FEET/SEC.) = 9.17 DEPTH*VELOCITY(FT*FT/SEC.) = 3.86
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 84.00 = 1500.00 FE
                                                         1500.00 FEET.
********************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0900
 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 79.90
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.82
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 9.83
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 5.25
 STREET FLOW TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.314
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                           D
  "OPEN BRUSH"
                                   34.33
                                             0.20
                                                     1.000
                                                               83
 NATURAL POOR COVER
                                  9.76 0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 44.09 SUBAREA RUNOFF(CFS) = 83.89

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) =

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                   AREA-AVERAGED Fm(INCH/HR) = 0.20
 TOTAL AREA(ACRES) =
                         63.6
                                    PEAK FLOW RATE(CFS) =
                                                              121.03
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 24.57
 FLOW VELOCITY(FEET/SEC.) = 10.84 DEPTH*VELOCITY(FT*FT/SEC.) = 6.52
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 85.00 = 1870.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA (ACRES) = 63.6 TC(MIN.) = 18.31

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.000

PEAK FLOW RATE(CFS) = 121.03
______
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

\_\_\_\_\_\_

# Drainage D

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 D.DAT
 TIME/DATE OF STUDY: 10:05 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00
                              95.00 DOWNSTREAM(FEET) = 83.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.794
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.438
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.35
 TOTAL AREA(ACRES) =
                     1.10 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 420.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.73
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 14.88
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.70
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16
 STREET FLOW TRAVEL TIME(MIN.) = 2.59 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.600
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                         D
                                  4.58
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.58 SUBAREA RUNOFF(CFS) = 14.67

EFFECTIVE AREA(ACRES) = 5.68 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.85
 FLOW VELOCITY(FEET/SEC.) = 2.99 DEPTH*VELOCITY(FT*FT/SEC.) = 1.44 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 700.00 FE
********************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 740.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0600
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.153
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                                     1.000
                          D
                                   8.61
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.57
 AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 2.21
 Tc(MIN.) = 10.60
 SUBAREA AREA(ACRES) = 8.61 SUBAREA RUNOFF(CFS) = 22.88

EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR) = 0.14

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.68
 TOTAL AREA(ACRES) = 14.3
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 6.12
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 1440.00 FEET.
______
 END OF STUDY SUMMARY:
                             14.3 TC(MIN.) =
 TOTAL AREA(ACRES) =
                                                 10.60
 EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR)= 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.682
PEAK FLOW RATE(CFS) = 38.79
-----
-----
```

# Drainage E

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 E.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                             105.00 DOWNSTREAM(FEET) = 103.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               2.39
                                              0.200 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 7.28
 TOTAL AREA(ACRES) =
                     2.39 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.20
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.18
 STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.909
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                          D
                                   3.83
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.83 SUBAREA RUNOFF(CFS) = 9.89
EFFECTIVE AREA(ACRES) = 6.22 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 16.99
 FLOW VELOCITY(FEET/SEC.) = 2.90 DEPTH*VELOCITY(FT*FT/SEC.) = 1.35
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 830.00 FE
                                                           830.00 FEET.
********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 18.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.52
 STREET FLOW TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 14.67
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.623
 SUBAREA LOSS RATE DATA(AMC II):
                                          Fp
                       SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                          D
                                    3.65
                                             0.20
                                                      0.200 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.65 SUBAREA RUNOFF(CFS) = 8.48
EFFECTIVE AREA(ACRES) = 9.87 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                           9.9
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.65
 FLOW VELOCITY(FEET/SEC.) = 3.15 DEPTH*VELOCITY(FT*FT/SEC.) = 1.62
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                              103.00 = 1280.00 FEET.
*******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

12.24

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                           40.27
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.49
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.63
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.18
  STREET FLOW TRAVEL TIME(MIN.) = 1.65 Tc(MIN.) = 16.33
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.469
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 6.18 0.20 0.100 75
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                     9.62
                                               0.20
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.161
 SUBAREA AREA(ACRES) = 15.80 SUBAREA RUNOFF(CFS) = 34.65

EFFECTIVE AREA(ACRES) = 25.67 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 25.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.93
 FLOW VELOCITY(FEET/SEC.) = 3.93 DEPTH*VELOCITY(FT*FT/SEC.) = 2.60 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1640.00 FE
                                                104.00 = 1640.00 FEET.
*******************
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 1090.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
  STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
    ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.71
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.03
  STREET FLOW TRAVEL TIME(MIN.) = 4.28 Tc(MIN.) = 20.61
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.164
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  COMMERCIAL
                           D
                                    16.93 0.20
  RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.76 0.20 0
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                      0.200 75
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.109
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 36.03

EFFECTIVE AREA(ACRES) = 44.36 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                           44.4
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.57
 FLOW VELOCITY(FEET/SEC.) = 4.46 DEPTH*VELOCITY(FT*FT/SEC.) = 3.29 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2730.00 FE
                                                  105.00 = 2730.00 FEET.
*************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.61
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.50
 STREET FLOW TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) = 23.13
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.027
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 2.36 0.20 0.200 COMMERCIAL D 8.10 0.20 0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.123
 SUBAREA AREA(ACRES) = 10.46 SUBAREA RUNOFF(CFS) = 18.85

EFFECTIVE AREA(ACRES) = 54.82 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.14
                                                                 98.59
 TOTAL AREA(ACRES) =
                          54.8
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.77 HALFSTREET FLOOD WIDTH(FEET) = 34.97
 FLOW VELOCITY(FEET/SEC.) = 4.69 DEPTH*VELOCITY(FT*FT/SEC.) = 3.59 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 3430.00 FEET.
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
      _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 630.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 35.52
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.70
 STREET FLOW TRAVEL TIME(MIN.) = 2.21 Tc(MIN.) = 25.34
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.925
 SUBAREA LOSS RATE DATA(AMC II):
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                            D
                                     6.09
                                               0.20
                                                        0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.09 SUBAREA RUNOFF(CFS) = 10.33
EFFECTIVE AREA(ACRES) = 60.91 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 60.9 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.52
```

\_\_\_\_\_\_

```
FLOW VELOCITY(FEET/SEC.) = 4.77 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                      107.00 = 4060.00 FEET.
******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.130
 DEPTH OF FLOW IN 108.0 INCH PIPE IS 78.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 2.10
 ESTIMATED PIPE DIAMETER(INCH) = 108.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 103.90
 PIPE TRAVEL TIME(MIN.) = 1.98 Tc(MIN.) =
                                       27.32
                                      108.00 =
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                                 4310.00 FEET.
************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.32
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.845
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                      D
                             4.84 0.20
                                           0.100
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 14.79 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                             0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.175
 SUBAREA AREA(ACRES) = 19.63 SUBAREA RUNOFF(CFS) = 31.97

EFFECTIVE AREA(ACRES) = 80.54 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) =
                  80.5
                              PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.35
 ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 131.46
 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =
                                       27.96
 LONGEST FLOWPATH FROM NODE
                        100.00 TO NODE
********************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.96
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.821
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
 DEVELOPMENT TYPE/
                                    Fρ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL FAIR COVER
                            16.62 0.20
 "OPEN BRUSH"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 16.62 SUBAREA RUNOFF(CFS) = 24.24 EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) =
                             AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.30
 TOTAL AREA(ACRES) = 97.2 PEAK FLOW RATE(CFS) =
                                                   153.98
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 97.2 TC(MIN.) = 27.96 
EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.300
 PEAK FLOW RATE(CFS) = 153.98
______
------
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage F

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025_F.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                       (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                                (FT)
                                                 (FT)
1 30.0
         20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               9.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                            Ар
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              5.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 18.92
 TOTAL AREA(ACRES) =
                     5.80 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                         5.8 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES) = 5.8 TC(MIN.) = 7.97
EFFECTIVE AREA(ACRES) = 5.80 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 18.92
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage G

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025_G.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
                                                 (FT)
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               9.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                            Ар
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             1.75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 5.65
                     1.75 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                         1.8 \text{ TC(MIN.)} =
                                          8.11
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 8.11
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 5.65
______
______
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage H

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025_H.DAT
 TIME/DATE OF STUDY: 16:37 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
                            10.00 DOWNSTREAM(FEET) = 9.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                            Аp
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                            0.63
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.69
                    0.63 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 31
      ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 680.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.78
 ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.69
PIPE TRAVEL TIME(MIN.) = 2.37 Tc(MIN.) =
                                      7.37
 LONGEST FLOWPATH FROM NODE
                        210.00 TO NODE
                                      212.00 =
******************
 FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 81
______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.37
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.872
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                       Fр
                              AREA
                                                 Αp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                               3.53
                                        0.40
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.53 SUBAREA RUNOFF(CFS) = 12.05

EFFECTIVE AREA(ACRES) = 4.16 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                     4.2
                               PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.11
                                     NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
 PIPE-FLOW(CFS) = 14.20
PIPE TRAVEL TIME(MIN.) = 0.94 Tc(MIN.) =
                                          8.31
                                                  1150.00 FEET.
                          210.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                          213.00 =
*******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 8.31
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.618
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                               Аp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                2.82
                                        0.40
                                                0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 0.200

SUBAREA AREA(ACRES) = 2.82 SUBAREA RUNOFF(CFS) = 8.98

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20

PEAK FLOW RATE(CFS) = 22.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
______
 END OF STUDY SUMMARY:
                           7.0 \text{ TC}(MIN.) =
 TOTAL AREA(ACRES)
                                             8.31
 TOTAL AREA(ACRES) = 7.0 IC(MIN.) = 0.31

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
 PEAK FLOW RATE(CFS) = 22.23
______
______
```

# Drainage I

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 I.DAT
 TIME/DATE OF STUDY: 16:39 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 250.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Аp
                                                    SCS Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              0.47
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 1.56
 TOTAL AREA(ACRES) =
                     0.47 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 290.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.41
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.26
    HALFSTREET FLOOD WIDTH(FEET) =
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.61
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68
  STREET FLOW TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) = * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.335
                                                            9.60
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  RESIDENTIAL
  "11+ DWELLINGS/ACRE" A
                                       0.58
                                                  0.40
                                                            0.200 32
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 1.70
EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
  TOTAL AREA(ACRES) = 1.0
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.53
 FLOW VELOCITY(FEET/SEC.) = 2.68 DEPTH*VELOCITY(FT*FT/SEC.) = 0.75 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 217.00 = 540.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.0 TC(MIN.) = 9.60

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 3.08
______
______
```

# Drainage J

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 J.DAT
 TIME/DATE OF STUDY: 16:39 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
ELEVATION DATA: UPSTREAM(FEET) = 8.00 I
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) = 6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.642
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Аp
                                                    SCS Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              1.55
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.83
 TOTAL AREA(ACRES) =
                      1.55 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.63
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.55
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.04
 STREET FLOW TRAVEL TIME(MIN.) = 2.61 TC(MIN.) = 11.25 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.048
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                     3.46
                                               0.40
                                                         0.200
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.46 SUBAREA RUNOFF(CFS) = 9.24
EFFECTIVE AREA(ACRES) = 5.01 AREA-AVERAGED FM(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                     PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.74
 FLOW VELOCITY(FEET/SEC.) = 2.78 DEPTH*VELOCITY(FT*FT/SEC.) = 1.23 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 222.00 = 700.00 FE
********************
 FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 18.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.53
  STREET FLOW TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 13.70
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.726
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                         SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                            Α
                                     5.98
                                               0.40
                                                        0.200
                                                                  32
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 5.98 SUBAREA RUNOFF(CFS) = 14.24 EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           11.0
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.66
 FLOW VELOCITY(FEET/SEC.) = 3.27 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 223.00 = 1150.00 FEET.
______
 END OF STUDY SUMMARY:
                              11.0 \text{ TC(MIN.)} =
 TOTAL AREA(ACRES)
 TOTAL AREA(ACRES) = 11.0 TC(MIN.) = 13.70
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 26.18
______
______
```

# Drainage K

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X025 K.DAT
 TIME/DATE OF STUDY: 16:39 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                         (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                7.00 DOWNSTREAM(FEET) = 5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                              1.53
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 4.61
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0150
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.10
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 13.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.25
 STREET FLOW TRAVEL TIME(MIN.) = 1.76 TC(MIN.) = 10.91 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.101
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                   4.77
                                             0.40
                                                       0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.77 SUBAREA RUNOFF(CFS) = 12.97

EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.05
 FLOW VELOCITY(FEET/SEC.) = 3.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.54 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 227.00 = 660.00 FE
*******************
 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.59
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 17.13
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 11.29 LONGEST FLOWPATH FROM NODE 225.00 TO NODE 228.00 = 830.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                             6.3 \text{ TC(MIN.)} =
                                                  11.29
 TOTAL AREA(ACRES) = 6.3 TC(MIN.) = 11.29
EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 17.13
______
______
 END OF RATIONAL METHOD ANALYSIS
```

ii. EV 2-Year Storm Event

# Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 A.DAT
 TIME/DATE OF STUDY: 16:16 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO. (FT)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*******************
 FLOW PROCESS FROM NODE
                       1.00 TO NODE
                                        2.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               106.20 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.372
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        D
                                0.68
                                         0.20
                                                 0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                       0.70
 TOTAL AREA(ACRES) =
                      0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.26
   HALFSTREET FLOOD WIDTH(FEET) = 5.34
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.33
  STREET FLOW TRAVEL TIME(MIN.) = 3.86 Tc(MIN.) = 12.24
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.949
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 (
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                       0.200 75
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 0.92

EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.34
 FLOW VELOCITY(FEET/SEC.) = 1.34 DEPTH*VELOCITY(FT*FT/SEC.) = 0.37 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FEET.
*************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.32
    HALFSTREET FLOOD WIDTH(FEET) = 8.97
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.48
 STREET FLOW TRAVEL TIME(MIN.) = 2.93 TC(MIN.) = 15.16
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.839
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                                       0.200 75
                            D
                                     3.39
                                               0.20
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 2.44

EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 5.2
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.51
 FLOW VELOCITY(FEET/SEC.) = 1.58 DEPTH*VELOCITY(FT*FT/SEC.) = 0.56
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 800.00 FE
                                                   4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.75
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         0.69
 STREET FLOW TRAVEL TIME(MIN.) = 2.95 Tc(MIN.) = 18.11
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.758
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 6.51 0.20 0
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                 0.200 75
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 4.21 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED FM(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 11.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.34
 FLOW VELOCITY(FEET/SEC.) = 1.86 DEPTH*VELOCITY(FT*FT/SEC.) = 0.78 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FEET.
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 440.00
                               CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.13
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.00
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.90
 STREET FLOW TRAVEL TIME(MIN.) = 3.67 Tc(MIN.) = 21.78
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.682
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                                    Аp
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 5.00 EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                         20.1
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.23
 FLOW VELOCITY(FEET/SEC.) = 2.07 DEPTH*VELOCITY(FT*FT/SEC.) = 0.97
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               6.00 = 1550.00 FEET.
*************************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
```

```
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00
                                CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 19.96
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
 STREET FLOW TRAVEL TIME(MIN.) = 2.67 Tc(MIN.) =
                                                    24.45
 * 2 YEAR RAINFALL INTENSITICING, ...,
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
18.43 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 10.25
EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
 TOTAL AREA(ACRES) = 38.5
                                  PEAK FLOW RATE(CFS) =
                                                               21.21
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.84
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.32
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE 7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.21
PIPE TRAVEL TIME(MIN.) = 0.91 Tc(MIN.) = 25.36
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
**********************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 25.36
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.625
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                         D
                                  0.81 0.20
 NATURAL FAIR COVER
                         D
                              4.990.201.0006.240.200.100
  "OPEN BRUSH"
                                                               83
 COMMERCIAL
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 12.04 SUBAREA RUNOFF(CFS) = 5.74

EFFECTIVE AREA(ACRES) = 50.57 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                        50.6
                                   PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.1000
FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.6 INCHES
```

```
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.50
 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                             9.00 =
                                                      2600.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1180.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.557
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                25.52
                                         0.20
                                                 1.000
                        D
 NATURAL POOR COVER
 "BARREN"
                         D
                                 6.51
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.59
 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 5.48
 Tc(MIN.) = 30.95
 SUBAREA AREA(ACRES) = 32.03 SUBAREA RUNOFF(CFS) = 10.29 EFFECTIVE AREA(ACRES) = 82.60 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.52
 TOTAL AREA(ACRES) = 82.6
                              PEAK FLOW RATE(CFS) =
                                                          33.72
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET/SEC.) =
                                              3.68
                                           10.00 =
                                                    3780.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.524
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                        D
                                29.92
                                        0.20
                                                 1.000
                                                          83
 NATURAL POOR COVER
                               14.41
                                         0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.20 AVERAGE FLOW DEPTH(FEET) = 0.49 TRAVEL TIME(MIN.) = 3.44
 Tc(MIN.) = 34.39
 SUBAREA AREA(ACRES) = 44.33 SUBAREA RUNOFF(CFS) = 12.94 EFFECTIVE AREA(ACRES) = 126.93 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) =
                      126.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 3.31
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                           11.00 =
*************************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                      12.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 580.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150

CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000

MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.501
```

PIPE-FLOW VELOCITY(FEET/SEC.) = 19.98

```
DEVELOPMENT TYPE/ SCS SOIL AREA FP
LAND USE GROUP (ACRES) (INCH/I
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH" D 14.64 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                   1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.36
 AVERAGE FLOW DEPTH(FEET) = 0.54 TRAVEL TIME(MIN.) = 2.88
 Tc(MIN.) = 37.27
 SUBAREA AREA(ACRES) = 14.64 SUBAREA RUNOFF(CFS) = 3.96
EFFECTIVE AREA(ACRES) = 141.57 AREA-AVERAGED Fm(INCH/HR) = 0.14
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72
 TOTAL AREA(ACRES) = 141.6
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 FLOW VELOCITY(FEET/SEC.) = 3.35
                                                      5020.00 FEET.
 LONGEST FLOWPATH FROM NODE
                           1.00 TO NODE
                                             12.00 =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 62
     ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.56
   HALFSTREET FLOOD WIDTH(FEET) = 22.46
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.85
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.73
 STREET FLOW TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 38.79
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.489
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                 1.83
                                          0.40
 "OPEN BRUSH"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 1.83 SUBAREA RUNOFF(CFS) = 0.15
EFFECTIVE AREA(ACRES) = 143.40 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.72

TOTAL AREA(ACRES) = 143.4 PEAK FLOW RATE(CFS) =
                                                            45.49
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.46
 FLOW VELOCITY(FEET/SEC.) = 4.84 DEPTH*VELOCITY(FT*FT/SEC.) = 2.73
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
                                             20.00 = 5460.00 \text{ FEET}.
************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
************************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00
 ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 100.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.373
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.106
```

SUBAREA LOSS RATE DATA(AMC II):

```
SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 "11+ DWELLINGS/ACRE" D 3.17 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, fp(INCH/HR) = 0.20
 "11+ DWELLINGS/ACRE"
                                                   0.200 75 9.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AVERAGE ....

SUBAREA RUNOFF(CFS) = 3.04

3.17 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0500
 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.94
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.04
PIPE TRAVEL TIME(MIN.) = 3.10 Tc(MIN.) = 12.47
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 2030.00 FEET.
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.47
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.939
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
                                                          SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" B 31.84 0.30 0 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
                                                   0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 31.84 SUBAREA RUNOFF(CFS) = 25.18

EFFECTIVE AREA(ACRES) = 35.01 AREA-AVERAGED Fm(INCH/HR) = 0.06

AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                     35.0
                                  PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51
 ._____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0400
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.898
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Fρ
                                                   Ap
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                11.64
                                         0.20
 NATURAL FAIR COVER
                         A 13.96 0.40
D 2.65 0.20
                                                 1.000
 "OPEN BRUSH"
                                                            46
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.586
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  36.42
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 12.96
 AVERAGE FLOW DEPTH(FEET) = 1.19 TRAVEL TIME(MIN.) = 1.00
 Tc(MIN.) = 13.47
 SUBAREA AREA(ACRES) = 28.25 SUBAREA RUNOFF(CFS) = 17.34

EFFECTIVE AREA(ACRES) = 63.26 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.37
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 63.3
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.27 FLOW VELOCITY(FEET/SEC.) = 13.59
 LONGEST FLOWPATH FROM NODE
                             13.00 TO NODE
                                             16.00 =
*************************
 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-

```
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.21
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 43.80
 PIPE TRAVEL TIME(MIN.) = 3.49 Tc(MIN.) = 16.96
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 17.00
                                          17.00 =
******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.96
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.787
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                     Fp
  DEVELOPMENT TYPE/
 NATURAL FAIR COVER
 "OPEN BRUSH"
                       D
                              44.48
                                       0.20
                                               1.000
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A
COMMERCIAL A
                              6.11 0.40 0.200
4.75 0.40 0.100
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.834
 SUBAREA AREA(ACRES) = 55.34 SUBAREA RUNOFF(CFS) = 30.57 EFFECTIVE AREA(ACRES) = 118.60 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) =
                   118.6
                               PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.63
ESTIMATED PIPE DIAMETER(INCH) = 39.00
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 17.38

PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 17.38

18.00
                                    NUMBER OF PIPES = 1
                                          18.00 =
                                                  4590.00 FEET.
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.38
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.776
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
                                    Fp
                                               Ap
  DEVELOPMENT TYPE/
                              AREA
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
 "BARREN"
                               4.65
                                       0.40
                                               1.000
 RESIDENTIAL
                      A 13.94 0.40
 "11+ DWELLINGS/ACRE"
                                              0.200
                                                       32
 COMMERCIAL
                       Α
                               2.82
                                       0.40
                                               0.100
 NATURAL FAIR COVER
 "OPEN BRUSH"
                               2.64
                                        0.40
                                               1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.431
 SUBAREA AREA(ACRES) = 24.05 SUBAREA RUNOFF(CFS) = 13.06
EFFECTIVE AREA(ACRES) = 142.65 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.56
                     142.7
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.732
 SUBAREA LOSS RATE DATA(AMC II):
```

```
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                                      2.68
                                                 0.40
                                                          1.000
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                            A
                                      9.73
                                                 0.40
                                                           0.200
                                                                     32
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED USING ESTIMATED THOM (C.C.)

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.47

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.86
 AVERAGE FLOW DEPTH(FEET) = 0.42 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 19.24
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 6.51

EFFECTIVE AREA(ACRES) = 155.06 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) =
                        155.1
                                        PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 FLOW VELOCITY(FEET/SEC.) = 5.41
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 19.00 TO NODE
                                               20.00 \text{ IS CODE} = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
-----
 CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.661
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.59
AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 3.76
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.54
TOTAL AREA(ACRES) = 156.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 1.59
                                                              5560.00 FEET.
                                                  20.00 =
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **
 ** MEMORY BANK # 1 CONFLUENCE DATA **

STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 45.49 38.79 0.489 0.20(0.15) 0.72 143.4 1.00

LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5460.00 FEET.
  ** PEAK FLOW RATE TABLE **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
   1 121.26 23.01 0.661 0.25( 0.15) 0.61 241.7 13.00 2 99.11 38.79 0.489 0.24( 0.15) 0.63 300.0 1.00
                             300.0
   TOTAL AREA(ACRES) =
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 121.26 Tc(MIN.) = 23.007
EFFECTIVE AREA(ACRES) = 241.70 AREA-AVERAGED Fm(INC
                             241.70 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.61 TOTAL AREA(ACRES) = 300.0
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5560.00 FEET.
```

DEVELOPMENT TYPE/

SCS SOIL AREA

Fρ

Αp

```
FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.590
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        A
                               11.87
                                         0.40
                                                 0.200
 NATURAL FAIR COVER
  "OPEN BRIISH"
                        D 16.10 0.20 1.000
                                                          83
 COMMERCIAL A 1.56 0.40 ( SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
                                                  0.100
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.631
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.89
 AVERAGE FLOW DEPTH(FEET) = 0.51 TRAVEL TIME(MIN.) = 5.03
 Tc(MIN.) = 28.04
 TC(MIN.) = 28.04

SUBAREA AREA(ACRES) = 29.53

SUBAREA RUNOFF(CFS) = 11.86

EFFECTIVE AREA(ACRES) = 271.23

AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED AP = 0.61

TOTAL AREA(ACRES) = 329.6

PEAK FLOW RATE(CFS) = 121.26
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 1.86
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                            21.00 =
*********************
 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.533
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
A 1.73 0.40 0.100 32
     LAND USE
 COMMERCIAL
 NATURAL FAIR COVER
 "OPEN BRUSH"
                         D
                                 8.52
                                          0.20
                                                  1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.848
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 122.92
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.86
 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 33.42
 SUBAREA AREA(ACRES) = 10.25 SUBAREA RUNOFF(CFS) = 3.32 EFFECTIVE AREA(ACRES) = 281.48 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.62
TOTAL AREA(ACRES) = 339.8 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 1.86
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                            22.00 =
                                                     6730.00 FEET.
***********************
 FLOW PROCESS FROM NODE 22.00 TO NODE
                                       23.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
```

```
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.499
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                    AREA
                                                                SCS
                                              Fρ
                                                         αA
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                                     3.62
                                               0.40
 NATURAL FAIR COVER
                               4.470.201.0001.680.400.100
  "OPEN BRUSH"
                            D
                                                                  83
 COMMERCIAL
                            Α
                                                                  32
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.549
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 122.89
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.86
AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 4.03
 Tc(MIN.) = 37.45
 SUBAREA AREA(ACRES) = 9.77 SUBAREA RUNOFF(CFS) = 3.27
EFFECTIVE AREA(ACRES) = 291.25 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.61
TOTAL AREA(ACRES) = 349.6 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 FLOW VELOCITY(FEET/SEC.) = 1.86
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7180.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 349.6 TC(MIN.) = 37.45

EFFECTIVE AREA(ACRES) = 291.25 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.615
 PEAK FLOW RATE(CFS) =
                            121.26
  ** PEAK FLOW RATE TABLE **
                    Tc Intensity Fp(Fm)
           Q Tc Intensity Fp(Fm) Ap (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                       Ae HEADWATER (ACRES) NODE
  STREAM
  NUMBER
     1
            121.26 37.45 0.499 0.24(0.15) 0.61 291.3
99.11 54.37 0.403 0.24(0.15) 0.63 349.6
                                                                  13.00
                                                                     1.00
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 B.DAT
 TIME/DATE OF STUDY: 16:17 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                  0.018/0.018/0.020 0.67
                                         2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*******************
 FLOW PROCESS FROM NODE 50.00 TO NODE
                                      51.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              110.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.477
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                αA
                                                      SCS
                                                            TC
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                       0.60
 TOTAL AREA(ACRES) =
                     0.54 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.20
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.43
  STREET FLOW TRAVEL TIME(MIN.) = 2.69 Tc(MIN.) = 10.16
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.056
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 0.63 0.20 0.100 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 0.59

EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                       1.2
                                     PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 3.34
 FLOW VELOCITY(FEET/SEC.) = 1.86 DEPTH*VELOCITY(FT*FT/SEC.) = 0.41 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FE
                                               52.00 = 650.00 FEET.
******************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.82
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.44
STREET FLOW TRAVEL TIME(MIN.) = 3.67 Tc(MIN.) = 13.83
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.885
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                        Ap
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.72 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 0.56
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.84
 FLOW VELOCITY(FEET/SEC.) = 1.82 DEPTH*VELOCITY(FT*FT/SEC.) = 0.45
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                               50.00 TO NODE 53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.67
 STREET FLOW TRAVEL TIME(MIN.) = 3.97 Tc(MIN.) = 17.81
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.765
 SUBAREA LOSS RATE DATA(AMC II):
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 6.76 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 4.53
EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                          8.7
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.98
 FLOW VELOCITY(FEET/SEC.) = 2.28 DEPTH*VELOCITY(FT*FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                           1550.00 FEET.
*******************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                           8.02
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 12.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.46
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96
STREET FLOW TRAVEL TIME(MIN.) = 4.07 Tc(MIN.) =
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.680
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D 7.46 0.20 0.100 75 SUBAREA AVERAGE PERVIOUS LOSS RATE, F_P(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 4.43

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED FM(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 16.1
                                    PEAK FLOW RATE(CFS) =
                                                                 9.57
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.71
 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) = 1.04 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 55.00 = 2150.00 FE
                                                 55.00 = 2150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.95
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
 STREET FLOW TRAVEL TIME(MIN.) = 3.23 Tc(MIN.) = 25.11
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.628
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D 1.47 0.20 0.100 75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 0.80 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                         17.6
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.71
 FLOW VELOCITY(FEET/SEC.) = 2.57 DEPTH*VELOCITY(FT*FT/SEC.) = 1.05
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.74
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.20
 STREET FLOW TRAVEL TIME(MIN.) = 3.52 Tc(MIN.) = 28.63
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.583
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 12.28 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 6.22

EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                        29.9
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
                                                               15.12
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.60
 FLOW VELOCITY(FEET/SEC.) = 2.85 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
```

```
REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 19.96
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.66
 STREET FLOW TRAVEL TIME(MIN.) = 3.53 Tc(MIN.) =
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.545
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
                                                   αA
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 17.87

EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.38
 FLOW VELOCITY(FEET/SEC.) = 3.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.93
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE
                                           58.00 = 3910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.85
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                8.85
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.98
 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 33.59
 LONGEST FLOWPATH FROM NODE
                             50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
  -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 33.59
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.532
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 5.27

EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                       81.0
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.01
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    36.41
```

```
PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 34.67
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                         5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                          60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 34.67
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.522
 SUBAREA LOSS RATE DATA(AMC II):
  SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 15.82 0.20 0.100 75
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                          D
                                   4.45
                                             0.20
                                                      0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.122
 SUBAREA AREA(ACRES) = 20.27 SUBAREA RUNOFF(CFS) = 9.08 EFFECTIVE AREA(ACRES) = 101.29 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 101.3
                                   PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 950.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.499
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                          D
                                  20.98
                                            0.20
                                                     1.000
                                                               83
 NATURAL POOR COVER
                                            0.20
                           D
                                  12.82
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.62
AVERAGE FLOW DEPTH(FEET) = 0.53 TRAVEL TIME(MIN.) = 2.82
 Tc(MIN.) = 37.48
 SUBAREA AREA(ACRES) = 33.80 SUBAREA RUNOFF(CFS) = 9.10
EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR) = 0.07
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                      135.1
                                                               51.80
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 5.72
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 =
                                                         6200.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 135.1 TC(MIN.) = 37.48 
EFFECTIVE AREA(ACRES) = 135.09 AREA-AVERAGED Fm(INCH/HR)= 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.365 PEAK FLOW RATE(CFS) = 51.80
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 C.DAT
 TIME/DATE OF STUDY: 16:17 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO. (FT)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*******************
 FLOW PROCESS FROM NODE
                       80.00 TO NODE
                                      81.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               107.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.912
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.920
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
 "BARREN"
                        D
                                2.27
                                         0.20
                                                1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) =
                       1.47
 TOTAL AREA(ACRES) =
                      2.27 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58
  STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 15.88
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.817
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
 "BARREN" D 4.61 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                      1.000 93
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.61 SUBAREA RUNOFF(CFS) = 2.56
EFFECTIVE AREA(ACRES) = 6.88 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 6.9 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.97
 FLOW VELOCITY(FEET/SEC.) = 2.09 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0200
STREET LENGTH(FEET) = 400.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) = 8.59
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.93
  STREET FLOW TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) = 18.15
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.757
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                     4.74
                            D
                                              0.20 1.000
  "OPEN BRUSH"
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.74 SUBAREA RUNOFF(CFS) = 2.38

EFFECTIVE AREA(ACRES) = 11.62 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 11.6
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.28
 FLOW VELOCITY(FEET/SEC.) = 3.02 DEPTH*VELOCITY(FT*FT/SEC.) = 0.99
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 83.00 = 1050.00 FE
                                                  83.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.1200
STREET LENGTH(FEET) = 450.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.62
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.86
 STREET FLOW TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 19.28
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.731
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 7.90 0.20 1
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                  1.000 83
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF(CFS) = 3.78 EFFECTIVE AREA(ACRES) = 19.52 AREA-AVERAGED Fm(INCH/HR) = 0.20
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 19.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 7.41
 FLOW VELOCITY(FEET/SEC.) = 6.82 DEPTH*VELOCITY(FT*FT/SEC.) = 2.01
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 84.00 = 1500.00 FEET.
******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0900
STREET LENGTH(FEET) = 370.00
                                CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH(FEET) = 11.52
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 7.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.60
 STREET FLOW TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 20.15
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.713
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                                                     Аp
                                           Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                 34.33 0.20
                                                    1,000
                                                              83
 NATURAL POOR COVER
  "BARREN"
                          D
                                   9.76
                                            0.20
                                                     1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 44.09 SUBAREA RUNOFF(CFS) = 20.34

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                         63.6
                                    PEAK FLOW RATE(CFS) =
                                                               29.35
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.79
 FLOW VELOCITY(FEET/SEC.) = 7.76 DEPTH*VELOCITY(FT*FT/SEC.) = 3.17 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 85.00 = 1870.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 63.6 TC(MIN.) = 20.15
```

EFFECTIVE AREA(ACRES) = 63.61 AREA-AVERAGED Fm(INCH/HR)= 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.000
PEAK FLOW RATE(CFS) = 29.35

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

# Drainage D

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 D.DAT
 TIME/DATE OF STUDY: 11:25 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT)
         (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
         === ====
   30.0
                  0.018/0.018/0.020 0.67
                                         2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*******************
 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 280.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               95.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.794
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                     SCS
                                                           TC
                                                αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                       D
                                1.10
                                        0.20
                                                0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                      1.40
 TOTAL AREA(ACRES) =
                     1.10 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 420.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
  STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) = 8.72
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.09
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.67
  STREET FLOW TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) =
                                                      9.14
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.122
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Fρ
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 4.58 0.20 (SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                     0.200 75
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.58 SUBAREA RUNOFF(CFS) = 4.46
EFFECTIVE AREA(ACRES) = 5.68 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 5.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.74
 FLOW VELOCITY(FEET/SEC.) = 2.26 DEPTH*VELOCITY(FT*FT/SEC.) = 0.80 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 122.00 = 700.00 FEET.
*************************
 FLOW PROCESS FROM NODE 122.00 TO NODE 123.00 IS CODE = 51
 >>>>COMPITE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 740.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0600
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.928
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                    8.61
  "OPEN BRUSH"
                            D
                                               0.20
                                                        1.000
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.44
AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 3.58
 Tc(MIN.) = 12.72
 SUBAREA AREA(ACRES) = 8.61 SUBAREA RUNOFF(CFS) = 5.64 EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.68
 TOTAL AREA(ACRES) = 14.3 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) = 3.67
 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 123.00 = 1440.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 14.3 TC(MIN.) = 12.72

EFFECTIVE AREA(ACRES) = 14.29 AREA-AVERAGED Fm(INCH/HR) = 0.14

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.682

PEAK FLOW RATE(CFS) = 10.18
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage E

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 E.DAT
 TIME/DATE OF STUDY: 16:43 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*******************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               105.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        D
                                2.39
                                         0.20
                                                 0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                       2.33
 TOTAL AREA(ACRES) =
                      2.39 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) = 8.97
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68
  STREET FLOW TRAVEL TIME(MIN.) = 3.97 Tc(MIN.) = 13.12
      2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.912
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 3.83 0.20 (SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.83 SUBAREA RUNOFF(CFS) = 3.01
EFFECTIVE AREA(ACRES) = 6.22 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 6.2 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.12
 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT*FT/SEC.) = 0.76 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 830.00 FEET.
*************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 450.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.36
   HALFSTREET FLOOD WIDTH(FEET) = 11.21
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.33
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.85
 STREET FLOW TRAVEL TIME(MIN.) = 3.22 TC(MIN.) = 16.33
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.804
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                                0.20
                                                        0.200 75
                            D
                                      3.65
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.65 SUBAREA RUNOFF(CFS) = 2.51
EFFECTIVE AREA(ACRES) = 9.87 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 9.9
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.76
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 0.89
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 1280.00 FEET.
*******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.22 Tc(MIN.) = 18.55
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.747
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                    6.18 0.20
                           D
                                                        0.100
 RESIDENTIAL
                                    9.62 0.20 0.200 75
  "11+ DWELLINGS/ACRE"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.161
 SUBAREA AREA(ACRES) = 15.80 SUBAREA RUNOFF(CFS) = 10.17

EFFECTIVE AREA(ACRES) = 25.67 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
                                     PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                         25.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.15
FLOW VELOCITY(FEET/SEC.) = 2.92 DEPTH*VELOCITY(FT*FT/SEC.) = 1.37
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 1640.00 FE
                                                 104.00 = 1640.00 FEET.
 FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 1090.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 19.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.11
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.57
 STREET FLOW TRAVEL TIME(MIN.) = 5.84 Tc(MIN.) = 24.39
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.639
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 16.93 0.20 0.100 75
      LAND USE
 COMMERCIAL
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                     1.76
                                               0.20
                            D
                                                         0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.109
 SUBAREA AREA(ACRES) = 18.69 SUBAREA RUNOFF(CFS) = 10.38
EFFECTIVE AREA(ACRES) = 44.36 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) =
                           44.4
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.12
 FLOW VELOCITY(FEET/SEC.) = 3.19 DEPTH*VELOCITY(FT*FT/SEC.) = 1.67 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 2730.00 FEET.
*******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 62
```

```
>>>>COMPLITE STREET FLOW TRAVEL TIME THRIL SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 700.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 20.90
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.30
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.77
 STREET FLOW TRAVEL TIME(MIN.) = 3.54 Tc(MIN.) = 27.93
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.591
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 2.36 0.20 COMMERCIAL D 8.10 0.20
                                                     0.200 75
0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.123
 SUBAREA AREA(ACRES) = 10.46 SUBAREA RUNOFF(CFS) = 5.33

EFFECTIVE AREA(ACRES) = 54.82 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.14
 TOTAL AREA(ACRES) =
                      54.8
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 HALFSTREET FLOOD WIDTH(FEET) = 21.13
 FLOW VELOCITY(FEET/SEC.) = 3.32 DEPTH*VELOCITY(FT*FT/SEC.) = 1.79
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 3430.00 FEET.
************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 630.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         29.16
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.55
   HALFSTREET FLOOD WIDTH(FEET) = 21.60
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.34
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.83
 STREET FLOW TRAVEL TIME(MIN.) = 3.14 Tc(MIN.) = 31.07
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.556
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fp
                                                      qΑ
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                    6.09
                          D
                                              0.20
                                                       0.200
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.09 SUBAREA RUNOFF(CFS) = 2.83
EFFECTIVE AREA(ACRES) = 60.91 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 60.9 PEAK FLOW RATE(CFS) =
```

```
DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.52
 FLOW VELOCITY(FEET/SEC.) = 3.33 DEPTH*VELOCITY(FT*FT/SEC.) = 1.82 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 4060.00 FE
                                       107.00 = 4060.00 FEET.
 FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.130
 DEPTH OF FLOW IN 66.0 INCH PIPE IS 49.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 1.52
 ESTIMATED PIPE DIAMETER(INCH) = 66.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 28.84
 PIPE TRAVEL TIME(MIN.) = 2.74
                            Tc(MIN.) = 33.81
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 108.00 = 4310.00 FEET.
*******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 33.81
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.530
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 4.84 0.20 0.100 75
     LAND USE
                                            0.100
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                       D
                             14.79
                                       0.20
                                              0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.175
 SUBAREA AREA(ACRES) = 19.63 SUBAREA RUNOFF(CFS) = 8.74

EFFECTIVE AREA(ACRES) = 80.54 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                  80.5
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.00
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 36.13
 PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 34.68
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                       109.00 =
                                                 4780.00 FEET.
************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 34.68
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.522
 SUBAREA LOSS RATE DATA(AMC II):
                                    Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 16.62 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                            1.000 83
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 16.62 SUBAREA RUNOFF(CFS) = 4.81 
EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.30 TOTAL AREA(ACRES) = 97.2 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
                         97.2 TC(MIN.) =
 TOTAL AREA(ACRES) =
 TOTAL AREA(ACRES) = 97.2 IC(MIN.) - 54.00
EFFECTIVE AREA(ACRES) = 97.16 AREA-AVERAGED Fm(INCH/HR)= 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.300 PEAK FLOW RATE(CFS) = 40.39
-----
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage F

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002_F.DAT
 TIME/DATE OF STUDY: 16:43 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
           20.0
                  0.018/0.018/0.020 0.67
                                         2.00 0.0313 0.167 0.0150
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************
 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                9.00 DOWNSTREAM(FEET) =
                                                         6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.969
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                      Fρ
                                                     SCS
                                                           TC
                                                αA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                       Α
                               5.80
                                        0.40
                                               0.200
                                                            7.97
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 5.92
TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) =
                                                5.92
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                  =
                          5.8 \text{ TC(MIN.)} =
                                            7.97
 EFFECTIVE AREA(ACRES) = 5.80 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
 PEAK FLOW RATE(CFS) = 5.92
______
-----
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage G

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002_G.DAT
 TIME/DATE OF STUDY: 16:44 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                 --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
           20.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 9.00 DOWNSTREAM(FEET) =
                                                           5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.110
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                        SCS
                                                             TC
                                                  αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        Α
                                                 0.200
                                                              8.11
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 1.77

TOTAL AREA(ACRES) = 1.75 PEAK FLOW RATE(CFS) =
                                                   1.77
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                   =
                           1.8 \text{ TC}(MIN.) =
                                              8.11
 TOTAL AREA(ACRES) = 1.8 IC(MIN.) = 0.11

EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200
 PEAK FLOW RATE(CFS) = 1.77
______
-----
 END OF RATIONAL METHOD ANALYSIS
```

# Drainage H

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 H.DAT
 TIME/DATE OF STUDY: 16:44 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                 --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                   0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
          20.0
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 70.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 10.00 DOWNSTREAM(FEET) =
                                                            9.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                  Aр
                                                         SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                                 0.63
                                                  0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                       0.85
 TOTAL AREA(ACRES) =
                       0.63 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 680.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.63
ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.85
PIPE TRAVEL TIME(MIN.) = 3.13 Tc(MIN.) =
                                            8.13
                           210.00 TO NODE 212.00 = 750.00 FEET.
 LONGEST FLOWPATH FROM NODE
```

```
FLOW PROCESS FROM NODE 212.00 TO NODE 212.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) =
                   8.13
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.200
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 3.53 0.40 (
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
                                             0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.53 SUBAREA RUNOFF(CFS) = 3.56

EFFECTIVE AREA(ACRES) = 4.16 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                    4.2
                               PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.38
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.19
 PIPE TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) =
                                          9.37
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 213.00 = 1150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 81
   -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 9.37
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.106
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP Ap
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 2.82 0.40 CUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
                                               0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 2.82 SUBAREA RUNOFF(CFS) = 2.61

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20

TOTAL AREA(ACRES) = 7.0 PEAK FLOW RATE(CFS) = 6.45
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 7.0 TC(MIN.) = 9.37

EFFECTIVE AREA(ACRES) = 6.98 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 6.45
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage I

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 I.DAT
 TIME/DATE OF STUDY: 16:44 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
******************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 250.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 8.00 DOWNSTREAM(FEET) =
                                                          6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.746
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        Α
                                0.47
                                         0.40
                                                 0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                       0.49
 TOTAL AREA(ACRES) =
                      0.47 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0200
 STREET LENGTH(FEET) = 290.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.20
   HALFSTREET FLOOD WIDTH(FEET) =
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61
  STREET FLOW TRAVEL TIME(MIN.) = 1.57 Tc(MIN.) = 9.32
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.109
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                              Fp
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 0.58 0.40 (
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
                                                       0.200 32
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.58 SUBAREA RUNOFF(CFS) = 0.54

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED FM(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
                                                                   0.97
 TOTAL AREA(ACRES) =
                       1.0
                                  PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 2.00
 FLOW VELOCITY(FEET/SEC.) = 3.07 DEPTH*VELOCITY(FT*FT/SEC.) = 0.61 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 217.00 = 540.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.0 TC(MIN.) = 9.32

EFFECTIVE AREA(ACRES) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 0.97
______
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage J

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 J.DAT
 TIME/DATE OF STUDY: 16:44 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (n)
         === ====
   30.0
                  0.018/0.018/0.020 0.67
                                         2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
******************
 FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                8.00 DOWNSTREAM(FEET) =
                                                         6.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.642
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                      SCS
                                                           TC
                                                αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                       Α
                               1.55
                                        0.40
                                               0.200
                                                          8.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                      1.50
 TOTAL AREA(ACRES) =
                     1.55 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 221.00 TO NODE 222.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
  STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.72
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.98
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.60
  STREET FLOW TRAVEL TIME(MIN.) = 3.36 Tc(MIN.) = 12.00
      2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.960
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 3.46 0.40 (
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
                                                         0.200 32
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.46 SUBAREA RUNOFF(CFS) = 2.74

EFFECTIVE AREA(ACRES) = 5.01 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 5.0 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 9.09
 FLOW VELOCITY(FEET/SEC.) = 2.13 DEPTH*VELOCITY(FT*FT/SEC.) = 0.69 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 222.00 = 700.00 FEET.
*************************
 FLOW PROCESS FROM NODE 222.00 TO NODE 223.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 450.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.36
   HALFSTREET FLOOD WIDTH(FEET) = 11.13
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.31
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.83
 STREET FLOW TRAVEL TIME(MIN.) = 3.25 Tc(MIN.) = 15.25 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.836
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                                        0.200
                                                 0.40
                                      5.98
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 5.98 SUBAREA RUNOFF(CFS) = 4.07
EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                          11.0
                                      PEAK FLOW RATE(CFS) =
                                                                      7.48
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.30
 FLOW VELOCITY(FEET/SEC.) = 2.42 DEPTH*VELOCITY(FT*FT/SEC.) = 0.92 LONGEST FLOWPATH FROM NODE 220.00 TO NODE 223.00 = 1150.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 11.0 TC(MIN.) = 15.25

EFFECTIVE AREA(ACRES) = 10.99 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200

PEAK FLOW RATE(CFS) = 7.48
-----
______
```

END OF RATIONAL METHOD ANALYSIS

# Drainage K

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: X002 K.DAT
 TIME/DATE OF STUDY: 16:45 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
******************
 FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 7.00 DOWNSTREAM(FEET) =
                                                          5.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.151
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        Α
                                1.53
                                         0.40
                                                 0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                       1.43
 TOTAL AREA(ACRES) =
                      1.53 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0150
 STREET LENGTH(FEET) = 330.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.42
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
  STREET FLOW TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) = 11.43
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.987
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Fр
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 4.77 0.40 (
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
                                                      0.200 32
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 4.77 SUBAREA RUNOFF(CFS) = 3.89
EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                         6.3
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.41
 FLOW VELOCITY(FEET/SEC.) = 2.61 DEPTH*VELOCITY(FT*FT/SEC.) = 0.86
LONGEST FLOWPATH FROM NODE 225.00 TO NODE 227.00 = 660.00 FEET.
*************************
 FLOW PROCESS FROM NODE 227.00 TO NODE 228.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.59
ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                           NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.14
 PIPE THOW(CFS) = 5.14

PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 11.93

LONGEST FLOWPATH FROM NODE 225.00 TO NODE 228.00 =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 6.3 TC(MIN.) = 11.93
EFFECTIVE AREA(ACRES) = 6.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.40 AREA-AVERAGED Ap = 0.200 PEAK FLOW RATE(CFS) = 5.14
______
 END OF RATIONAL METHOD ANALYSIS
```

a) High Confidence Events

i. HC 100-Year Storm Event

# Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

```
FILE NAME: P100 A.DAT
 TIME/DATE OF STUDY: 10:26 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                            106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.605
 SUBAREA TC AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                   Fp
                                            Аp
                                                 SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                             0.68
                                            0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.79
 TOTAL AREA(ACRES) =
                    0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
      _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH(FEET) = 11.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.68
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.62
 STREET FLOW TRAVEL TIME(MIN.) = 2.98 Tc(MIN.) =
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.869
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                          D
                                                       0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.89
EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.16
 FLOW VELOCITY(FEET/SEC.) = 1.79 DEPTH*VELOCITY(FT*FT/SEC.) = 0.71 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.47
   HALFSTREET FLOOD WIDTH(FEET) = 17.07
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96
 STREET FLOW TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 13.45
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.510
 SUBAREA LOSS RATE DATA(AMC III):
                                           Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                       0.200
                                                                91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 10.59
EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.65
 FLOW VELOCITY(FEET/SEC.) = 2.23 DEPTH*VELOCITY(FT*FT/SEC.) = 1.14
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                  4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

4.75

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         25.60
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.48
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.46
 STREET FLOW TRAVEL TIME(MIN.) = 2.06 Tc(MIN.) =
                                                    15.51
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.234
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE GROUD (ACRES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                                    0.200
                                   6.51
                                            0.20
                                                             91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 18.71 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.13
 FLOW VELOCITY(FEET/SEC.) = 2.67 DEPTH*VELOCITY(FT*FT/SEC.) = 1.68 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 44.77
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.69
   HALFSTREET FLOOD WIDTH(FEET) = 30.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.85
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.95
STREET FLOW TRAVEL TIME(MIN.) = 2.57 Tc(MIN.) = 18.08
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.962
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 91
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 22.22

EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 32.41
 FLOW VELOCITY(FEET/SEC.) = 3.02 DEPTH*VELOCITY(FT*FT/SEC.) = 2.16
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 35.89
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.41
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.68
STREET FLOW TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) =
                                                 19.84
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.809
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                          Fρ
                                                   Αp
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 18.43 0.20 0.100 91
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 46.26 EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                    38.5
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 38.57
 FLOW VELOCITY(FEET/SEC.) = 3.67 DEPTH*VELOCITY(FT*FT/SEC.) = 3.07
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 71.9 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                            7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.04
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   96.49
 PIPE TRAVEL TIME(MIN.) = 0.61 Tc(MIN.) =
                                           20.45
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.45
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.760
 SUBAREA LOSS RATE DATA(AMC III):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fρ
    LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 6.24 0.20 0.100
D 6.35 0.20 0.850
 COMMERCIAL
                                                           91
 PUBLIC PARK
                                 2.47
 COMMERCIAL
                        D
                                         0.20
                                                  0.100
 NATURAL POOR COVER
                                 3.55
                                         0.20
                         D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.528
 SUBAREA AREA(ACRES) = 18.61 SUBAREA RUNOFF(CFS) = 44.47 EFFECTIVE AREA(ACRES) = 57.14 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.26
                       57.1
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.1000
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 30.13
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 139.28
 PIPE TRAVEL TIME(MIN.) = 0.24
                              4 Tc(MIN.) = 20.69
1.00 TO NODE 9.00
 LONGEST FLOWPATH FROM NODE
                                               9.00 =
                                                        2890.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 870.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.587
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                                  1.000
                                 13.41
                                           0.20
 "OPEN BRUSH"
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 153.69
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.57
 AVERAGE FLOW DEPTH(FEET) = 0.90 TRAVEL TIME(MIN.) = 2.21
 Tc(MIN.) = 22.90
 SUBAREA AREA(ACRES) = 13.41 SUBAREA RUNOFF(CFS) = 28.81
EFFECTIVE AREA(ACRES) = 70.55 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.92 FLOW VELOCITY(FEET/SEC.) = 6.67
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                              10.00 =
                                                          3760.00 FEET.
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.466
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                  9.71
                                                    1.000
 "OPEN BRUSH"
                                            0.20
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED USING ESTIMATED FRONCES,

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.48

TRAVEL TIME THRU SUBAREA BASED THRUSH TRAVEL TIME(MIN.) = 2.01
 AVERAGE FLOW DEPTH(FEET) = 1.18 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 24.90
 SUBAREA AREA(ACRES) = 9.71 SUBAREA RUNOFF(CFS) = 19.80 EFFECTIVE AREA(ACRES) = 80.26 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                     80.3
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.19 FLOW VELOCITY(FEET/SEC.) = 5.52
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               11.00 =
********************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.383
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
```

```
"OPEN BRUSH" D 3.89 0.20 1
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                          0.20 1.000 96
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  175.11
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.57
 AVERAGE FLOW DEPTH(FEET) = 1.20 TRAVEL TIME(MIN.) = 1.53
 Tc(MIN.) = 26.43
 SUBAREA AREA(ACRES) = 3.89 SUBAREA RUNOFF(CFS) = 7.64
EFFECTIVE AREA(ACRES) = 84.15 AREA-AVERAGED Fm(INCH/HR) =
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
                                   AREA-AVERAGED Fm(INCH/HR) = 0.10
 TOTAL AREA(ACRES) = 84.2 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.19 FLOW VELOCITY(FEET/SEC.) = 5.53
 LONGEST FLOWPATH FROM NODE
                           1.00 TO NODE
                                              12.00 =
                                                         4930.00 FEET.
************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 11.01 TO NODE 11.02 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM TC(MIN.) = 5.375 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.936
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fρ
                                                     Дp
                                                           SCS
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

COMMERCIAL D 0.19 0.20 0.100 91 5.38

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.01
 TOTAL AREA(ACRES) =
                        0.19 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.02 TO NODE 11.03 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.38
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.89
 STREET FLOW TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) = 7.69
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.836
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                  0.20
0.25
                       D 1.84
D 0.25
                                            0.20 0.850
0.20 0.100
 PUBLIC PARK
                                                             91
 COMMERCIAL
 NATURAL FAIR COVER
  "OPEN BRUSH"
                         D
                                           0.20
                                                    1.000 96
                                  0.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.816
 SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 11.48

EFFECTIVE AREA(ACRES) = 2.92 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.77
```

NATURAL FAIR COVER

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.20
 FLOW VELOCITY(FEET/SEC.) = 2.73 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.03 = 450.0
                                                            1.18
                            11.01 TO NODE
                                                       450.00 FEET.
************************
 FLOW PROCESS FROM NODE 11.03 TO NODE 11.04 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.97
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.30
 PIPE TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            11.01 TO NODE
                                            11.04 =
                                                       940.00 FEET.
*******************
 FLOW PROCESS FROM NODE 11.04 TO NODE 11.04 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 8.86
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.458
 SUBAREA LOSS RATE DATA(AMC III):
                                        Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.18 0.20 0.100 91
D 1.15 0.20 0.350 91
D 4.75 0.20 0.350 91
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.308
 SUBAREA AREA(ACRES) = 7.08 SUBAREA RUNOFF(CFS) = 28.01

EFFECTIVE AREA(ACRES) = 10.00 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                       10.0
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
************************
 FLOW PROCESS FROM NODE 11.04 TO NODE 11.05 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.35
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 39.33
 PIPE TRAVEL TIME(MIN.) = 0.71 Tc(MIN.) =
                                           9.57
 LONGEST FLOWPATH FROM NODE 11.01 TO NODE
                                            11.05 =
 FLOW PROCESS FROM NODE 11.05 TO NODE 11.05 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 9.57
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.265
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 6.10 0.20 0.350 91
                                      gA qT
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 23.03 

EFFECTIVE AREA(ACRES) = 16.10 AREA-AVERAGED Fm(INCH/HR) = 0.08 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                       16.1
                                 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.05 TO NODE 12.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 910.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.19
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 60.61
 PIPE TRAVEL TIME(MIN.) = 1.49 Tc(MIN.) = 11.06
LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00
                                                          2250.00 FEET.
                                                 12.00 =
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        60.61
        11.06
        3.926
        0.20(0.08)
        0.41
        16.1
        11.01

 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00 = 2250.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 172.96 26.43 2.383 0.20(0.10) 0.50 84.2 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 4930.00 FEET.
  ** PEAK FLOW RATE TABLE **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 181.89 11.06 3.926 0.20(0.09) 0.47 51.3 11.01
2 209.25 26.43 2.383 0.20(0.10) 0.48 100.2 1.00
                                                                 11.01
                           100.2
   TOTAL AREA(ACRES) =
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 209.25 Tc(MIN.) = 26.428

EFFECTIVE AREA(ACRES) = 100.25 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.48
 TOTAL AREA(ACRES) = 100.2
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                 12.00 =
                                                          4930.00 FEET.
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
******************
 FLOW PROCESS FROM NODE 11.06 TO NODE 11.07 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
                                    90.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.011
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.415
 SUBAREA TC AND LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                                        qА
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
CONDOMINIUMS D 1.54 0.20 0.350 91 9.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 6.02
 TOTAL AREA(ACRES) =
                         1.54 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 11.07 TO NODE 11.08 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 12.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.69
ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                         NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 6.02
PIPE TRAVEL TIME(MIN.) = 1.32 Tc(MIN.) = 10.33
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.08
                                           11.08 =
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.08 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE TC(MIN.) = 10.33
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.083
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS
                                        Fρ
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.43 0.20 0.100 91
D 1.14 0.20 0.350 91
D 4.05 0.20 0.350 91
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.331
 SUBAREA AREA(ACRES) = 5.62 SUBAREA RUNOFF(CFS) = 20.32

EFFECTIVE AREA(ACRES) = 7.16 AREA-AVERAGED Fm(INCH/HR) =

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33

TOTAL AREA(ACRES) = 7.2 PEAK FLOW RATE(CFS) = 2
                                AREA-AVERAGED Fm(INCH/HR) = 0.07
********************
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.09 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.34
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 25.88
 PIPE TRAVEL TIME(MIN.) = 1.00 Tc(MIN.) = 11.33
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.09
                                           11.09 = 1290.00 FEET.
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.09 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 11.33
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.872
 SUBAREA LOSS RATE DATA(AMC III):
                               AREA
                                       Fp
  DEVELOPMENT TYPE/ SCS SOIL
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.41 0.20 0.100 91
D 1.13 0.20 0.350 91
D 0.62 0.20 0.350 91
D 0.48 0.20 0.350 91
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.311
 SUBAREA AREA(ACRES) = 2.64 SUBAREA RUNOFF(CFS) = 9.05

EFFECTIVE AREA(ACRES) = 9.80 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
                        9.8
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.10 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 730.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.92
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 33.58
 PIPE TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 12.69
 LONGEST FLOWPATH FROM NODE
                           11.06 TO NODE
                                                    2020.00 FEET.
                                           11.10 =
************************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.69
  100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.628
 SUBAREA LOSS RATE DATA(AMC III):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Fρ
                                                         Дp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.01 0.20 0.100 91
D 2.10 0.20 0.350 91
D 1.33 0.20 0.350 91
D 7.17 0.20 0.350 91
      LAND USE
 COMMERCIAL
  CONDOMINIUMS
 CONDOMINIUMS
 CONDOMINIUMS
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.328
 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 37.23
EFFECTIVE AREA(ACRES) = 21.41 AREA-AVERAGED Fm(INCH/HR) = 0.07
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) = 21.4 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.11 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
_____
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.65
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 68.65
 PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 13.49
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.11
                                                  11.11 =
                                                              2530.00 FEET.
******************
 FLOW PROCESS FROM NODE 11.11 TO NODE 11.11 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TC(MIN.) = 13.49
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.504
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                    AREA
                                                         Αp
                                              Fρ
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                         D 0.44 0.20 0.100
D 6.60 0.20 0.350
 COMMERCIAL
                                                                  91
  CONDOMINIUMS
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.334
 SUBAREA AREA(ACRES) = 7.04 SUBAREA RUNOFF(CFS) = 21.78

EFFECTIVE AREA(ACRES) = 28.45 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                         28.5
                                     PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 11.11 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.26
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 88.02
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 13.85
 LONGEST FLOWPATH FROM NODE 11.06 TO NODE
                                               12.00 =
                                                            2770.00 FEET.
*************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 >>>>CONFIJIENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        88.02
        13.85
        3.452
        0.20(0.07)
        0.33
        28.5
        11.06

        LONGEST
        FLOWPATH FROM NODE
        11.06
        TO NODE
        12.00
        =
        2770.00
        FEET.

  ** MEMORY BANK # 2 CONFLUENCE DATA **
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
```

```
NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
         262.05 11.06 3.926 0.20(0.09) 0.43 74.0 11.01 274.87 13.85 3.452 0.20(0.09) 0.43 88.6 11.06 269.49 26.43 2.383 0.20(0.09) 0.45 128.7 1.00
    1
   TOTAL AREA(ACRES) =
                         128.7
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 274.87 Tc(MIN.) = 13.845
EFFECTIVE AREA(ACRES) = 88.63 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 128.7
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
                                           12.00 = 4930.00 FEET.
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 42.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.47
ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 274.87
 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 14.28
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                           20.00 = 5440.00 FEET.
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.28
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.391
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH" D 3.58 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                         0.20
                                                  1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 3.58 SUBAREA RUNOFF(CFS) = 10.28

EFFECTIVE AREA(ACRES) = 92.21 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.45

TOTAL AREA(ACRES) = 132.3 PEAK FLOW RATE(CFS) = 274.87
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
*******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00

ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 100.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.373
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.316
 SUBAREA TC AND LOSS RATE DATA(AMC III):
                                                        SCS
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                  Аp
                                                             TC
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                      D
                                 3.17
                                        0.20
                                               0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 12.20
 TOTAL AREA(ACRES) =
                       3.17 PEAK FLOW RATE(CFS) =
                                                    12.20
*******************
```

```
FLOW PROCESS FROM NODE
                   14.00 TO NODE 15.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0500
```

FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.62 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 12.20PIPE TRAVEL TIME(MIN.) = 2.19 Tc(MIN.) = 11.56

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 2030.00 FEET.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81

qΑ

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< \_\_\_\_\_

MAINLINE Tc(MIN.) = 11.56\* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.827

SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ

GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" В B 31.84 0.30 0.200 D 3.71 0.20 0.850 76 PUBLIC PARK

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.268

SUBAREA AREA(ACRES) = 35.55 SUBAREA RUNOFF(CFS) = 120.15
EFFECTIVE AREA(ACRES) = 38.72 AREA-AVERAGED Fm(INCH/HR) = 0.07
AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.26

TOTAL AREA(ACRES) = 38.7 PEAK FLOW RATE(CFS) =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51

>>>>COMPILTE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>

\_\_\_\_\_\_

CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00 REPRESENTATIVE CHANNEL SLOPE = 0.0400 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000

MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00

\* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.704

SUBAREA LOSS RATE DATA(AMC III):

| DEVELOPMENT TYPE/                                             | SCS SOIL | AREA    | Fp          | Ap        | SCS  |  |
|---------------------------------------------------------------|----------|---------|-------------|-----------|------|--|
| LAND USE                                                      | GROUP    | (ACRES) | (INCH/HR)   | (DECIMAL) | CN   |  |
| RESIDENTIAL                                                   |          |         |             |           |      |  |
| "11+ DWELLINGS/ACRE"                                          | D        | 11.64   | 0.20        | 0.200     | 91   |  |
| NATURAL FAIR COVER                                            |          |         |             |           |      |  |
| "OPEN BRUSH"                                                  | A        | 13.96   | 0.40        | 1.000     | 66   |  |
| COMMERCIAL                                                    | D        | 2.65    | 0.20        | 0.100     | 91   |  |
| PUBLIC PARK                                                   | A        | 1.60    | 0.40        | 0.850     | 52   |  |
| SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37        |          |         |             |           |      |  |
| SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.600            |          |         |             |           |      |  |
| TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 177.73       |          |         |             |           |      |  |
| TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 19.28 |          |         |             |           |      |  |
| AVERAGE FLOW DEPTH(FEET                                       | ) = 2.15 | TRAVE   | L TIME(MIN. | ) = 0.67  |      |  |
| Tc(MIN.) = 12.24                                              |          |         |             |           |      |  |
| SUBAREA AREA(ACRES) =                                         | 29.85    | SUBAI   | REA RUNOFF( | CFS) = 93 | 3.54 |  |

EFFECTIVE AREA(ACRES) = 68.57 AREA-AVERAGED Fm(INCH/HR) = 0.14
AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.41

TOTAL AREA(ACRES) = 68.6PEAK FLOW RATE(CFS) =

END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 2.32 FLOW VELOCITY(FEET/SEC.) = 20.39

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.00 =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FLOW PROCESS FROM NODE 16.00 TO NODE 16.60 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0050

FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 66.0 INCH PIPE IS 52.8 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 10.81

ESTIMATED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 220.23 PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) = 12.69 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.60 = 3100.00 FEET.

```
FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.69
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.629
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                                SCS
                                               Fρ
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.13 0.40 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.65
EFFECTIVE AREA(ACRES) = 69.70 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 69.7 PEAK FLOW RATE(CFS) =
                                                               220.23
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE
                           16.10 TO NODE 16.20 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 105.50 DOWNSTREAM(FEET) = 105.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.416
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.515
 SUBAREA TC AND LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

CONDOMINIUMS D 1.80 0.20 0.350 91 13.42

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 5.58
TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) =
                                                            5.58
*******************
 FLOW PROCESS FROM NODE 16.20 TO NODE 16.30 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.365
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
B 2.42 0.30 0.350 76
B 0.90 0.30 0.100 76
B 1.92 0.30 0.850 76
      LAND USE
 CONDOMINIUMS
  COMMERCIAL
  PUBLIC PARK
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.490
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 6.31
 AVERAGE FLOW DEPTH(FEET) = 1.44 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 14.47
 SUBAREA AREA(ACRES) = 5.24 SUBAREA RUNOFF(CFS) = 15.18 EFFECTIVE AREA(ACRES) = 7.04 AREA-AVERAGED Fm(INCH/HR) = 0.13 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45
                           7.0
 TOTAL AREA(ACRES) =
                                       PEAK FLOW RATE(CFS) =
                                                                   20.52
         ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
            CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
            ALLOWABLE DEPTH).
             AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
```

ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.

```
DEPTH(FEET) = 1.50 FLOW VELOCITY(FEET/SEC.) = 9.12
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

FLOW LENGTH(FEET) = 790.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.8 INCHES

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

\* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.159

20.52 PIPE TRAVEL TIME(MIN.) = 1.69 Tc(MIN.) =

16.10 TO NODE

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_\_

16.10 TO NODE

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.40 TO NODE 16.40 IS CODE = 81

\_\_\_\_\_\_

FLOW PROCESS FROM NODE 16.30 TO NODE 16.40 IS CODE = 31

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-

16.30 =

NUMBER OF PIPES = 1

730.00 FEET.

==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH

LONGEST FLOWPATH FROM NODE

REPRESENTATIVE SLOPE = 0.0100

LONGEST FLOWPATH FROM NODE

MAINLINE Tc(MIN.) = 16.17

PIPE-FLOW(CFS) =

PIPE-FLOW VELOCITY(FEET/SEC.) = 7.78 ESTIMATED PIPE DIAMETER(INCH) = 24.00

SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN B 3.09 0.30 0.100 76
B 2.54 0.30 0.850 76
B 2.54 0.30 0.850 76 COMMERCIAL PUBLIC PARK PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.566 SUBAREA AREA(ACRES) = 8.17 SUBAREA RUNOFF(CFS) = 21.98 EFFECTIVE AREA(ACRES) = 15.21 AREA-AVERAGED Fm(INCH/HR) = 0.15 AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.51 TOTAL AREA(ACRES) = 15.2 PEAK FLOW RATE(CFS) = FLOW PROCESS FROM NODE 16.40 TO NODE 16.50 IS CODE = 31 \_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < -----REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 390.00 MANNING'S N = 0.013DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.43 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 41.18PIPE TRAVEL TIME(MIN.) = 0.69 Tc(MIN.) = 16.85LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.50 = 1910.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 81 \_\_\_\_\_\_ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< \_\_\_\_\_\_ MAINLINE Tc(MIN.) = 16.85 \* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.084 SUBAREA LOSS RATE DATA(AMC III): AREA Fp DEVELOPMENT TYPE/ SCS SOIL GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.85 0.20 0.100 91
D 2.51 0.20 0.350 91 LAND USE COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.244 SUBAREA AREA(ACRES) = 4.36 SUBAREA RUNOFF(CFS) = 11.91 EFFECTIVE AREA(ACRES) = 19.57 AREA-AVERAGED Fm(INCH/HR) = 0.13 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45 TOTAL AREA(ACRES) = 19.6 PEAK FLOW RATE(CFS) = \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.50 TO NODE 16.60 IS CODE = 31 \_\_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< \_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100

FLOW LENGTH(FEET) = 950.00 MANNING'S N = 0.013

```
DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.99
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                           NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 52.07
 PIPE TRAVEL TIME(MIN.) = 1.58 Tc(MIN.) = 18.44
LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.60
                                                   16.60 =
                                                             2860.00 FEET.
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.44
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.929
 SUBAREA LOSS RATE DATA(AMC III):

        SUBAREA LOSS RAIE DATA (ARC 11)

        DEVELOPMENT TYPE/
        SCS SOIL AREA
        FP AP SCS

        LAND USE
        GROUP (ACRES) (INCH/HR) (DECIMAL) CN

        PUBLIC PARK
        D 2.21 0.20 0.850 91

        COMMERCIAL
        D 2.81 0.20 0.100 91

 PUBLIC PARK
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.430
 SUBAREA AREA(ACRES) = 5.02 SUBAREA RUNOFF(CFS) = 12.85

EFFECTIVE AREA(ACRES) = 24.59 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.45
 TOTAL AREA(ACRES) = 24.6
                                     PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 62.19 18.44 2.929 0.27(0.12) 0.45 24.6 16.10

LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.50 = 2860.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 220.23 12.69 3.629 0.33(0.13) 0.40 69.7 13.00

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.50 = 3100.00 FEET.
  ** PEAK FLOW RATE TABLE **
  TOTAL AREA(ACRES) =
                             94.3
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 273.68 Tc(MIN.) = 12.686
EFFECTIVE AREA(ACRES) = 86.62 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 94.3
 LONGEST FLOWPATH FROM NODE
                               13.00 TO NODE
                                                   16.50 =
                                                             3100.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
**************************
 FLOW PROCESS FROM NODE 16.50 TO NODE 17.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1230.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 72.0 INCH PIPE IS 56.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.44
ESTIMATED PIPE DIAMETER(INCH) = 72.00
                                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 273.68
PIPE TRAVEL TIME(MIN.) = 1.79 Tc(MIN.) = 14.48
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 17.00
                                                   17.00 = 4330.00 FEET.
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
```

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

```
______
 MAINLINE TC(MIN.) = 14.48
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.365
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                                   Αp
                                                          SCS
                                         Fρ
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                 8.07
                                           0.40
 RESIDENTIAL
                        Α
                             6.11 0.40
3.62 0.40
                                                0.200
0.100
 "11+ DWELLINGS/ACRE"
                                                            52
 COMMERCIAL
                         Α
                                                            52
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.542
 SUBAREA AREA(ACRES) = 17.80 SUBAREA RUNOFF(CFS) = 50.43
EFFECTIVE AREA(ACRES) = 104.42 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.34 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 112.1
                                 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHEAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 66.0 INCH PIPE IS 51.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.26
 ESTIMATED PIPE DIAMETER(INCH) = 66.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 302.48
 PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) =
                                            14.77
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                             18.00 =
                                                        4600.00 FEET.
************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 14.77
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.326
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                          Fρ
                                                    Αp
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                 2.09
                                          0.40
                                                  1.000
                         A
 NATURAL POOR COVER
                                  4.65
                                                  1.000
 "BARREN"
                                           0.40
                                                            93
                         Α
 COMMERCIAL
                                  2.82
                                           0.40
                                                   0.100
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 13.94 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
                                                  0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA AREA(ACRES) = 23.50 SUBAREA RUNOFF(CFS) = 66.81 EFFECTIVE AREA(ACRES) = 127.92 AREA-AVERAGED FM(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 135.6
                                 PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.199
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                    αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                 2.68
                                           0.40
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                        Α
                                          0.40
                                 9.73
                                                            52
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 382.69
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 9.82
 AVERAGE FLOW DEPTH(FEET) = 1.05 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 15.81
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 34.07 EFFECTIVE AREA(ACRES) = 140.33 AREA-AVERAGED FM(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) = 0.15
```

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 148.0 PEAK FLOW RATE(CFS) = 385.15 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.06 FLOW VELOCITY(FEET/SEC.) = 9.83 19.00 = 5210.00 FEET. LONGEST FLOWPATH FROM NODE 13.00 TO NODE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51 \_\_\_\_\_\_ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.982 SUBAREA LOSS RATE DATA(AMC III): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 52
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME COMPUTED USING ESTIMATED FRONCES,

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.91

TRAVEL TIME (MIN.) = 2.06 AVERAGE FLOW DEPTH(FEET) = 0.99 TRAVEL TIME(MIN.) = Tc(MIN.) = 17.87SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 4.18

EFFECTIVE AREA(ACRES) = 141.91 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.42

TOTAL AREA(ACRES) = 149.6 PEAK FLOW RATE(CFS) = 385.15 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.99 FLOW VELOCITY(FEET/SEC.) = 2.89 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5570.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY< \_\_\_\_\_\_ \*\* MAIN STREAM CONFLUENCE DATA \*\* 
 STREAM
 Q
 Tc
 Intensity
 Fp(Fm)
 Ap
 Ae
 HEADWATER

 NUMBER
 (CFS)
 (MIN.)
 (INCH/HR)
 (INCH/HR)
 (ACRES)
 NODE

 1
 385.15
 17.87
 2.982
 0.35(0.15)
 0.42
 141.9
 13.00

 2
 335.83
 23.86
 2.527
 0.35(0.15)
 0.42
 149.6
 16.10

 LONGEST
 FLOWPATH FROM NODE
 13.00
 TO NODE
 20.00 = 5570.00
 FEET.
 \*\* MEMORY BANK # 3 CONFLUENCE DATA \*\* Tc Intensity Fp(Fm) STREAM O HEADWATER

| DIKEAN  | Q          | 10       | THECHBIC  | rp(rm)      | AP    | AC      | IIDADWAIDK  |
|---------|------------|----------|-----------|-------------|-------|---------|-------------|
| NUMBER  | (CFS)      | (MIN.)   | (INCH/HR) | (INCH/HR)   |       | (ACRES) | NODE        |
| 1       | 262.05     | 11.51    | 3.837     | 0.20( 0.09) | 0.45  | 77.6    | 11.01       |
| 2       | 274.87     | 14.28    | 3.391     | 0.20( 0.09) | 0.45  | 92.2    | 11.06       |
| 3       | 270.02     | 26.87    | 2.361     | 0.20( 0.09) | 0.46  | 132.3   | 1.00        |
| LONGEST | FLOWPATH F | ROM NODE | 1.00      | O TO NODE   | 20.00 | = 544   | 40.00 FEET. |

| * * | PEAK | FLOW | RATE | TABLE | * * |
|-----|------|------|------|-------|-----|

| STREAM | Q            | Tc     | Intensity | Fp(Fm)      | Аp   | Ae      | HEADWATER |
|--------|--------------|--------|-----------|-------------|------|---------|-----------|
| NUMBER | (CFS)        | (MIN.) | (INCH/HR) | (INCH/HR)   |      | (ACRES) | NODE      |
| 1      | 584.97       | 11.51  | 3.837     | 0.28( 0.12) | 0.44 | 169.0   | 11.01     |
| 2      | 627.07       | 14.28  | 3.391     | 0.28( 0.12) | 0.43 | 205.6   | 11.06     |
| 3      | 658.64       | 17.87  | 2.982     | 0.28( 0.12) | 0.44 | 245.5   | 13.00     |
| 4      | 607.00       | 23.86  | 2.527     | 0.28( 0.12) | 0.44 | 272.3   | 16.10     |
| 5      | 582.42       | 26.87  | 2.361     | 0.27( 0.12) | 0.44 | 281.9   | 1.00      |
| TOTAL  | AREA (ACRES) | =      | 281.9     |             |      |         |           |

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 658.64 Tc(MIN.) = 17.871

EFFECTIVE AREA(ACRES) = 245.55 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 281.9

5570.00 FEET. LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12

>>>>CLEAR MEMORY BANK # 3 <<<< \_\_\_\_\_\_

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.756
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                           A
                                   11.87
                                               0.40
                                                       0.200
 NATURAL FAIR COVER
 "OPEN BRUSH" D 5.63 0.20 1.000 COMMERCIAL A 1.56 0.40 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.428
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.60
 AVERAGE FLOW DEPTH(FEET) = 1.38 TRAVEL TIME(MIN.) = 2.64
 Tc(MIN.) = 20.51
 SUBAREA AREA(ACRES) = 19.06 SUBAREA RUNOFF(CFS) = 45.35 EFFECTIVE AREA(ACRES) = 264.61 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 300.9
                                 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.36 FLOW VELOCITY(FEET/SEC.) = 3.55
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                 21.00 =
                                                           6140.00 FEET.
 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.561
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.73 0.40 0.100 52
 COMMERCIAL
 NATURAL FAIR COVER
                                             0.20
  "OPEN BRUSH"
                           D
                                    4.03
                                                        1.000
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.730
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.57
AVERAGE FLOW DEPTH(FEET) = 1.36 TRAVEL TIME(MIN.) = 2.80
 AVERAGE FLOW DEPTH(FEET) = 1.36 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 23.32
 SUBAREA AREA(ACRES) = 5.76 SUBAREA RUNOFF(CFS) = 12.49
EFFECTIVE AREA(ACRES) = 270.37 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 306.7 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.36 FLOW VELOCITY(FEET/SEC.) = 3.55
                               13.00 TO NODE 22.00 =
 LONGEST FLOWPATH FROM NODE
                                                           6740.00 FEET.
*******************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.437
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                    AREA
                                              Fρ
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE" A 3.62 0.40 0.200 52
```

```
NATURAL FAIR COVER
                        D 4.01 0.20 1.000
A 1.68 0.40 0.100
   "OPEN BRUSH"
                                                                                                96
  COMMERCIAL
                                                                                                52
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.527
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.57
AVERAGE FLOW DEPTH(FEET) = 1.37 TRAVEL TIME(MIN.) = 2.10
  Tc(MIN.) = 25.42
  SUBAREA AREA(ACRES) = 9.31 SUBAREA RUNOFF(CFS) = 19.38 EFFECTIVE AREA(ACRES) = 279.68 AREA-AVERAGED Fm(INCH/HR) = 0.12
  AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 316.0 PEAK FLOW RATE(CFS) = 658.64
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 1.36 FLOW VELOCITY(FEET/SEC.) = 3.55
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7190.00 FEET.
______
  END OF STUDY SUMMARY:
  TUTAL AREA(ACRES) = 316.0 TC(MIN.) = 25.42

EFFECTIVE AREA(ACRES) = 279.68 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.444

PEAK FLOW RATE(CFS) = 658.64
  TOTAL AREA(ACRES) =
                                            316.0 \text{ TC}(MIN.) =
                                                                            25.42
  ** PEAK FLOW RATE TABLE **
   STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
                                                                                 203.2

      584.97
      19.38
      2.847
      0.27( 0.12) 0.45
      203.2

      627.07
      21.96
      2.650
      0.27( 0.12) 0.44
      239.8

      658.64
      25.42
      2.437
      0.28( 0.12) 0.44
      279.7

      607.00
      31.65
      2.149
      0.27( 0.12) 0.45
      306.4

      582.42
      34.77
      2.037
      0.27( 0.12) 0.45
      316.0

                                                                                                  11.01
        1 2
                                                                                                      11.06
        3
                                                                                                      13.00
                                                                                                      1.00
______
```

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

## Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P100 B.DAT
 TIME/DATE OF STUDY: 10:28 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.913
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fρ
                                             Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 91 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                     2.38
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                           CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) = 8.59
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65
  STREET FLOW TRAVEL TIME(MIN.) = 2.82 Tc(MIN.) = 10.29
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.091
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                         Аp
                                               Fρ
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 91
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 2.31
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.47
 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) = 0.71 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FE
                                                  52.00 = 650.00 FEET.
********************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.59
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.27
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80
STREET FLOW TRAVEL TIME(MIN.) = 2.93 Tc(MIN.) = 13.23
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.543
  SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 91
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 2.28

EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED FM(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.9
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 11.13
 FLOW VELOCITY (FEET/SEC.) = 2.30 DEPTH*VELOCITY (FT*FT/SEC.) = 0.83 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                 53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <---
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 16.76
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.88
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.33
  STREET FLOW TRAVEL TIME(MIN.) = 2.89 Tc(MIN.) = 16.12
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.164
  SUBAREA LOSS RATE DATA(AMC III):
                   E DATA(APIC III).

E/ SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 6.76 0.20 0.100 91
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 19.13

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.12
 FLOW VELOCITY(FEET/SEC.) = 3.21 DEPTH*VELOCITY(FT*FT/SEC.) = 1.68 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 ________
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 22.93
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.49
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.99
  STREET FLOW TRAVEL TIME(MIN.) = 2.87 Tc(MIN.) = 18.99
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.880
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 91

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 19.20 EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 24.80
 FLOW VELOCITY(FEET/SEC.) = 3.65 DEPTH*VELOCITY(FT*FT/SEC.) = 2.21
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                             43.25
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.61
    HALFSTREET FLOOD WIDTH(FEET) = 25.20
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.69
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.26
  STREET FLOW TRAVEL TIME(MIN.) = 2.26 Tc(MIN.) =
                                                        21.25
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.701
 SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 91

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 3.55
EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
                                                                   42.41
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 25.04
 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY(FT*FT/SEC.) = 2.23 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPLITED LISTING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.66
   HALFSTREET FLOOD WIDTH(FEET) = 27.93
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.60
 STREET FLOW TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) = 23.71 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.536
  SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fp
                                                          Αp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 91
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 27.81
EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                            29.9
                                       PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 31.51
 FLOW VELOCITY(FEET/SEC.) = 4.11 DEPTH*VELOCITY(FT*FT/SEC.) = 2.86 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                    57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.79
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.84
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 3.82
 STREET FLOW TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 26.05
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.403
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 91
D 9.91 0.20 0.600 91
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 84.30
EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 39.55
 FLOW VELOCITY(FEET/SEC.) = 5.33 DEPTH*VELOCITY(FT*FT/SEC.) = 4.57
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 144.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.82
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 148.35
 PIPE TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 27.03
 LONGEST FLOWPATH FROM NODE
                            50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.03
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.353
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 24.02

EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                     81.0
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.29
ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 169.19
```

```
PIPE TRAVEL TIME(MIN.) = 0.73 Tc(MIN.) = 27.76
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                      5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                         60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 27.76
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.317
 * 100 YEAR RAID.....

SUBAREA LOSS RATE DATA(AMC III):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 13.88 0.20 0.100 91
 SUBAREA LOSS RATE DATA(AMC III):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                         D
                                 4.45
                                           0.20
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.124
 SUBAREA AREA(ACRES) = 18.33 SUBAREA RUNOFF(CFS) = 37.81
EFFECTIVE AREA(ACRES) = 99.35 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                    99.4
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 940.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.242
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                        D
D
                             24.16 0.20
4.43 0.20
                                                 1.000
0.350
  "OPEN BRUSH"
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.899
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 9.54
 AVERAGE FLOW DEPTH(FEET) = 1.28 TRAVEL TIME(MIN.) = 1.64
 Tc(MIN.) = 29.40
 SUBAREA AREA(ACRES) = 28.59 SUBAREA RUNOFF(CFS) = 53.06 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) =
                     127.9
                                    PEAK FLOW RATE(CFS) =
                                                            250.76
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.35 FLOW VELOCITY(FEET/SEC.) = 9.79
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 = 6190.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                           127.9 \text{ TC}(MIN.) =
 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.321
PEAK FLOW RATE(CFS) = 250.76
______
______
```

END OF RATIONAL METHOD ANALYSIS

## Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P100 C.DAT
 TIME/DATE OF STUDY: 10:29 04/08/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                (FT)
                                       (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                 SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                      2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                            108.00 DOWNSTREAM(FEET) = 106.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.003
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.429
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                     Fρ
                                            Аp
                                                  SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                             1.53
                                            1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 4.45
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 14.34
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.65
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.11
 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 16.21
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.154
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
                          D
                                  4.73
                                            0.20
  "BARREN"
                                                     1,000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.73 SUBAREA RUNOFF(CFS) = 12.57

EFFECTIVE AREA(ACRES) = 6.26 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.23
 FLOW VELOCITY(FEET/SEC.) = 2.93 DEPTH*VELOCITY(FT*FT/SEC.) = 1.38 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                         650.00 FEET.
************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 360.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.55
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.64
 PIPE TRAVEL TIME(MIN.) = 0.79 Tc(MIN.) = 17.00
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                              83.00 = 1010.00 FEET.
 FLOW PROCESS FROM NODE 83.00 TO NODE 83.00 IS CODE = 81
     _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.069
 SUBAREA LOSS RATE DATA(AMC III):
                                         Fp
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                                    qД
                                                            SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 2.81 0.20 0.100 91
D 2.09 0.20 0.350 91
D 3.05 0.20 0.350 91
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.262
 SUBAREA AREA(ACRES) = 7.95 SUBAREA RUNOFF(CFS) = 21.58

EFFECTIVE AREA(ACRES) = 14.21 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 14.2
                                  PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.03
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 37.74
 PIPE TRAVEL TIME(MIN.) = 0.46
LONGEST FLOWPATH FROM NODE 8
                             46 Tc(MIN.) = 17.46
80.00 TO NODE 84.00
                                               84.00 = 1260.00 FEET.
*******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 84.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TC(MIN.) = 17.46
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.022
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

10.74

```
SUBAREA LOSS RATE DATA(AMC III):
  CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.256
 SUBAREA AREA(ACRES) = 1.94 SUBAREA RUNOFF(CFS) = 5.19

EFFECTIVE AREA(ACRES) = 16.15 AREA-AVERAGED Fm(INCH/HR) = 0.11

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.55
                   16.1
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.47
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 42.33
 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 17.78
 LONGEST FLOWPATH FROM NODE
                           80.00 TO NODE
                                          85.00 =
                                                   1440.00 FEET.
************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 85.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.78
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.991
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
               GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.32 0.20 0.100 91
D 2.49 0.20 0.350 91
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.322
 SUBAREA AREA(ACRES) = 2.81 SUBAREA RUNOFF(CFS) = 7.40 EFFECTIVE AREA(ACRES) = 18.96 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) =
                     19.0
                                PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 86.00 IS CODE = 31
      _____
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 340.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.63
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 49.28
 PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 18.37
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                          86.00 = 1780.00 FEET.
 FLOW PROCESS FROM NODE 86.00 TO NODE 86.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.37
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.936
 SUBAREA LOSS RATE DATA(AMC III):
                                      Fp
                               AREA
  DEVELOPMENT TYPE/ SCS SOIL
                                                Аp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 3.14 0.20 0.350 91
COMMERCIAL D 0.62 0.20 0.100 91
PUBLIC PARK D 1.37 0.20 0.850 91
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.453
 SUBAREA AREA(ACRES) = 5.13 SUBAREA RUNOFF(CFS) = 13.13
EFFECTIVE AREA(ACRES) = 24.09 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 24.1 PEAK FLOW RATE(CFS) =
*******************
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.20
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 61.47
 PIPE TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 19.40
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                             87.00 = 2410.00 FEET.
 FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.40
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.845
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.51 0.20 0.350 91
D 1.12 0.20 0.100 91
      LAND USE
 CONDOMINIUMS
 COMMERCIAL
 NATURAL FAIR COVER
                         D
                                  0.43
                                           0.20
                                                   1.000
  "OPEN BRUSH"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 5.06 SUBAREA RUNOFF(CFS) = 12.64
EFFECTIVE AREA(ACRES) = 29.15 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) = 29.1 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 87.00 TO NODE 88.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.71
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 72.16
 PIPE TRAVEL TIME(MIN.) = 0.44
                               Tc(MIN.) = 19.83
 LONGEST FLOWPATH FROM NODE
                             80.00 TO NODE
                                              88.00 =
********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.83
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.809
 SUBAREA LOSS RATE DATA(AMC III):
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.34 0.20 0.350 91
D 0.48 0.20 0.100 91
D 2.16 0.00 0.100
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                          Fρ
                                                    Аp
     LAND USE
 CONDOMINIUMS
                                 0.48 0.20 0.100 91
2.16 0.20 0.350 91
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.335
 SUBAREA AREA(ACRES) = 7.98 SUBAREA RUNOFF(CFS) = 19.70 EFFECTIVE AREA(ACRES) = 37.13 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                       37.1
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 89.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.29
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 90.91
PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 20.23
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 89.00 = 2960.00 FEET.
```

```
FLOW PROCESS FROM NODE 89.00 TO NODE 89.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.23
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.777
 SUBAREA LOSS RATE DATA(AMC III):
                  SCS SOIL
  DEVELOPMENT TYPE/
                             AREA
                                                   SCS
                                     Fρ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 2.41 0.20 0.350
D 2.55 0.20 0.100
 CONDOMINIUMS
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.221
 SUBAREA AREA(ACRES) = 4.96 SUBAREA RUNOFF(CFS) = 12.20 
EFFECTIVE AREA(ACRES) = 42.09 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
                  42.1
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 89.00 TO NODE 97.00 IS CODE = 31
     _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 560.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.74
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 102.04
 PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) =
                        80.00 TO NODE 97.00 = 3520.00 FEET.
 LONGEST FLOWPATH FROM NODE
******************
                     97.00 TO NODE 97.00 IS CODE = 10
 FLOW PROCESS FROM NODE
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21
     -----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                             108.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.332
 SUBAREA TC AND LOSS RATE DATA(AMC III):
                                  Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Ap SCS Tc
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
ERCIAL D 0.88 0.20 0.100 91 9.31
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                     3.42
 TOTAL AREA(ACRES) =
                    0.88 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 260.00
                           CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
```

STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

```
STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.43
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.26
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.79
 STREET FLOW TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) = 11.23
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.891
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 1.06 0.20 0.100 91
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 3.69
EFFECTIVE AREA(ACRES) = 1.94 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.9
                                  PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.76
 FLOW VELOCITY(FEET/SEC.) = 2.37 DEPTH*VELOCITY(FT*FT/SEC.) = 0.88
 LONGEST FLOWPATH FROM NODE
                            90.00 TO NODE
                                            92.00 =
                                                      560.00 FEET.
*********************
 FLOW PROCESS FROM NODE 92.00 TO NODE 93.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) =
                               6.06
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.76
PIPE TRAVEL TIME(MIN.) = 1.73 Tc(MIN.) = 12.97
 LONGEST FLOWPATH FROM NODE
                            90.00 TO NODE
*********************
 FLOW PROCESS FROM NODE 93.00 TO NODE 93.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.97
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.584
 SUBAREA LOSS RATE DATA(AMC III):
                                       Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                        D 5.84 0.20 0.350
D 2.34 0.20 0.100
D 8.66 0.20 0.350
 CONDOMINIUMS
                                                          91
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.315
 SUBAREA AREA(ACRES) = 16.84 SUBAREA RUNOFF(CFS) = 53.36 EFFECTIVE AREA(ACRES) = 18.78 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) = 18.8
                                PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 93.00 TO NODE 94.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.18
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 59.59
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 13.36
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
                                            94.00 = 1430.00 FEET.
*************************
 FLOW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 81
   ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.36
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.523
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                   qΑ
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.80 0.20 0.850 91
     LAND USE
 PUBLIC PARK
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.800
 SUBAREA AREA(ACRES) = 4.07 SUBAREA RUNOFF(CFS) = 12.32

EFFECTIVE AREA(ACRES) = 22.85 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
                      22.9
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************
                       94.00 TO NODE 95.00 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 29.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.69
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 70.88
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) =
                                          13.66
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                            95.00 =
                                                    1620.00 FEET.
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 95.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.66
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.479
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.20 0.20 0.100 91
D 2.24 0.20 0.350 91
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.330
 SUBAREA AREA(ACRES) = 2.44 SUBAREA RUNOFF(CFS) = 7.50 EFFECTIVE AREA(ACRES) = 25.29 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                       25.3
                                PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 96.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 39.0 INCH PIPE IS 31.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.76
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 77.47
 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 14.14
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                          96.00 =
 FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 14.14
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.411
 SUBAREA LOSS RATE DATA(AMC III):
                                     gA qT
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                        SCS
               GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.07 0.20 0.850 91
     LAND USE
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 5.07 SUBAREA RUNOFF(CFS) = 14.79

EFFECTIVE AREA(ACRES) = 30.36 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.46
                      30.4
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 96.00 TO NODE 97.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013
```

0.20

0.100

0.27

D

```
DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.7 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 11.29
ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                                   NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 90.70
  PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) = 14.48
LONGEST FLOWPATH FROM NODE 90.00 TO NODE 97.00
                                                            97.00 =
                                                                        2160.00 FEET.
  FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 11
 ______
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        90.70
        14.48
        3.365
        0.20(0.09)
        0.46
        30.4
        90.00

        LONGEST
        FLOWPATH FROM NODE
        90.00
        TO NODE
        97.00
        =
        2160.00
        FEET.

  ** MEMORY BANK # 1 CONFLUENCE DATA **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 102.04 21.03 2.717 0.20(0.08) 0.42 42.1 80.00 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 97.00 = 3520.00 FEET.
  ** PEAK FLOW RATE TABLE **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        178.24
        14.48
        3.365
        0.20(0.09)
        0.44
        59.3
        90.00

        2
        174.79
        21.03
        2.717
        0.20(0.09)
        0.43
        72.4
        80.00

                                                                                    80.00
    TOTAL AREA(ACRES) =
                                    72.4
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 178.24 Tc(MIN.) = 14.475
EFFECTIVE AREA(ACRES) = 59.33 AREA-AVERAGED Fm(INCH/HR) = 0.09
  AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
  TOTAL AREA(ACRES) = 72.4
                                                            97.00 = 3520.00 FEET.
                                      80.00 TO NODE
  LONGEST FLOWPATH FROM NODE
  FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 12
  >>>>CLEAR MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 97.00 TO NODE 98.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
  >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
  REPRESENTATIVE SLOPE = 0.0100
  FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
  DEPTH OF FLOW IN 54.0 INCH PIPE IS 42.2 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 13.35
ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                                  NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 178.24
  PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) =
                                                          14.82
                                     80.00 TO NODE
  LONGEST FLOWPATH FROM NODE
                                                             98.00 =
                                                                          3800.00 FEET.
******************
  FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 81
        ______
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
  MAINLINE TC(MIN.) = 14.82
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.319
  SUBAREA LOSS RATE DATA(AMC III):
   DEVELOPMENT TYPE/ SCS SOIL
                                           AREA
                                                                    Ap
                                                        Fρ
                               GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
  NATURAL FAIR COVER
                                            22.13
                                                       0.20
  "OPEN BRUSH"
  NATURAL POOR COVER
  "BARREN"
                                  D
                                             9.76
                                                        0.20
                                                                    1.000
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 31.89 SUBAREA RUNOFF(CFS) = 89.52

EFFECTIVE AREA(ACRES) = 91.22 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.63

TOTAL AREA(ACRES) = 104.3 PEAK FLOW RATE(CFS) = 262.10
______
  END OF STUDY SUMMARY:
                          = 104.3 TC(MIN.) = 14.82
  TOTAL AREA(ACRES)
```

EFFECTIVE AREA(ACRES) = 91.22 AREA-AVERAGED Fm(INCH/HR) = 0.13
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.635
PEAK FLOW RATE(CFS) = 262.10

| ** PEAK  | FLOW RATE | TABLE ** | ŧ         |             |       |          |           |
|----------|-----------|----------|-----------|-------------|-------|----------|-----------|
| STREAM   | Q         | Tc       | Intensity | Fp(Fm)      | Аp    | Ae       | HEADWATER |
| NUMBER   | (CFS)     | (MIN.)   | (INCH/HR) | (INCH/HR)   |       | (ACRES)  | NODE      |
| 1        | 262.10    | 14.82    | 3.319     | 0.20( 0.13) | 0.63  | 91.2     | 90.00     |
| 2        | 241.31    | 21.38    | 2.691     | 0.20( 0.12) | 0.61  | 104.3    | 80.00     |
| ======== | =======   |          | ========  | :======::   | ===== | ======== | ========  |

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

ii. HC 25-Year Storm Event

## Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P025 A.DAT
 TIME/DATE OF STUDY: 09:36 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                             106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                              0.68
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.18
 TOTAL AREA(ACRES) =
                     0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55
 STREET FLOW TRAVEL TIME(MIN.) = 3.16 Tc(MIN.) = * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.007
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  "11+ DWELLINGS/ACRE"
                                                        0.200
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.02

EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.84
 FLOW VELOCITY(FEET/SEC.) = 1.67 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.85
  STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 13.76
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.720
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 8.18
EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.70
 FLOW VELOCITY(FEET/SEC.) = 2.10 DEPTH*VELOCITY(FT*FT/SEC.) = 1.00
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                  4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

3.69

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         19.75
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 21.21
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.35
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.27
 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 15.96
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.501
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                                   0.200 75
                                   6.51
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 14.42 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 23.63
 FLOW VELOCITY(FEET/SEC.) = 2.50 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.63
   HALFSTREET FLOOD WIDTH(FEET) = 26.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.68
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 18.70
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.286
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 17.11
EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 28.16
 FLOW VELOCITY(FEET/SEC.) = 2.80 DEPTH*VELOCITY(FT*FT/SEC.) = 1.87 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
*********************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.73
   HALFSTREET FLOOD WIDTH(FEET) = 33.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.29
STREET FLOW TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) =
                                                  20.62
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.163
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                   Αp
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 18.43 0.20 0.100 75
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 35.55
EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.58
 FLOW VELOCITY(FEET/SEC.) = 3.39 DEPTH*VELOCITY(FT*FT/SEC.) = 2.64
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 56.2 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                            7.00 = 1910.00 \text{ FEET}.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.15
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                       NUMBER OF PIPES = 1
                   74.11
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) =
                                           21.27
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.27
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.126
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                                          SCS
    LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 6.24 0.20 0.100
D 6.35 0.20 0.850
 COMMERCIAL
                                                           75
 PUBLIC PARK
                                 2.47
 COMMERCIAL
                        D
                                         0.20
                                                 0.100
 NATURAL POOR COVER
                                3.55
                                         0.20
                        D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.528
 SUBAREA AREA(ACRES) = 18.61 SUBAREA RUNOFF(CFS) = 33.83 

EFFECTIVE AREA(ACRES) = 57.14 AREA-AVERAGED Fm(INCH/HR) = 0.05 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.26
                       57.1
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.1000
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 28.22
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 106.64
 PIPE TRAVEL TIME(MIN.) = 0.25
                              5 Tc(MIN.) = 21.52
1.00 TO NODE 9.00
                                                9.00 =
                                                        2890.00 FEET.
 LONGEST FLOWPATH FROM NODE
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 870.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.987
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                                   1.000
                                  13.41
                                           0.20
 "OPEN BRUSH"
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 117.42
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.95
 AVERAGE FLOW DEPTH(FEET) = 0.77 TRAVEL TIME(MIN.) = 2.44
 Tc(MIN.) = 23.96
 SUBAREA AREA(ACRES) = 13.41 SUBAREA RUNOFF(CFS) = 21.57
EFFECTIVE AREA(ACRES) = 70.55 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 FLOW VELOCITY(FEET/SEC.) = 6.01
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                               10.00 =
                                                          3760.00 FEET.
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.890
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                   9.71
                                                    1.000
 "OPEN BRUSH"
                                            0.20
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED OSING ESTIMATED TEST, CLS,

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.96

AVERAGE FILOW DEPTH(FEET) = 1.00 TRAVEL TIME(MIN.) = 2.22
 AVERAGE FLOW DEPTH(FEET) = 1.00 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 26.18
 SUBAREA AREA(ACRES) = 9.71 SUBAREA RUNOFF(CFS) = 14.77
EFFECTIVE AREA(ACRES) = 80.26 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                     80.3
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.00 FLOW VELOCITY(FEET/SEC.) = 4.98
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               11.00 =
********************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.824
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
```

```
"OPEN BRUSH" D 3.89 0.20 1
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                          0.20 1.000 83
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.01
 AVERAGE FLOW DEPTH(FEET) = 1.02 TRAVEL TIME(MIN.) = 1.70
 Tc(MIN.) = 27.88
 SUBAREA AREA(ACRES) = 3.89 SUBAREA RUNOFF(CFS) = 5.69
EFFECTIVE AREA(ACRES) = 84.15 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 84.2 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.00 FLOW VELOCITY(FEET/SEC.) = 5.00
                                              12.00 =
 LONGEST FLOWPATH FROM NODE
                           1.00 TO NODE
                                                         4930.00 FEET.
*********************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 11.01 TO NODE 11.02 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.375
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.630
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fρ
                                                    Дp
                                                           SCS
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

COMMERCIAL D 0.19 0.20 0.100 75 5.38

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.79
 TOTAL AREA(ACRES) =
                        0.19 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.02 TO NODE 11.03 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.78
 STREET FLOW TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) =
                                                    7.83
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.742
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                  0.20
0.25
                       D 1.84
D 0.25
                                           0.20 0.850 75
0.20 0.100 75
 PUBLIC PARK
 COMMERCIAL
 NATURAL FAIR COVER
  "OPEN BRUSH"
                         D
                                           0.20
                                                    1.000 83
                                  0.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.816
 SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 8.79
EFFECTIVE AREA(ACRES) = 2.92 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.77
```

NATURAL FAIR COVER

END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.55 FLOW VELOCITY(FEET/SEC.) = 2.57 DEPTH\*VELOCITY(FT\*FT/SEC.) = LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.03 = 450.0 11.01 TO NODE 450.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.03 TO NODE 11.04 IS CODE = 31 \_\_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< \_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.41 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.43PIPE TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.04 = 940.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.04 TO NODE 11.04 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< -----MAINLINE Tc(MIN.) = 9.10\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.436 SUBAREA LOSS RATE DATA(AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.18 0.20 0.100 75
D 1.15 0.20 0.350 75
D 4.75 0.20 0.350 75 LAND USE COMMERCIAL CONDOMINIUMS CONDOMINIUMS SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.308 SUBAREA AREA(ACRES) = 7.08 SUBAREA RUNOFF(CFS) = 21.50

EFFECTIVE AREA(ACRES) = 10.00 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 10.0 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.04 TO NODE 11.05 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-\_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.75 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.13PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 9.87 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.05 = FLOW PROCESS FROM NODE 11.05 TO NODE 11.05 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<> \_\_\_\_\_\_ MAINLINE Tc(MIN.) = 9.87 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.283 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 6.10 0.20 0.350 75 CONDOMINIUMS SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 17.64 EFFECTIVE AREA(ACRES) = 16.10 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41TOTAL AREA(ACRES) = 16.1 PEAK FLOW RATE(CFS) = \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.05 TO NODE 12.00 IS CODE = 31 \_\_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < \_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 910.00 MANNING'S N = 0.013

```
DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.59
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.40
 PIPE TRAVEL TIME(MIN.) = 1.58 Tc(MIN.) = 11.45
LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00
                                                       2250.00 FEET.
                                              12.00 =
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        46.40
        11.45
        3.018
        0.20(0.08)
        0.41
        16.1
        11.01

 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00 = 2250.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 130.59 27.88 1.824 0.20(0.10) 0.50 84.2 1.00
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 4930.00 FEET.
  ** PEAK FLOW RATE TABLE **
  11.01
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 158.12 Tc(MIN.) = 27.878
EFFECTIVE AREA(ACRES) = 100.25 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.48
 TOTAL AREA(ACRES) = 100.2
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
                                              12.00 =
                                                       4930.00 FEET.
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
******************
 FLOW PROCESS FROM NODE 11.06 TO NODE 11.07 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
                                  90.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.011
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.456
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                                     Αp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
CONDOMINIUMS D 1.54 0.20 0.350 75 9.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 4.69
 TOTAL AREA(ACRES) =
                       1.54 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 11.07 TO NODE 11.08 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.50
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER
                                      NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 4.69
PIPE TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 10.38
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.08
                                          11.08 =
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.08 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE TC(MIN.) = 10.38
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.191
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.43 0.20 0.100 75
D 1.14 0.20 0.350 75
D 4.05 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.331
 SUBAREA AREA(ACRES) = 5.62 SUBAREA RUNOFF(CFS) = 15.81

EFFECTIVE AREA(ACRES) = 7.16 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33

TOTAL AREA(ACRES) = 7.2 PEAK FLOW RATE(CFS) = 20.13
*******************
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.09 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.77
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 20.13
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 11.45
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.09
                                           11.09 = 1290.00 FEET.
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.09 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 11.45
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.018
 SUBAREA LOSS RATE DATA(AMC II):
                                       Fp
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.41 0.20 0.100 75
D 1.13 0.20 0.350 75
D 0.62 0.20 0.350 75
D 0.48 0.20 0.350 75
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.311
 SUBAREA AREA(ACRES) = 2.64 SUBAREA RUNOFF(CFS) = 7.02

EFFECTIVE AREA(ACRES) = 9.80 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
                        9.8
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
*****************
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.10 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 730.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.35
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.04
 PIPE TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 12.91
 LONGEST FLOWPATH FROM NODE
                           11.06 TO NODE
                                           11.10 =
                                                    2020.00 FEET.
************************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.91
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.820
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                                Дp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.01 0.20 0.100 75
D 2.10 0.20 0.350 75
D 1.33 0.20 0.350 75
D 7.17 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.328
 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 28.78
EFFECTIVE AREA(ACRES) = 21.41 AREA-AVERAGED Fm(INCH/HR) = 0.07
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) = 21.4 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.11 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
_____
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.03
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 53.08
 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 13.75
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.11
                                          11.11 =
                                                    2530.00 FEET.
*****************
 FLOW PROCESS FROM NODE 11.11 TO NODE 11.11 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TO(MIN.) = 13.75
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.721
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                                Αp
                                       Fρ
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 0.44 0.20 0.100 75
D 6.60 0.20 0.350 75
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.334
 SUBAREA AREA(ACRES) = 7.04 SUBAREA RUNOFF(CFS) = 16.81

EFFECTIVE AREA(ACRES) = 28.45 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                     28.5
                               PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.11 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.63
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 67.97
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 14.13
 LONGEST FLOWPATH FROM NODE
                          11.06 TO NODE
                                        12.00 =
                                                  2770.00 FEET.
*************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 >>>>CONFIJIENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
```

```
NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
         199.38 11.45 3.018 0.20( 0.09) 0.43 73.7
208.56 14.13 2.679 0.20( 0.09) 0.43 87.2
203.84 27.88 1.824 0.20( 0.09) 0.45 128.7
     1
                                                          11.01
                                                              11.06
   TOTAL AREA(ACRES) =
                          128.7
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 208.56 Tc(MIN.) = 14.130
EFFECTIVE AREA(ACRES) = 87.20 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 128.7
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
                                            12.00 = 4930.00 FEET.
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.12
ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 208.56
 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 14.60
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                            20.00 = 5440.00 FEET.
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.60
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.630
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH" D 3.58 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                  1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AVERAGE PERVISOS AREA FRACTION, AP - 1.000
SUBAREA AREA(ACRES) = 3.58

EFFECTIVE AREA(ACRES) = 90.78

AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20

AREA-AVERAGED AP = 0.45

TOTAL AREA(ACRES) = 132.3

PEAK FLOW RATE(CFS) = 208.56
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
*******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00

ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 100.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.373
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.380
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                       D
                                 3.17
                                         0.20
                                                0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 9.53
 TOTAL AREA(ACRES) =
                       3.17 PEAK FLOW RATE(CFS) =
*******************
```

```
FLOW PROCESS FROM NODE
                       14.00 TO NODE 15.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
```

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0500 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.07 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.53PIPE TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 11.67

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 2030.00 FEET.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

\_\_\_\_\_ MAINLINE Tc(MIN.) = 11.67

25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.986 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fρ αA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" B 31.84 0.30 0.200 PUBLIC PARK D 3.71 0.20 0.850 56 PUBLIC PARK 75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.268

SUBAREA AREA(ACRES) = 35.55 SUBAREA RUNOFF(CFS) = 93.26

EFFECTIVE AREA(ACRES) = 38.72 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.26

TOTAL AREA(ACRES) = 38.7 PEAK FLOW RATE(CFS) =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51

>>>>COMPITE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_

CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00 REPRESENTATIVE CHANNEL SLOPE = 0.0400 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000

MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00

\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.887

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" D 11.64 0.20 0.200 NATURAL FAIR COVER A 13.96 0.40 1.000 D 2.65 0.20 0.100 A 1.60 0.40 0.850 "OPEN BRUSH" COMMERCIAL 75 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.600 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 18.07 AVERAGE FLOW DEPTH(FEET) = 1.95 TRAVEL TIME(MIN.) = Tc(MIN.) = 12.38SUBAREA AREA(ACRES) = 29.85 SUBAREA RUNOFF(CFS) = 71.57

EFFECTIVE AREA(ACRES) = 68.57 AREA-AVERAGED Fm(INCH/HR) = 0.14

AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.41

TOTAL AREA(ACRES) = 68.6 PEAK FLOW RATE(CFS) =

END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 2.11 FLOW VELOCITY(FEET/SEC.) = 19.06

LONGEST FLOWPATH FROM NODE 13.00 TO NODE

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.00 TO NODE 16.60 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0050

FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 60.0 INCH PIPE IS 47.7 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 10.14

ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 169.77
PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 12.86
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.60 = 3100.00 FEET.

```
FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.86
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.826
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                                  SCS
                                               Fρ
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.13 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 2.83 EFFECTIVE AREA(ACRES) = 69.70 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 69.7 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE
                           16.10 TO NODE 16.20 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 105.50 DOWNSTREAM(FEET) = 105.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.416
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.759
 SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

CONDOMINIUMS D 1.80 0.20 0.350 75 13.42

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 4.36
TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) =
                                                             4.36
********************
 FLOW PROCESS FROM NODE 16.20 TO NODE 16.30 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.636
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
B 2.42 0.30 0.350 56
B 0.90 0.30 0.100 56
B 1.92 0.30 0.850 56
      LAND USE
 CONDOMINIUMS
  COMMERCIAL
  PUBLIC PARK
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.490
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.92
 AVERAGE FLOW DEPTH(FEET) = 1.32 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 14.54
 SUBAREA AREA(ACRES) = 5.24 SUBAREA RUNOFF(CFS) = 11.74

EFFECTIVE AREA(ACRES) = 7.04 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45
                           7.0
 TOTAL AREA(ACRES) =
                                       PEAK FLOW RATE(CFS) =
         ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
             CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
             ALLOWABLE DEPTH).
             AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
```

ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.

DEPTH(FEET) = 1.50 FLOW VELOCITY(FEET/SEC.) = 7.06 ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.30 =730.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.30 TO NODE 16.40 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-\_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 790.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.48 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.89 PIPE TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 16.10 TO NODE LONGEST FLOWPATH FROM NODE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.40 TO NODE 16.40 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< \_\_\_\_\_\_ MAINLINE Tc(MIN.) = 16.30\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.471 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN B 3.09 0.30 0.100 56 B 2.54 0.30 0.850 56 B 2.54 0.30 0.850 56 COMMERCIAL PUBLIC PARK PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.566 SUBAREA AREA(ACRES) = 8.17 SUBAREA RUNOFF(CFS) = 16.92 EFFECTIVE AREA(ACRES) = 15.21 AREA-AVERAGED Fm(INCH/HR) = 0.15 AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.51 TOTAL AREA(ACRES) = 15.2 PEAK FLOW RATE(CFS) = FLOW PROCESS FROM NODE 16.40 TO NODE 16.50 IS CODE = 31 \_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < -----REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 390.00 MANNING'S N = 0.013DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.84 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 31.77PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 17.04LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.50 = 1910.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 81 \_\_\_\_\_\_ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< MAINLINE Tc(MIN.) = 17.04 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.410 SUBAREA LOSS RATE DATA(AMC II): AREA Fp DEVELOPMENT TYPE/ SCS SOIL GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.85 0.20 0.100 75
D 2.51 0.20 0.350 75 LAND USE COMMERCIAL

\_\_\_\_\_\_

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.244 SUBAREA AREA(ACRES) = 4.36 SUBAREA RUNOFF(CFS) = 9.27

EFFECTIVE AREA(ACRES) = 19.57 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45 TOTAL AREA(ACRES) = 19.6 PEAK FLOW RATE(CFS) =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.50 TO NODE 16.60 IS CODE = 31

\_\_\_\_\_\_

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 950.00 MANNING'S N = 0.013

```
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.4 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 9.39
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                                    NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 40.20
  PIPE TRAVEL TIME(MIN.) = 1.69 Tc(MIN.) = 18.73
LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.60
                                                             16.60 =
                                                                         2860.00 FEET.
  FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 ______
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  MAINLINE Tc(MIN.) = 18.73
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.285
  SUBAREA LOSS RATE DATA(AMC II):
  SUBAREA LOSS RATE DATA(AMC 11).

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
PUBLIC PARK D 2.21 0.20 0.850 75
COMMERCIAL D 2.81 0.20 0.100 75
  PUBLIC PARK
  COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.430
 SUBAREA AREA(ACRES) = 5.02 SUBAREA RUNOFF(CFS) = 9.93

EFFECTIVE AREA(ACRES) = 24.59 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.45
  TOTAL AREA(ACRES) = 24.6
                                            PEAK FLOW RATE(CFS) =
*********************
  FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        47.92
        18.73
        2.285
        0.27(0.12)
        0.45
        24.6
        16.10

        LONGEST
        FLOWPATH FROM NODE
        16.10
        TO NODE
        16.50
        =
        2860.00
        FEET.

  ** MEMORY BANK # 1 CONFLUENCE DATA **
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 169.77 12.86 2.826 0.33(0.13) 0.40 69.7 13.00

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.50 = 3100.00 FEET.
  ** PEAK FLOW RATE TABLE **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        210.92
        12.86
        2.826
        0.32(0.13)
        0.41
        86.6
        13.00

        2
        183.55
        18.73
        2.285
        0.31(0.13)
        0.42
        94.3
        16.10

    TOTAL AREA(ACRES) =
                                  94.3
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 210.92 Tc(MIN.) = 12.862
EFFECTIVE AREA(ACRES) = 86.59 AREA-AVERAGED Fm(INCH/HR) = 0.13
  AREA-AVERAGED Fp(INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 94.3
  LONGEST FLOWPATH FROM NODE
                                      13.00 TO NODE
                                                             16.50 =
                                                                         3100.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
**************************
 FLOW PROCESS FROM NODE 16.50 TO NODE 17.00 IS CODE = 31
 ______
  >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
  >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
  REPRESENTATIVE SLOPE = 0.0050
  FLOW LENGTH(FEET) = 1230.00 MANNING'S N = 0.013
  DEPTH OF FLOW IN 66.0 INCH PIPE IS 50.7 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 10.78
ESTIMATED PIPE DIAMETER(INCH) = 66.00
                                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 210.92

PIPE TRAVEL TIME(MIN.) = 1.90 Tc(MIN.) = 14.76

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 17.00
                                                             17.00 = 4330.00 FEET.
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
```

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

```
______
 MAINLINE Tc(MIN.) = 14.76
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.614
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                                  Αp
                                        Fρ
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                 8.07
                                          0.40
 RESIDENTIAL
                        Α
                            6.11 0.40
3.62 0.40
                                                0.200
0.100
 "11+ DWELLINGS/ACRE"
                                                           32
 COMMERCIAL
                         Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.542
 SUBAREA AREA(ACRES) = 17.80 SUBAREA RUNOFF(CFS) = 38.39 EFFECTIVE AREA(ACRES) = 104.39 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.34 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 112.1
                                 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHEAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 60.0 INCH PIPE IS 46.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.30
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 231.84
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 15.08
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                             18.00 =
                                                       4600.00 FEET.
************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
       .____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.08
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.583
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                   Αp
                                                         SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                 2.09
                                         0.40
                                                  1.000
                         Α
 NATURAL POOR COVER
                                                 1.000
                                  4.65
 "BARREN"
                                          0.40
                                                           78
                        Α
 COMMERCIAL
                                  2.82
                                          0.40
                                                   0.100
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 13.94 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 "11+ DWELLINGS/ACRE"
                                                 0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA AREA(ACRES) = 23.50 SUBAREA RUNOFF(CFS) = 51.09
EFFECTIVE AREA(ACRES) = 127.89 AREA-AVERAGED FM(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 135.6
                                PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.478
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                   αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                 2.68
                                          0.40
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        Α
                                         0.40
                                 9.73
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 293.02
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.87
 AVERAGE FLOW DEPTH(FEET) = 0.90 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 16.22
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 26.01 EFFECTIVE AREA(ACRES) = 140.30 AREA-AVERAGED Fm(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) = 0.15
```

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 148.0 PEAK FLOW RATE(CFS) = 293.95 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.90 FLOW VELOCITY(FEET/SEC.) = 8.90 19.00 = 5210.00 FEET. LONGEST FLOWPATH FROM NODE 13.00 TO NODE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51 \_\_\_\_\_\_ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.299 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME COMPUTED USING ESTIMATED LEGALCETY (FEET/SEC.) = 2.62
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.62 AVERAGE FLOW DEPTH(FEET) = 0.84 TRAVEL TIME(MIN.) = Tc(MIN.) = 18.52SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 3.21

EFFECTIVE AREA(ACRES) = 141.88 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.42

TOTAL AREA(ACRES) = 149.6 PEAK FLOW RATE(CFS) = 293.95 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.84 FLOW VELOCITY(FEET/SEC.) = 2.62 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5570.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY< \_\_\_\_\_\_ NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 293.95 18.52 2.299 0.35(0.15) 0.42 141.9 13.00
2 256.41 24.65 1.956 0.35(0.15) 0.42 149.6 16.10
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5570.00 FRET \*\* MAIN STREAM CONFLUENCE DATA \*\* \*\* MEMORY BANK # 3 CONFLUENCE DATA \*\* CUDEVM En/Em)

| SIREAM  | Q          | 10        | Incensicy | rp(rm)      | Ap    | Ae      | HEADWAIER   |
|---------|------------|-----------|-----------|-------------|-------|---------|-------------|
| NUMBER  | (CFS)      | (MIN.)    | (INCH/HR) | (INCH/HR)   |       | (ACRES) | NODE        |
| 1       | 199.38     | 11.92     | 2.950     | 0.20( 0.09) | 0.45  | 77.3    | 11.01       |
| 2       | 208.56     | 14.60     | 2.630     | 0.20( 0.09) | 0.45  | 90.8    | 11.06       |
| 3       | 204.03     | 28.35     | 1.807     | 0.20( 0.09) | 0.46  | 132.3   | 1.00        |
| LONGEST | FLOWPATH F | FROM NODE | 1.00      | ) TO NODE   | 20.00 | = 544   | 40.00 FEET. |
|         |            |           |           |             |       |         |             |

## \*\* DEAK FLOW RATE TABLE \*\*

| LDAK   | I LOW ICHIL | TADLI  |           |             |      |         |           |
|--------|-------------|--------|-----------|-------------|------|---------|-----------|
| STREAM | Q           | Tc     | Intensity | Fp(Fm)      | Аp   | Ae      | HEADWATER |
| NUMBER | (CFS)       | (MIN.) | (INCH/HR) | (INCH/HR)   |      | (ACRES) | NODE      |
| 1      | 445.86      | 11.92  | 2.950     | 0.28( 0.12) | 0.44 | 168.6   | 11.01     |
| 2      | 475.99      | 14.60  | 2.630     | 0.28( 0.12) | 0.43 | 202.6   | 11.06     |
| 3      | 501.22      | 18.52  | 2.299     | 0.29( 0.12) | 0.44 | 244.5   | 13.00     |
| 4      | 461.66      | 24.65  | 1.956     | 0.28( 0.12) | 0.44 | 270.7   | 16.10     |
| 5      | 439.33      | 28.35  | 1.807     | 0.27( 0.12) | 0.44 | 281.9   | 1.00      |
| TOTAL  | AREA (ACRES | 5) =   | 281.9     |             |      |         |           |
|        |             |        |           |             |      |         |           |

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 501.22 Tc(MIN.) = 18.518

EFFECTIVE AREA(ACRES) = 244.49 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 281.9

5570.00 FEET. LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12

>>>>CLEAR MEMORY BANK # 3 <<<< \_\_\_\_\_\_\_

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.115 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" A 11.87 0.40 0.200 NATURAL FAIR COVER "OPEN BRUSH" D 5.63 0.20 1.000 COMMERCIAL A 1.56 0.40 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.428 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 518.41 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.24 AVERAGE FLOW DEPTH(FEET) = 1.18 TRAVEL TIME(MIN.) = 2.93 Tc(MIN.) = 21.45SUBAREA AREA(ACRES) = 19.06 SUBAREA RUNOFF(CFS) = 34.36 EFFECTIVE AREA(ACRES) = 263.55 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 300.9 PEAK FLOW RATE(CFS) = NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 21.00 = 6140.00 FEET. FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.960 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.73 0.40 0.100 32 COMMERCIAL NATURAL FAIR COVER 0.20 1.000 "OPEN BRUSH" D 4.03 83 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.730 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.22
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 3.10 AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = Tc(MIN.) = 24.56SUBAREA AREA(ACRES) = 5.76 SUBAREA RUNOFF(CFS) = 9.37 EFFECTIVE AREA(ACRES) = 269.31 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 306.7 PEAK FLOW RATE(CFS) = NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21 13.00 TO NODE 22.00 = LONGEST FLOWPATH FROM NODE 6740.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.862 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" A 3.62 0.40 0.200

```
NATURAL FAIR COVER
                       D 4.01 0.20 1.000
A 1.68 0.40 0.100
   "OPEN BRIISH"
                                                                                              83
  COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.527
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.22
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 2.33
  Tc(MIN.) = 26.88
  SUBAREA AREA(ACRES) = 9.31 SUBAREA RUNOFF(CFS) = 14.56 EFFECTIVE AREA(ACRES) = 278.62 AREA-AVERAGED Fm(INCH/HR) = 0.12
  AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 316.0 PEAK FLOW RATE(CFS) = 501.22
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7190.00 FEET.
______
  END OF STUDY SUMMARY:
  TUTAL AREA(ACRES) = 316.0 TC(MIN.) = 26.88

EFFECTIVE AREA(ACRES) = 278.62 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.444

PEAK FLOW RATE(CFS) = 501.22
  TOTAL AREA(ACRES) =
                                           316.0 \text{ TC}(MIN.) =
                                                                          26.88
  ** PEAK FLOW RATE TABLE **
  ** PEAK FLOW RATE TABLE **

STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 445.86 20.63 2.163 0.27(0.12) 0.45 202.7 11.01

2 475.99 23.11 2.028 0.27(0.12) 0.44 236.8 11.06

3 501.22 26.88 1.862 0.28(0.12) 0.44 278.6 13.00

4 461.66 33.27 1.650 0.27(0.12) 0.45 304.8 16.10

5 439.33 37.15 1.550 0.27(0.12) 0.45 316.0 1.00
                                                                                               11.01
                                                                                                   11.06
                                                                                                  13.00
                                                                                                   1.00
______
```

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

## Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P025 B.DAT
 TIME/DATE OF STUDY: 09:36 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.841
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.86
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58
  STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 10.44
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.180
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Аp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.79
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.34
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) = 0.64 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FEE
                                                52.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 9.41
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.14
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71
STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 13.56
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                                                        Дp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 1.76
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 9.84
 FLOW VELOCITY (FEET/SEC.) = 2.19 DEPTH*VELOCITY (FT*FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                53.00 = 1050.00 FEET.
******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 16.63
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.443
  SUBAREA LOSS RATE DATA(AMC II):
                  E DATA (APIC 11).

E/ SCS SOIL AREA FP AP SCS

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 6.76 0.20 0.100 75
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 14.74

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.16
 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 _______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.73
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 19.70
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.220
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 14.77

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.38
 FLOW VELOCITY(FEET/SEC.) = 3.42 DEPTH*VELOCITY(FT*FT/SEC.) = 1.92
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                            33.26
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.57
    HALFSTREET FLOOD WIDTH(FEET) = 22.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.96
  STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) =
                                                        22.12
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.079
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 2.72 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.54
 FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY(FT*FT/SEC.) = 1.95 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.20
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.69
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.26
 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 24.74 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.951
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fp
                                                          Аp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 75
      LAND USE
  COMMERCIAL
                                                        0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 21.34
EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                            29.9
                                       PEAK FLOW RATE(CFS) =
                                                                  51.90
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.07
 FLOW VELOCITY(FEET/SEC.) = 3.85 DEPTH*VELOCITY(FT*FT/SEC.) = 2.49 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                    57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) = 33.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.55 Tc(MIN.) = 27.29
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.846
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 64.38 EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 36.44
 FLOW VELOCITY(FEET/SEC.) = 4.91 DEPTH*VELOCITY(FT*FT/SEC.) = 3.90
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 112.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.84
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 113.45
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) =
                                           28.36
 LONGEST FLOWPATH FROM NODE
                            50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 28.36
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.806
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 18.39
EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                     81.0
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.34
ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 129.35
```

```
PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 29.15
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                      5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                        60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 29.15
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.779
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 13.88 0.20 0.100 75
 SUBAREA LOSS RATE DATA(AMC II):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                         D
                                 4.45
                                          0.20
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.124
 SUBAREA AREA(ACRES) = 18.33 SUBAREA RUNOFF(CFS) = 28.93

EFFECTIVE AREA(ACRES) = 99.35 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                    99.4
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 940.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.719
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                        D 24.16 0.20
D 4.43 0.20
                                                 1.000
0.350
 "OPEN BRUSH"
                                                           83
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.899
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 176.08
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.73
 AVERAGE FLOW DEPTH(FEET) = 1.10 TRAVEL TIME(MIN.) = 1.79
 Tc(MIN.) = 30.94
 SUBAREA AREA(ACRES) = 28.59 SUBAREA RUNOFF(CFS) = 39.61 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) =
                     127.9
                                    PEAK FLOW RATE(CFS) =
                                                           190.59
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) =
                                               8.99
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 = 6190.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                           127.9 \text{ TC}(MIN.) =
 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.321
PEAK FLOW RATE(CFS) = 190.59
______
______
```

END OF RATIONAL METHOD ANALYSIS

## Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P025 C.DAT
 TIME/DATE OF STUDY: 09:37 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                             108.00 DOWNSTREAM(FEET) = 106.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.003
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.693
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Ap
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                              1.53
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 3.43
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 12.85
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.97
 STREET FLOW TRAVEL TIME(MIN.) = 2.36 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.466
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
                          D
                                  4.73
                                            0.20
  "BARREN"
                                                     1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.73 SUBAREA RUNOFF(CFS) = 9.65
EFFECTIVE AREA(ACRES) = 6.26 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.43
 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 1.21 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                         650.00 FEET.
************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 360.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.02
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.77
PIPE TRAVEL TIME(MIN.) = 0.86 Tc(MIN.) = 17.21
 LONGEST FLOWPATH FROM NODE
                            80.00 TO NODE
                                              83.00 = 1010.00 FEET.
 FLOW PROCESS FROM NODE 83.00 TO NODE 83.00 IS CODE = 81
     _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.21
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.396
 SUBAREA LOSS RATE DATA(AMC II):
                                         Fp
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                                     qД
                                                            SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 2.81 0.20 0.100 75
D 2.09 0.20 0.350 75
D 3.05 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.262
 SUBAREA AREA(ACRES) = 7.95 SUBAREA RUNOFF(CFS) = 16.77
EFFECTIVE AREA(ACRES) = 14.21 AREA-AVERAGED Fm(INCH/HR) = 0.12
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 14.2
                                  PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.42
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 29.14
 PIPE TRAVEL TIME(MIN.) = 0.49
                             49 Tc(MIN.) = 17.71
80.00 TO NODE 84.0
 LONGEST FLOWPATH FROM NODE
                                               84.00 = 1260.00 FEET.
*******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 84.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TC(MIN.) = 17.71
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.358
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
SUBAREA LOSS RATE DATA(AMC II):
  CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.256
 SUBAREA AREA(ACRES) = 1.94 SUBAREA RUNOFF(CFS) = 4.03
EFFECTIVE AREA(ACRES) = 16.15 AREA-AVERAGED Fm(INCH/HR) = 0.11
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.55
                    16.1
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.88
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 32.68
 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) = 18.05
 LONGEST FLOWPATH FROM NODE
                           80.00 TO NODE
                                           85.00 =
                                                    1440.00 FEET.
************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 85.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.05
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.333
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.32 0.20 0.100 75
D 2.49 0.20 0.350 75
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.322
 SUBAREA AREA(ACRES) = 2.81 SUBAREA RUNOFF(CFS) = 5.74

EFFECTIVE AREA(ACRES) = 18.96 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) =
                      19.0
                                PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 86.00 IS CODE = 31
      _____
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 340.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.05
 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 18.67
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                           86.00 = 1780.00 FEET.
 FLOW PROCESS FROM NODE 86.00 TO NODE 86.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.67
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.288
 SUBAREA LOSS RATE DATA(AMC II):
                                       Fp
                               AREA
  DEVELOPMENT TYPE/ SCS SOIL
                                                 Аp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 3.14 0.20 0.350 75
COMMERCIAL D 0.62 0.20 0.100 75
PUBLIC PARK D 1.37 0.20 0.850 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.453
 SUBAREA AREA(ACRES) = 5.13 SUBAREA RUNOFF(CFS) = 10.15
EFFECTIVE AREA(ACRES) = 24.09 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 24.1 PEAK FLOW RATE(CFS) =
********************
```

FLOW PROCESS FROM NODE 86.00 TO NODE 87.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.61
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.44
 PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 19.77
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                              87.00 = 2410.00 FEET.
 FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.77
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.216
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.51 0.20 0.350 75
D 1.12 0.20 0.100 75
      LAND USE
 CONDOMINIUMS
 COMMERCIAL
 NATURAL FAIR COVER
                         D
                                  0.43
  "OPEN BRUSH"
                                           0.20
                                                   1.000 83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 5.06 SUBAREA RUNOFF(CFS) = 9.77

EFFECTIVE AREA(ACRES) = 29.15 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) = 29.1 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 87.00 TO NODE 88.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.10
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 55.64
 PIPE TRAVEL TIME(MIN.) = 0.46
                                Tc(MIN.) = 20.23
                                                       2690.00 FEET.
 LONGEST FLOWPATH FROM NODE
                             80.00 TO NODE
                                              88.00 =
********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.23
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.187
 SUBAREA LOSS RATE DATA(AMC II):
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.34 0.20 0.350 75
D 0.48 0.20 0.100 75
D 2.16 0.20 0.350 77
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                          Fр
                                                     Аp
     LAND USE
 CONDOMINIUMS
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.335
 SUBAREA AREA(ACRES) = 7.98 SUBAREA RUNOFF(CFS) = 15.22 EFFECTIVE AREA(ACRES) = 37.13 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                       37.1
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 89.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.68
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 70.11
PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 20.65
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 89.00 = 2960.00 FEET.
```

```
FLOW PROCESS FROM NODE 89.00 TO NODE 89.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.65
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.161
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                                   SCS
                                     Fρ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 2.41 0.20 0.350
D 2.55 0.20 0.100
 CONDOMINIUMS
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.221
 SUBAREA AREA(ACRES) = 4.96 SUBAREA RUNOFF(CFS) = 9.45
EFFECTIVE AREA(ACRES) = 42.09 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
                 42.1
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 89.00 TO NODE 97.00 IS CODE = 31
     _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 560.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.08
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 78.71
 PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        80.00 TO NODE 97.00 = 3520.00 FEET.
******************
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21
     -----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            108.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.392
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                                  Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Ap SCS Tc
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
ERCIAL D 0.88 0.20 0.100 75 9.31
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                     2.67
 TOTAL AREA(ACRES) =
                   0.88 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 260.00
                           CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
```

STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

```
STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 9.28
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.13
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70
 STREET FLOW TRAVEL TIME(MIN.) = 2.03 Tc(MIN.) = 11.35
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.034
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.06 0.20 0.100 75
  DEVELOPMENT TYPE/
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.88

EFFECTIVE AREA(ACRES) = 1.94 AREA-AVERAGED FM(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.43
 FLOW VELOCITY(FEET/SEC.) = 2.26 DEPTH*VELOCITY(FT*FT/SEC.) = 0.79
 LONGEST FLOWPATH FROM NODE
                            90.00 TO NODE
                                           92.00 =
                                                     560.00 FEET.
************************
 FLOW PROCESS FROM NODE 92.00 TO NODE 93.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) =
                              5.62
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.26
PIPE TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 13.21
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
*********************
 FLOW PROCESS FROM NODE 93.00 TO NODE 93.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.21
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.783
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                        D 5.84 0.20 0.350
D 2.34 0.20 0.100
D 8.66 0.20 0.350
 CONDOMINIUMS
                                                          75
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.315
 SUBAREA AREA(ACRES) = 16.84 SUBAREA RUNOFF(CFS) = 41.22 EFFECTIVE AREA(ACRES) = 18.78 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) = 18.8
                               PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 93.00 TO NODE 94.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.58
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.04
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 13.63
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
                                           94.00 = 1430.00 FEET.
*************************
 FLOW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 13.63
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.734
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                  Яp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.80 0.20 0.850 75
     LAND USE
 PUBLIC PARK
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.800
 SUBAREA AREA(ACRES) = 4.07 SUBAREA RUNOFF(CFS) = 9.43

EFFECTIVE AREA(ACRES) = 22.85 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
                      22.9
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
********************
                       94.00 TO NODE 95.00 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 54.65
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) =
                                          13.95
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                           95.00 =
                                                    1620.00 FEET.
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 95.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.95
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.699
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
    LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 0.20 0.20 0.100
D 2.24 0.20 0.350
 COMMERCIAL
                                                        75
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.330
 SUBAREA AREA(ACRES) = 2.44 SUBAREA RUNOFF(CFS) = 5.78 EFFECTIVE AREA(ACRES) = 25.29 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                      25.3
                                PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 96.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.18
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 59.71
 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 14.45
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                          96.00 =
 FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 14.45
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.645
 SUBAREA LOSS RATE DATA(AMC II):
                                     Fp Ap
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       SCS
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.07 0.20 0.850 75
     LAND USE
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 5.07 SUBAREA RUNOFF(CFS) = 11.29 

EFFECTIVE AREA(ACRES) = 30.36 AREA-AVERAGED Fm(INCH/HR) = 0.09 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.46
                      30.4
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 96.00 TO NODE 97.00 IS CODE = 31
 ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013
```

0.20

0.100 75

0.27

D

```
DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.67
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                            NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 69.78
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 14.81
LONGEST FLOWPATH FROM NODE 90.00 TO NODE 97.00
                                                     97.00 =
                                                               2160.00 FEET.
  FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 11
 ______
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        69.78
        14.81
        2.609
        0.20(0.09)
        0.46
        30.4
        90.00

  LONGEST FLOWPATH FROM NODE 90.00 TO NODE 97.00 = 2160.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 78.71 21.49 2.113 0.20(0.08) 0.42 42.1 80.00 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 97.00 = 3520.00 FEET.
  ** PEAK FLOW RATE TABLE **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 137.27 14.81 2.609 0.20(0.09) 0.44 59.4 90.00
2 134.75 21.49 2.113 0.20(0.09) 0.43 72.4 80.00
                                                                          80.00
    TOTAL AREA(ACRES) =
                               72.4
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 137.27 Tc(MIN.) = 14.813
EFFECTIVE AREA(ACRES) = 59.37 AREA-AVERAGED Fm(INCH/HR) = 0.09
  AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
  TOTAL AREA(ACRES) = 72.4
                                                     97.00 = 3520.00 FEET.
                                 80.00 TO NODE
  LONGEST FLOWPATH FROM NODE
  FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 97.00 TO NODE 98.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
  REPRESENTATIVE SLOPE = 0.0100
  FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
  DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.4 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 12.69
                                            NUMBER OF PIPES = 1
  ESTIMATED PIPE DIAMETER(INCH) = 51.00
  PIPE-FLOW(CFS) = 137.27
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 15.18
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 98.00
                                                     98.00 =
                                                                 3800.00 FEET.
******************
 FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 81
       ______
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 15.18
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.573
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                      AREA
                                                            Ap
                                                 Fρ
                           GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                                      22.13
                                                0.20
  "OPEN BRUSH"
  NATURAL POOR COVER
  "BARREN"
                              D
                                       9.76
                                                 0.20
                                                            1.000
                                                                      93
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 31.89 SUBAREA RUNOFF(CFS) = 68.10

EFFECTIVE AREA(ACRES) = 91.26 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.63

TOTAL AREA(ACRES) = 104.3 PEAK FLOW RATE(CFS) = 200.88
______
  END OF STUDY SUMMARY:
                       = 104.3 TC(MIN.) = 15.18
 TOTAL AREA(ACRES)
```

EFFECTIVE AREA(ACRES) = 91.26 AREA-AVERAGED Fm(INCH/HR) = 0.13
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.634
PEAK FLOW RATE(CFS) = 200.88

| ** PEAK  | FLOW RATE | TABLE ** | ŧ         |             |       |         |           |
|----------|-----------|----------|-----------|-------------|-------|---------|-----------|
| STREAM   | Q         | Tc       | Intensity | Fp(Fm)      | Аp    | Ae      | HEADWATER |
| NUMBER   | (CFS)     | (MIN.)   | (INCH/HR) | (INCH/HR)   |       | (ACRES) | NODE      |
| 1        | 200.88    | 15.18    | 2.573     | 0.20( 0.13) | 0.63  | 91.3    | 90.00     |
| 2        | 185.08    | 21.87    | 2.092     | 0.20( 0.12) | 0.61  | 104.3   | 80.00     |
| ======== | =======   |          | ========  |             | ===== | ======= | ========  |

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

iii. HC 10-Year Storm Event

## Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P010 A.DAT
 TIME/DATE OF STUDY: 09:37 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                             106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                              0.68
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 1.82
 TOTAL AREA(ACRES) =
                     0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.53
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.51
  STREET FLOW TRAVEL TIME(MIN.) = 3.27 Tc(MIN.) = 11.64
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.502
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  "11+ DWELLINGS/ACRE"
                          D
                                                        0.200
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 2.50
EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.82
 FLOW VELOCITY(FEET/SEC.) = 1.62 DEPTH*VELOCITY(FT*FT/SEC.) = 0.58
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 14.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.77
  STREET FLOW TRAVEL TIME(MIN.) = 2.33 Tc(MIN.) = 13.97
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.253
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 6.75

EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.37
 FLOW VELOCITY(FEET/SEC.) = 2.00 DEPTH*VELOCITY(FT*FT/SEC.) = 0.91 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 800.00 FE
                                                   4.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         16.29
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 19.65
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15
 STREET FLOW TRAVEL TIME(MIN.) = 2.31 Tc(MIN.) =
                                                    16.28
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.064
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                   6.51
                                                    0.200
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 11.86 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.91
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.32 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 28.36
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.49
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.55
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.53
STREET FLOW TRAVEL TIME(MIN.) = 2.87 Tc(MIN.) = 19.15
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.881
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 14.05

EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.13
 FLOW VELOCITY(FEET/SEC.) = 2.66 DEPTH*VELOCITY(FT*FT/SEC.) = 1.67 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
*******************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) = 31.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.90
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.03
STREET FLOW TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) =
                                                  21.22
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.773
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                          Fρ
                                                   Αp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 18.43 0.20 0.100 75
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 29.08 EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.63
 FLOW VELOCITY(FEET/SEC.) = 3.16 DEPTH*VELOCITY(FT*FT/SEC.) = 2.34
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 47.0 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                            7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.42
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   60.59
 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) =
                                            21.90
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
********************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.90
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.741
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                                          SCS
                                          Fρ
    LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                        D 6.24 0.20 0.100
D 6.35 0.20 0.850
 COMMERCIAL
                                                            75
 PUBLIC PARK
                                 2.47
 COMMERCIAL
                         D
                                         0.20
                                                  0.100
 NATURAL POOR COVER
                                 3.55
                                         0.20
                         D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.528
 SUBAREA AREA(ACRES) = 18.61 SUBAREA RUNOFF(CFS) = 27.40 

EFFECTIVE AREA(ACRES) = 57.14 AREA-AVERAGED Fm(INCH/HR) = 0.05 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.26
                       57.1
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.1000
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 26.56
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 86.88
                              7 	 Tc(MIN.) = 22.17
1.00 TO NODE 9.0
 PIPE TRAVEL TIME(MIN.) = 0.27
 LONGEST FLOWPATH FROM NODE
                                                9.00 = 2890.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 870.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.621
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                                   1.000
                                  13.41
                                           0.20
 "OPEN BRUSH"
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    95.46
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.50
 AVERAGE FLOW DEPTH(FEET) = 0.68 TRAVEL TIME(MIN.) = 2.64
 Tc(MIN.) = 24.81
 SUBAREA AREA(ACRES) = 13.41 SUBAREA RUNOFF(CFS) = 17.15
EFFECTIVE AREA(ACRES) = 70.55 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.69 FLOW VELOCITY(FEET/SEC.) = 5.52
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                               10.00 =
                                                          3760.00 FEET.
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.538
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                   9.71
                                                    1.000
 "OPEN BRUSH"
                                            0.20
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED USING ESTIMATED FRONCES,

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.58

TRAVEL TIME THRU SUBAREA BASED ON TRAVEL TIME(MIN.) = 2.40
 AVERAGE FLOW DEPTH(FEET) = 0.87 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 27.21
 SUBAREA AREA(ACRES) = 9.71 SUBAREA RUNOFF(CFS) = 11.69
EFFECTIVE AREA(ACRES) = 80.26 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                     80.3
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.88 FLOW VELOCITY(FEET/SEC.) = 4.58
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               11.00 =
********************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.481
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
```

```
"OPEN BRUSH" D 3.89 0.20 1
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                          0.20 1.000 83
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.62
 AVERAGE FLOW DEPTH(FEET) = 0.89 TRAVEL TIME(MIN.) = 1.84
 Tc(MIN.) = 29.05
 SUBAREA AREA(ACRES) = 3.89 SUBAREA RUNOFF(CFS) = 4.49

EFFECTIVE AREA(ACRES) = 84.15 AREA-AVERAGED Fm(INCH/HR) = 0.10

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 84.2 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.88 FLOW VELOCITY(FEET/SEC.) = 4.59
 LONGEST FLOWPATH FROM NODE
                           1.00 TO NODE
                                              12.00 =
                                                         4930.00 FEET.
*********************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 11.01 TO NODE 11.02 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.375
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.895
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fρ
                                                    Дp
                                                           SCS
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

COMMERCIAL D 0.19 0.20 0.100 75 5.38

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.66
 TOTAL AREA(ACRES) =
                        0.19 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.02 TO NODE 11.03 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.15
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.72
 STREET FLOW TRAVEL TIME(MIN.) = 2.55 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.117
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                  0.20
0.25
                       D 1.84
D 0.25
                                           0.20 0.850 75
0.20 0.100 75
 PUBLIC PARK
 COMMERCIAL
 NATURAL FAIR COVER
  "OPEN BRUSH"
                         D
                                           0.20
                                                    1.000 83
                                  0.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.816
 SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 7.26
EFFECTIVE AREA(ACRES) = 2.92 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.77
```

NATURAL FAIR COVER

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 HALFSTREET FLOOD WIDTH(FEET) = 12.54
 FLOW VELOCITY(FEET/SEC.) = 2.44 DEPTH*VELOCITY(FT*FT/SEC.) = 0.94 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.03 = 450.00 FE
                           11.01 TO NODE
                                                      450.00 FEET.
************************
 FLOW PROCESS FROM NODE 11.03 TO NODE 11.04 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.24
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 7.79
 PIPE TRAVEL TIME(MIN.) = 1.31 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            11.01 TO NODE
                                            11.04 =
                                                      940.00 FEET.
********************
 FLOW PROCESS FROM NODE 11.04 TO NODE 11.04 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 9.24
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.856
 SUBAREA LOSS RATE DATA(AMC II):
                                       Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.18 0.20 0.100 75
D 1.15 0.20 0.350 75
D 4.75 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.308
 SUBAREA AREA(ACRES) = 7.08 SUBAREA RUNOFF(CFS) = 17.80

EFFECTIVE AREA(ACRES) = 10.00 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                      10.0
                                PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 11.04 TO NODE 11.05 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.29
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 24.90
 PIPE TRAVEL TIME(MIN.) = 0.80 Tc(MIN.) = 10.04
 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.05 =
 FLOW PROCESS FROM NODE 11.05 TO NODE 11.05 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 10.04
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.722
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 6.10 0.20 0.350 75
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 14.56 

EFFECTIVE AREA(ACRES) = 16.10 AREA-AVERAGED Fm(INCH/HR) = 0.08 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                      16.1
                                 PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 11.05 TO NODE 12.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
```

FLOW LENGTH(FEET) = 910.00 MANNING'S N = 0.013

```
DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.26
 PIPE TRAVEL TIME(MIN.) = 1.68 Tc(MIN.) = 11.72
LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00
                                                       2250.00 FEET.
                                              12.00 =
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        38.26
        11.72
        2.492
        0.20(0.08)
        0.41
        16.1
        11.01

 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00 = 2250.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 104.65 29.05 1.481 0.20(0.10) 0.50 84.2 1.00
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 4930.00 FEET.
  ** PEAK FLOW RATE TABLE **
  11.01
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 126.87 Tc(MIN.) = 29.048
EFFECTIVE AREA(ACRES) = 100.25 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.48
 TOTAL AREA(ACRES) = 100.2
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
                                               12.00 =
                                                       4930.00 FEET.
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
******************
 FLOW PROCESS FROM NODE 11.06 TO NODE 11.07 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
                                  90.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.011
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.897
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                                     Αp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
CONDOMINIUMS D 1.54 0.20 0.350 75 9.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 3.92
 TOTAL AREA(ACRES) =
                       1.54 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 11.07 TO NODE 11.08 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.30
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 3.92

PIPE TRAVEL TIME(MIN.) = 1.42 Tc(MIN.) = 10.43

LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.08
                                           11.08 =
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.08 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE TC(MIN.) = 10.43
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.664
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS
                                        Fρ
                                                  αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.43 0.20 0.100 75
D 1.14 0.20 0.350 75
D 4.05 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.331
 SUBAREA AREA(ACRES) = 5.62 SUBAREA RUNOFF(CFS) = 13.14

EFFECTIVE AREA(ACRES) = 7.16 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33

TOTAL AREA(ACRES) = 7.2 PEAK FLOW RATE(CFS) = 16.74
********************
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.09 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.55
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 16.74
 PIPE TRAVEL TIME(MIN.) = 1.10
LONGEST FLOWPATH FROM NODE 1
                          10 Tc(MIN.) = 11.53
11.06 TO NODE 11.09
                                           11.09 = 1290.00 FEET.
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.09 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 11.53
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.515
 SUBAREA LOSS RATE DATA(AMC II):
                               AREA
                                       Fp
  DEVELOPMENT TYPE/ SCS SOIL
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.41 0.20 0.100 75
D 1.13 0.20 0.350 75
D 0.62 0.20 0.350 75
D 0.48 0.20 0.350 75
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.311
 SUBAREA AREA(ACRES) = 2.64 SUBAREA RUNOFF(CFS) = 5.83

EFFECTIVE AREA(ACRES) = 9.80 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
                        9.8
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.10 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 730.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.08
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.60
 PIPE TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 13.04
 LONGEST FLOWPATH FROM NODE
                           11.06 TO NODE
                                           11.10 =
                                                    2020.00 FEET.
************************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.04
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.344
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                                Дp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.01 0.20 0.100 75
D 2.10 0.20 0.350 75
D 1.33 0.20 0.350 75
D 7.17 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.328
 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 23.81
EFFECTIVE AREA(ACRES) = 21.41 AREA-AVERAGED Fm(INCH/HR) = 0.07
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) = 21.4 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.11 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
_____
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.52
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 43.90
 PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) = 13.93
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.11
                                          11.11 =
                                                    2530.00 FEET.
******************
 FLOW PROCESS FROM NODE 11.11 TO NODE 11.11 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TO(MIN.) = 13.93
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.257
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                                Αp
                                       Fρ
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 0.44 0.20 0.100 75
D 6.60 0.20 0.350 75
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.334
 SUBAREA AREA(ACRES) = 7.04 SUBAREA RUNOFF(CFS) = 13.88

EFFECTIVE AREA(ACRES) = 28.45 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                     28.5
                               PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.11 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.11
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 56.10
 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 14.33
 LONGEST FLOWPATH FROM NODE 11.06 TO NODE
                                        12.00 =
                                                  2770.00 FEET.
*************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 >>>>CONFIJIENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
```

```
NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
          163.03 11.72 2.492 0.20( 0.08) 0.42 73.3
169.79 14.33 2.221 0.20( 0.08) 0.42 86.0
163.71 29.05 1.481 0.20( 0.09) 0.45 128.7
     1
                                                            11.01
                                                               11.06
1.00
   TOTAL AREA(ACRES) =
                          128.7
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 169.79 Tc(MIN.) = 14.325

EFFECTIVE AREA(ACRES) = 86.05 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) = 128.7
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                             12.00 = 4930.00 FEET.
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 17.31
ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 169.79
 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 14.82
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                             20.00 = 5440.00 FEET.
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.82
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.178
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH" D 3.58 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                         D
                                          0.20
                                                    1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap - 1.000
SUBAREA AREA(ACRES) = 3.58
SUBAREA RUNOFF(CFS) = 6.37
EFFECTIVE AREA(ACRES) = 89.63
AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20
AREA-AVERAGED Ap = 0.45
TOTAL AREA(ACRES) = 132.3
PEAK FLOW RATE(CFS) = 169.79
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
*******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00

ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 100.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.373
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.832
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                       D
                                  3.17
                                          0.20
                                                 0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 7.97
 TOTAL AREA(ACRES) =
                       3.17 PEAK FLOW RATE(CFS) =
*******************
```

```
FLOW PROCESS FROM NODE
                      14.00 TO NODE 15.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0500 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.2 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 11.58 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 7.97

PIPE TRAVEL TIME(MIN.) = 2.39 Tc(MIN.) = 11.76

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 2030.00 FEET.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

\_\_\_\_\_

MAINLINE Tc(MIN.) = 11.76

10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.487

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fρ qΑ GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" B 31.84 0.30 0.200 PUBLIC PARK D 3.71 0.20 0.850 56 PUBLIC PARK 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.268

SUBAREA AREA(ACRES) = 35.55 SUBAREA RUNOFF(CFS) = 77.27

EFFECTIVE AREA(ACRES) = 38.72 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.26

TOTAL AREA(ACRES) = 38.7 PEAK FLOW RATE(CFS) =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51

>>>>COMPITE TRAPEZOIDAL CHANNEL FLOW<

>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>

\_\_\_\_\_\_

CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00 REPRESENTATIVE CHANNEL SLOPE = 0.0400 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000

MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00

\* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.400

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" D 11.64 0.20 0.200 NATURAL FAIR COVER A 13.96 0.40 1.000 D 2.65 0.20 0.100 A 1.60 0.40 0.850 "OPEN BRUSH" COMMERCIAL 75 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.600 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 17.27 AVERAGE FLOW DEPTH(FEET) = 1.81 TRAVEL TIME(MIN.) = Tc(MIN.) = 12.52

SUBAREA AREA(ACRES) = 29.85 SUBAREA RUNOFF(CFS) = 58.49
EFFECTIVE AREA(ACRES) = 68.57 AREA-AVERAGED Fm(INCH/HR) = 0.14
AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.41

TOTAL AREA(ACRES) = 68.6 PEAK FLOW RATE(CFS) =

END OF SUBAREA CHANNEL FLOW HYDRAULICS:

DEPTH(FEET) = 1.96 FLOW VELOCITY(FEET/SEC.) = 18.12

LONGEST FLOWPATH FROM NODE 13.00 TO NODE

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.00 TO NODE 16.60 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0050

FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.0 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 9.75

ESTIMATED PIPE DIAMETER(INCH) = 57.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 139.71
PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 13.01
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.60 = 3100.00 FEET.

```
FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.01
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.347
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                               SCS
                                              Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
A 1.13 0.40 0.100 32
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 2.35 EFFECTIVE AREA(ACRES) = 69.70 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 69.7 PEAK FLOW RATE(CFS) =
                                                              139.71
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE
                          16.10 TO NODE 16.20 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 105.50 DOWNSTREAM(FEET) = 105.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.416
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.306
 SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

CONDOMINIUMS D 1.80 0.20 0.350 75 13.42

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 3.62
TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) =
                                                           3.62
*******************
 FLOW PROCESS FROM NODE 16.20 TO NODE
                                            16.30 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.197
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
B 2.42 0.30 0.350 56
B 0.90 0.30 0.100 56
B 1.92 0.30 0.850 56
      LAND USE
 CONDOMINIUMS
  COMMERCIAL
  PUBLIC PARK
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.490
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.65
 AVERAGE FLOW DEPTH(FEET) = 1.22 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 14.60
 SUBAREA AREA(ACRES) = 5.24 SUBAREA RUNOFF(CFS) = 9.67

EFFECTIVE AREA(ACRES) = 7.04 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45
 TOTAL AREA(ACRES) =
                           7.0
                                       PEAK FLOW RATE(CFS) =
                                                                  13.11
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.44 FLOW VELOCITY(FEET/SEC.) = 6.33
 LONGEST FLOWPATH FROM NODE 16.10 TO NODE
                                                 16.30 =
                                                            730.00 FEET.
 FLOW PROCESS FROM NODE
                           16.30 TO NODE 16.40 IS CODE = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 790.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.04
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  13.11
 PIPE TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 16.47
 LONGEST FLOWPATH FROM NODE
                           16.10 TO NODE
                                          16.40 =
                                                   1520.00 FEET.
************************
 FLOW PROCESS FROM NODE 16.40 TO NODE 16.40 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.47
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.051
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
B 3.09 0.30 0.100 56
B 2.54 0.30 0.850 56
B 2.54 0.30 0.850 56
    LAND USE
 COMMERCIAL
 PUBLIC PARK
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.566
 SUBAREA AREA(ACRES) = 8.17 SUBAREA RUNOFF(CFS) = 13.83

EFFECTIVE AREA(ACRES) = 15.21 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) = 15.2
                                PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 16.40 TO NODE 16.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 390.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.34
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.01
 PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 17.24
 LONGEST FLOWPATH FROM NODE
                          16.10 TO NODE
                                          16.50 =
                                                   1910.00 FEET.
*************************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 MAINLINE Tc(MIN.) = 17.24
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.997
 SUBAREA LOSS RATE DATA(AMC II):
                                     Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
HERCIAL D 1.85 0.20 0.100 75
HOMINIUMS D 2.51 0.20 0.350 75
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.244
 SUBAREA AREA(ACRES) = 4.36 SUBAREA RUNOFF(CFS) = 7.64

EFFECTIVE AREA(ACRES) = 19.57 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45
                   19.6
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.60 IS CODE = 31
     ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 950.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.89
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 32.93
 PIPE TRAVEL TIME(MIN.) = 1.78 Tc(MIN.) = 19.03
                                           16.60 =
 LONGEST FLOWPATH FROM NODE
                           16.10 TO NODE
******************
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
```

\_\_\_\_\_\_

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.03
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.888
 SUBAREA LOSS RATE DATA(AMC II):
 | DEVELOPMENT TYPE/ | SCS SOIL | AREA | Fp | Ap | SCS | LAND USE | GROUP | (ACRES) (INCH/HR) (DECIMAL) | CN | PUBLIC PARK | D | 2.21 | 0.20 | 0.850 | 75 | COMMERCIAL | D | 2.81 | 0.20 | 0.100 | 75 |
 PUBLIC PARK
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.430
 SUBAREA AREA(ACRES) = 5.02 SUBAREA RUNOFF(CFS) = 8.14

EFFECTIVE AREA(ACRES) = 24.59 AREA-AVERAGED FM(INCH/HR) = 0.12

AREA-AVERAGED FD(INCH/HR) = 0.27 AREA-AVERAGED AD = 0.45
 TOTAL AREA(ACRES) = 24.6
                             PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 ** PEAK FLOW RATE TABLE **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 173.42 13.01 2.347 0.32(0.13) 0.41 86.5 13.00
2 149.85 19.03 1.888 0.31(0.13) 0.42 94.3 16.10
TOTAL AREA(ACRES) = 94.3
                                                86.5 13.00
94.3 16.10
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 173.42 Tc(MIN.) = 13.011
EFFECTIVE AREA(ACRES) = 86.52 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) = 94.3
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                         16.50 =
                                                 3100.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
************************
 FLOW PROCESS FROM NODE 16.50 TO NODE 17.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1230.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 48.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.14
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 173.42
 PIPE TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 15.03
 LONGEST FLOWPATH FROM NODE
                        13.00 TO NODE
                                        17.00 =
********************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.03
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.161
 SUBAREA LOSS RATE DATA(AMC II):
```

SCS SOIL

Α

"11+ DWELLINGS/ACRE" A 6.11 0.40 0.200

DEVELOPMENT TYPE/

LAND USE NATURAL FAIR COVER "OPEN BRUSH"

RESTDENTIAL

Fp

0.40

1.000

46

32

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

AREA

8.07

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.542
 SUBAREA AREA(ACRES) = 17.80 SUBAREA RUNOFF(CFS) = 31.14

EFFECTIVE AREA(ACRES) = 104.32 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.34 AREA-AVERAGED Ap = 0.44
                     112.1
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
********************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.72
ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 189.14
 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 15.36
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                             18.00 =
                                                        4600.00 FEET.
************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.36
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.134
 SUBAREA LOSS RATE DATA(AMC II):
                                                   Ap
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                  2.09
                                           0.40
                                                   1.000
 NATURAL POOR COVER
                             2.82
  "BARREN"
                                           0.40
                                                    1.000
                         Α
                                                            78
 COMMERCIAL
                         Α
                                           0.40
                                                   0.100
                                                            32
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                                  0.200
                        A
                               13.94
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA AREA(ACRES) = 23.50 SUBAREA RUNOFF(CFS) = 41.60
EFFECTIVE AREA(ACRES) = 127.82 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) =
                       135.6
                                  PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
      ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.041
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                  2.68
                                           0.40
                                                   1.000
                                                            46
 RESIDENTIAL
  "11+ DWELLINGS/ACRE" A
                                 9.73
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 238.81
 TRAVEL TIME COMPOSED USING ESTIMATED 125.(CL.)

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.20

TRAVEL TIME COMPOSED USING ESTIMATED 125.(CL.)

TRAVEL TIME (MIN.) = 1.24
 AVERAGE FLOW DEPTH(FEET) = 0.80 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 16.60
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 21.13
EFFECTIVE AREA(ACRES) = 140.23 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) =
                        148.0
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 FLOW VELOCITY(FEET/SEC.) = 8.19
 LONGEST FLOWPATH FROM NODE
                              13.00 TO NODE
                                              19.00 =
                                                       5210.00 FEET.
******************
 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51
 ______
```

3.62

Α

0.40

0.100 32

```
>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
  REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
  MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.884
  SUBAREA LOSS RATE DATA(AMC II):
   DEVELOPMENT TYPE/ SCS SOIL
                                                                               SCS
                                            AREA
  LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.42 AVERAGE FLOW DEPTH(FEET) = 0.74 TRAVEL TIME(MIN.) = 2.48
  Tc(MIN.) = 19.08
  SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 2.62 EFFECTIVE AREA(ACRES) = 141.81 AREA-AVERAGED Fm(INCH/HR) = 0.15
  AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 149.6 PEAK FLOW RATE(CFS) =
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 0.74 FLOW VELOCITY(FEET/SEC.) =
                                                                2.40
  LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 =
                                                                            5570.00 FEET.
*******************
  FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        238.69
        19.08
        1.884
        0.35(0.15)
        0.42
        141.8
        13.00

        2
        207.12
        25.39
        1.600
        0.35(0.15)
        0.42
        149.6
        16.10

        LONGEST
        FLOWPATH FROM NODE
        13.00
        TO NODE
        20.00
        =
        5570.00
        FEET.

  ** MEMORY BANK # 3 CONFLUENCE DATA **
STREAM Q Tc Intensity
                 Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
   NUMBER
  1 163.03 12.22 2.433 0.20(0.09) 0.45 76.9 11.01 2 169.79 14.82 2.178 0.20(0.09) 0.45 89.6 11.06 3 163.71 29.54 1.467 0.20(0.09) 0.46 132.3 1.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5440.00 FEET.
  ** PEAK FLOW RATE TABLE **
   STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
      1 364.12 12.22 2.433 0.28(0.12) 0.44 167.7 2 386.50 14.82 2.178 0.28(0.12) 0.43 199.7
                                                                                  11.01
                                                                        199.7
                                                                                      11.06
       3 406.72 19.08 1.884 0.29(0.12) 0.44 243.8 13.00
4 372.54 25.39 1.600 0.28(0.12) 0.44 269.8 16.10
5 351.86 29.54 1.467 0.27(0.12) 0.44 281.9 1.00
                                                                                    13.00
    TOTAL AREA(ACRES) =
                                    281.9
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 406.72 Tc(MIN.) = 19.084
EFFECTIVE AREA(ACRES) = 243.80 AREA-AVERAGED Fm(INCH/HR) = 0.12
  AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44
  TOTAL AREA(ACRES) = 281.9
  LONGEST FLOWPATH FROM NODE
                                       13.00 TO NODE
                                                              20.00 = 5570.00 FEET.
  FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 3 <<<<<
______
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
```

\* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.725

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<

```
Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                                SCS
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
  "11+ DWELLINGS/ACRE"
                           Α
                                    11.87
                                               0.40
                                                         0.200
 NATURAL FAIR COVER

      5.63
      0.20
      1.000

      1.56
      0.40
      0.100

  "OPEN BRUSH"
                            D
                                                                  83
  COMMERCIAL
                            Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.428
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.99
 AVERAGE FLOW DEPTH(FEET) = 1.04 TRAVEL TIME(MIN.) = 3.18
 Tc(MIN.) = 22.26
 SUBAREA AREA(ACRES) = 19.06 SUBAREA RUNOFF(CFS) = 27.67
EFFECTIVE AREA(ACRES) = 262.86 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 300.9 PEAK FLOW RATE(CFS) =
                                                                 406.72
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.02 FLOW VELOCITY(FEET/SEC.) =
                                                   2.96
                                                            6140.00 FEET.
 LONGEST FLOWPATH FROM NODE
                               13.00 TO NODE
                                                  21.00 =
********************
 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.591
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                          A
                                  1.73 0.40 0.100
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                     4.03
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.730
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 410.45
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.96
AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 3.38
 Tc(MIN.) = 25.64
 SUBAREA AREA(ACRES) = 5.76 SUBAREA RUNOFF(CFS) = 7.46 EFFECTIVE AREA(ACRES) = 268.62 AREA-AVERAGED Fm(INCH/HR) = 0.12
  SUBAREA AREA(ACRES) =
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 306.7 PEAK FLOW RATE(CFS) =
                                                                  406.72
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.02 FLOW VELOCITY(FEET/SEC.) = 2.96
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 22.00 =
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.508
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                           A
                                     3.62
                                              0.40
 NATURAL FAIR COVER
  "OPEN BRUSH"
                          D 4.01 0.20 1.000
A 1.68 0.40 0.100
                                                                  83
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.527
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.98
AVERAGE FLOW DEPTH(FEET) = 1.03 TRAVEL TIME(MIN.) = 2.52
Tc(MIN.) = 28.16
 SUBAREA AREA(ACRES) = 9.31 SUBAREA RUNOFF(CFS) = 11.59
```

SUBAREA LOSS RATE DATA(AMC II):

EFFECTIVE AREA(ACRES) = 277.93 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 316.0 PEAK FLOW RATE(CFS) = 406.72 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.02 FLOW VELOCITY(FEET/SEC.) = 2.96 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7190.00 FEET. \_\_\_\_\_\_ END OF STUDY SUMMARY: 316.0 TC(MIN.) =TOTAL AREA(ACRES) = 316.0 TC(MIN.) = 20.10

EFFECTIVE AREA(ACRES) = 277.93 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.444

PEAK FLOW RATE(CFS) = 406.72 TOTAL AREA(ACRES) = 28.16 \*\* PEAK FLOW RATE TABLE \*\* STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 364.12 21.64 1.753 0.27 (0.12) 0.45 201.8 11.01
2 386.50 24.04 1.651 0.27 (0.12) 0.44 233.9 11.06 11.01 11.06 406.72 28.16 1.508 0.28( 0.12) 0.44 372.54 34.76 1.336 0.27( 0.12) 0.45 351.86 39.12 1.249 0.27( 0.12) 0.45 277.9 304.0 316.0 3 13.00 16.10 5

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

## Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P010 B.DAT
 TIME/DATE OF STUDY: 09:37 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.56
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) = 6.78
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.54
  STREET FLOW TRAVEL TIME(MIN.) = 3.06 Tc(MIN.) = 10.54
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.648
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Аp
                                                               SCS
                                             Fρ
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.49
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 7.53
 FLOW VELOCITY(FEET/SEC.) = 1.98 DEPTH*VELOCITY(FT*FT/SEC.) = 0.59
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FE
                                                52.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) = 8.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.07
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65
STREET FLOW TRAVEL TIME(MIN.) = 3.22 Tc(MIN.) = 13.75
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.273
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                                                        Дp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 1.46
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.32 HALFSTREET FLOOD WIDTH(FEET) = 8.97
 FLOW VELOCITY(FEET/SEC.) = 2.10 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.87
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.59
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
  STREET FLOW TRAVEL TIME(MIN.) = 3.21 Tc(MIN.) = 16.97
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.016
  SUBAREA LOSS RATE DATA(AMC II):
                  E DATA (APIC 11).

E/ SCS SOIL AREA FP AP SCS

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 6.76 0.20 0.100 75
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 12.14

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.76
 FLOW VELOCITY(FEET/SEC.) = 2.88 DEPTH*VELOCITY(FT*FT/SEC.) = 1.33
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 ________
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 19.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.57
  STREET FLOW TRAVEL TIME(MIN.) = 3.22 Tc(MIN.) = 20.19
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.825
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 12.12

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.66
 FLOW VELOCITY(FEET/SEC.) = 3.26 DEPTH*VELOCITY(FT*FT/SEC.) = 1.74
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                            27.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 21.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.28
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.77
  STREET FLOW TRAVEL TIME(MIN.) = 2.54 Tc(MIN.) =
                                                        22.72
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.705
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 2.23 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 20.82
 FLOW VELOCITY(FEET/SEC.) = 3.28 DEPTH*VELOCITY(FT*FT/SEC.) = 1.75 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
*******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                           35.37
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.03
 STREET FLOW TRAVEL TIME(MIN.) = 2.76 Tc(MIN.) = 25.48 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.597
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                              Fp
                                                         Αp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 17.42

EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                           29.9
                                       PEAK FLOW RATE(CFS) =
                                                                  42.37
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 25.04
 FLOW VELOCITY(FEET/SEC.) = 3.66 DEPTH*VELOCITY(FT*FT/SEC.) = 2.23 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                   57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.12
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.88
 STREET FLOW TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.505
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 52.21 EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 34.30
 FLOW VELOCITY(FEET/SEC.) = 4.59 DEPTH*VELOCITY(FT*FT/SEC.) = 3.45
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 93.9 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.30
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 92.13
PIPE TRAVEL TIME(MIN.) = 1.12 Tc(MIN.) = 29.36
 LONGEST FLOWPATH FROM NODE
                             50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 29.36
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.472
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 14.95

EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                      81.0
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.78
ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 105.00
```

```
PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 30.18
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                      5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                        60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 30.18
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.449
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 13.88 0.20 0.100 75
 SUBAREA LOSS RATE DATA(AMC II):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                         D
                                 4.45
                                          0.20
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.124
 SUBAREA AREA(ACRES) = 18.33 SUBAREA RUNOFF(CFS) = 23.50

EFFECTIVE AREA(ACRES) = 99.35 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                    99.4
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 940.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.399
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                        D
D
                            24.16 0.20
4.43 0.20
                                                 1.000
0.350
 "OPEN BRUSH"
                                                           83
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.899
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 142.50
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.17
 AVERAGE FLOW DEPTH(FEET) = 0.97 TRAVEL TIME(MIN.) = 1.92
 Tc(MIN.) = 32.10
 SUBAREA AREA(ACRES) = 28.59 SUBAREA RUNOFF(CFS) = 31.37 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) =
                     127.9
                                    PEAK FLOW RATE(CFS) =
                                                           153.69
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.02 FLOW VELOCITY(FEET/SEC.) =
                                               8.37
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 = 6190.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                           127.9 \text{ TC}(MIN.) =
 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.321
PEAK FLOW RATE(CFS) = 153.69
______
______
```

END OF RATIONAL METHOD ANALYSIS

## Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P010 C.DAT
 TIME/DATE OF STUDY: 09:37 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                             108.00 DOWNSTREAM(FEET) = 106.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.003
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.250
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                              1.53
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.82
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.37
   HALFSTREET FLOOD WIDTH(FEET) = 11.76
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.37
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.88
 STREET FLOW TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.051
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
                                  4.73
                                            0.20
  "BARREN"
                          D
                                                     1.000 93
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.73 SUBAREA RUNOFF(CFS) = 7.88
EFFECTIVE AREA(ACRES) = 6.26 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.18
 FLOW VELOCITY(FEET/SEC.) = 2.62 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                         650.00 FEET.
*********************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 360.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.75
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.43
 PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) = 17.35
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                              83.00 = 1010.00 FEET.
 FLOW PROCESS FROM NODE 83.00 TO NODE 83.00 IS CODE = 81
     _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.35
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.990
 SUBAREA LOSS RATE DATA(AMC II):
                                         Fp
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                                    qД
                                                            SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 2.81 0.20 0.100 75
D 2.09 0.20 0.350 75
D 3.05 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.262
 SUBAREA AREA(ACRES) = 7.95 SUBAREA RUNOFF(CFS) = 13.86

EFFECTIVE AREA(ACRES) = 14.21 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 14.2
                                  PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.24
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 23.95
 PIPE TRAVEL TIME(MIN.) = 0.51
LONGEST FLOWPATH FROM NODE 8
                             51 Tc(MIN.) = 17.86
80.00 TO NODE 84.00
                                               84.00 = 1260.00 FEET.
*******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 84.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TC(MIN.) = 17.86
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.957
```

\*\*TRAVEL TIME COMPUTED HISTNG ESTIMATED FLOW(CFS) =

6.77

```
SUBAREA LOSS RATE DATA(AMC II):
  CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.256
 SUBAREA AREA(ACRES) = 1.94 SUBAREA RUNOFF(CFS) = 3.33
EFFECTIVE AREA(ACRES) = 16.15 AREA-AVERAGED Fm(INCH/HR) = 0.11
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.55
                    16.1
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.38
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.86
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 18.22
 LONGEST FLOWPATH FROM NODE
                           80.00 TO NODE
                                           85.00 =
                                                    1440.00 FEET.
************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 85.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.22
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.935
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.32 0.20 0.100 75
D 2.49 0.20 0.350 75
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.322
 SUBAREA AREA(ACRES) = 2.81 SUBAREA RUNOFF(CFS) = 4.73
EFFECTIVE AREA(ACRES) = 18.96 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) =
                      19.0
                                PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 86.00 IS CODE = 31
      _____
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 340.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.81
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.27
 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 18.86
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                           86.00 = 1780.00 FEET.
 FLOW PROCESS FROM NODE 86.00 TO NODE 86.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.86
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.897
 SUBAREA LOSS RATE DATA(AMC II):
                                      Fp
                               AREA
  DEVELOPMENT TYPE/ SCS SOIL
                                                 Аp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 3.14 0.20 0.350 75
COMMERCIAL D 0.62 0.20 0.100 75
PUBLIC PARK D 1.37 0.20 0.850 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.453
 SUBAREA AREA(ACRES) = 5.13 SUBAREA RUNOFF(CFS) = 8.34

EFFECTIVE AREA(ACRES) = 24.09 AREA-AVERAGED Fm(INCH/HR) = 0.10

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 24.1 PEAK FLOW RATE(CFS) =
*******************
```

FLOW PROCESS FROM NODE 86.00 TO NODE 87.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 21.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.33
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.96
 PIPE TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 19.99
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                              87.00 = 2410.00 FEET.
 FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.99
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.835
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.51 0.20 0.350 75
D 1.12 0.20 0.100 75
      LAND USE
 CONDOMINIUMS
 COMMERCIAL
 NATURAL FAIR COVER
                         D
                                  0.43
                                                   1.000 83
  "OPEN BRUSH"
                                           0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 5.06 SUBAREA RUNOFF(CFS) = 8.04

EFFECTIVE AREA(ACRES) = 29.15 AREA-AVERAGED FM(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) = 29.1 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 87.00 TO NODE 88.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.57
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 45.65
 PIPE TRAVEL TIME(MIN.) = 0.49
                                Tc(MIN.) = 20.47
 LONGEST FLOWPATH FROM NODE
                             80.00 TO NODE
                                              88.00 =
                                                       2690.00 FEET.
********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.47
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.810
 SUBAREA LOSS RATE DATA(AMC II):
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.34 0.20 0.350 75
D 0.48 0.20 0.100 75
D 2.16 0.20 0.350 77
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                          Fρ
                                                    Аp
     LAND USE
 CONDOMINIUMS
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.335
 SUBAREA AREA(ACRES) = 7.98 SUBAREA RUNOFF(CFS) = 12.52 EFFECTIVE AREA(ACRES) = 37.13 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                       37.1
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 89.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.14
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 57.51
PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 20.92
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 89.00 = 2960.00 FEET.
```

```
FLOW PROCESS FROM NODE 89.00 TO NODE 89.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.92
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.788
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                                   SCS
                                     Fρ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 2.41 0.20 0.350
D 2.55 0.20 0.100
 CONDOMINIUMS
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.221
 SUBAREA AREA(ACRES) = 4.96 SUBAREA RUNOFF(CFS) = 7.78
EFFECTIVE AREA(ACRES) = 42.09 AREA-AVERAGED FM(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
                 42.1
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 89.00 TO NODE 97.00 IS CODE = 31
     _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 560.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.55
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 64.56
 PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) =
                        80.00 TO NODE 97.00 = 3520.00 FEET.
 LONGEST FLOWPATH FROM NODE
******************
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21
     -----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            108.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.842
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                                  Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Ap SCS Tc
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
ERCIAL D 0.88 0.20 0.100 75 9.31
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                     2.24
 TOTAL AREA(ACRES) =
                   0.88 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 260.00
                           CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
```

STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

```
STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH(FEET) = 8.47
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.06
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.65
 STREET FLOW TRAVEL TIME(MIN.) = 2.11 Tc(MIN.) = 11.42
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.529
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.06 0.20 0.100 75
  DEVELOPMENT TYPE/
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.39

EFFECTIVE AREA(ACRES) = 1.94 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 9.59
 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) = 0.72
 LONGEST FLOWPATH FROM NODE
                            90.00 TO NODE
                                           92.00 =
                                                      560.00 FEET.
*********************
 FLOW PROCESS FROM NODE 92.00 TO NODE 93.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.43
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.38
PIPE TRAVEL TIME(MIN.) = 1.94 Tc(MIN.) = 13.36
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
*********************
 FLOW PROCESS FROM NODE 93.00 TO NODE 93.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.36
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.312
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 5.84 0.20 0.350
D 2.34 0.20 0.100
D 8.66 0.20 0.350
                                                          75
 CONDOMINIUMS
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.315
 SUBAREA AREA(ACRES) = 16.84 SUBAREA RUNOFF(CFS) = 34.08 EFFECTIVE AREA(ACRES) = 18.78 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) = 18.8
                               PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 93.00 TO NODE 94.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.09
 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 13.80
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
                                           94.00 = 1430.00 FEET.
*************************
 FLOW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 81
   ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 13.80
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.269
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                  αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.80 0.20 0.850 75
     LAND USE
 PUBLIC PARK
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.800
 SUBAREA AREA(ACRES) = 4.07 SUBAREA RUNOFF(CFS) = 7.73

EFFECTIVE AREA(ACRES) = 22.85 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
                      22.9
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
********************
                       94.00 TO NODE 95.00 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.56
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 45.09
 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) =
                                          14.13
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                           95.00 =
                                                    1620.00 FEET.
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 95.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.13
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.238
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
    LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 0.20 0.20 0.100
D 2.24 0.20 0.350
 COMMERCIAL
                                                         75
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.330
 SUBAREA AREA(ACRES) = 2.44 SUBAREA RUNOFF(CFS) = 4.77 EFFECTIVE AREA(ACRES) = 25.29 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                      25.3
                                PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 96.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.63
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 49.23
 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) = 14.67
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                         96.00 =
 FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 14.67
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.191
 SUBAREA LOSS RATE DATA(AMC II):
                                     gA qT
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                        SCS
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.07 0.20 0.850 75
     LAND USE
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 5.07 SUBAREA RUNOFF(CFS) = 9.22

EFFECTIVE AREA(ACRES) = 30.36 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.46
                      30.4
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 96.00 TO NODE 97.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013
```

0.20

0.100 75

0.27

D

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 10.14
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                            NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 57.37
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 15.04
LONGEST FLOWPATH FROM NODE 90.00 TO NODE 97.00
                                                    97.00 =
                                                               2160.00 FEET.
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        57.37
        15.04
        2.159
        0.20(0.09)
        0.46
        30.4
        90.00

        LONGEST
        FLOWPATH FROM NODE
        90.00
        TO NODE
        97.00
        =
        2160.00
        FEET.

  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 64.56 21.80 1.746 0.20(0.08) 0.42 42.1 80.00
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 97.00 = 3520.00 FEET.
  ** PEAK FLOW RATE TABLE **
  80.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 113.00 Tc(MIN.) = 15.044
EFFECTIVE AREA(ACRES) = 59.40 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 72.4
                                                     97.00 = 3520.00 FEET.
                                 80.00 TO NODE
 LONGEST FLOWPATH FROM NODE
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 97.00 TO NODE 98.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.84
                                            NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
 PIPE-FLOW(CFS) = 113.00
 PIPE-FLOW(CFS) = 113.00

PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 15.44

LONGEST FLOWPATH FROM NODE 80.00 TO NODE 98.00
                                                     98.00 =
                                                                 3800.00 FEET.
******************
 FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 81
       ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.44
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.128
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                      AREA
                                                           Ap
                                                 Fρ
                           GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                                      22.13
                                                0.20
  "OPEN BRUSH"
 NATURAL POOR COVER
  "BARREN"
                             D
                                       9.76
                                                 0.20
                                                           1.000
                                                                     93
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 31.89 SUBAREA RUNOFF(CFS) = 55.33

EFFECTIVE AREA(ACRES) = 91.29 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.63

TOTAL AREA(ACRES) = 104.3 PEAK FLOW RATE(CFS) = 164.40
______
 END OF STUDY SUMMARY:
                       = 104.3 TC(MIN.) = 15.44
 TOTAL AREA(ACRES)
```

DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.9 INCHES

EFFECTIVE AREA(ACRES) = 91.29 AREA-AVERAGED Fm(INCH/HR) = 0.13
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.634
PEAK FLOW RATE(CFS) = 164.40

| ** PEAK  | FLOW RATE | TABLE * | k         |             |       |          |           |
|----------|-----------|---------|-----------|-------------|-------|----------|-----------|
| STREAM   | Q         | Tc      | Intensity | Fp(Fm)      | Ap    | Ae       | HEADWATER |
| NUMBER   | (CFS)     |         | (INCH/HR) | (INCH/HR)   |       | (ACRES)  | NODE      |
| 1        | 164.40    | 15.44   | 2.128     | 0.20( 0.13) | 0.63  | 91.3     | 90.00     |
| 2        | 150.87    | 22.20   | 1.728     | 0.20( 0.12) | 0.61  | 104.3    | 80.00     |
| ======== |           |         |           |             | ===== | :======: |           |

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

b) Expected Value (50% Confidence) Events

i. EV 100-Year Storm Event

## Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P025 A.DAT
 TIME/DATE OF STUDY: 09:36 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
                             106.20 DOWNSTREAM(FEET) = 105.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Аp
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                              0.68
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 2.18
 TOTAL AREA(ACRES) =
                     0.68 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 10.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55
 STREET FLOW TRAVEL TIME(MIN.) = 3.16 Tc(MIN.) = * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.007
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  "11+ DWELLINGS/ACRE"
                                                        0.200
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 3.02

EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 11.84
 FLOW VELOCITY(FEET/SEC.) = 1.67 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FE
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.85
  STREET FLOW TRAVEL TIME(MIN.) = 2.23 Tc(MIN.) = 13.76
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.720
  SUBAREA LOSS RATE DATA(AMC II):
                                            Fp
                        SCS SOIL AREA FP AP SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  DEVELOPMENT TYPE/ SCS SOIL AREA
      LAND USE
 RESTDENTIAL
  "11+ DWELLINGS/ACRE"
                           D
                                     3.39
                                              0.20
                                                        0.200 75
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 8.18
EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.70
 FLOW VELOCITY(FEET/SEC.) = 2.10 DEPTH*VELOCITY(FT*FT/SEC.) = 1.00
 LONGEST FLOWPATH FROM NODE
                                1.00 TO NODE
                                                  4.00 = 800.00 FEET.
******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

3.69

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                         19.75
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 21.21
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.35
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.27
 STREET FLOW TRAVEL TIME(MIN.) = 2.20 Tc(MIN.) = 15.96
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.501
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE (ACDES)
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE" D
                                                   0.200 75
                                   6.51
                                            0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 14.42 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED FM(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 11.7
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 23.63
 FLOW VELOCITY(FEET/SEC.) = 2.50 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FE
                                                         1110.00 FEET.
********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 440.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 34.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.63
   HALFSTREET FLOOD WIDTH(FEET) = 26.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.68
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.70
STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) = 18.70
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.286
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 75
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 17.11
EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                        20.1
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 28.16
 FLOW VELOCITY(FEET/SEC.) = 2.80 DEPTH*VELOCITY(FT*FT/SEC.) = 1.87 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 1550.00 FE
                                                6.00 = 1550.00 FEET.
*********************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.73
   HALFSTREET FLOOD WIDTH(FEET) = 33.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.12
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.29
STREET FLOW TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) =
                                                 20.62
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.163
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                   Дp
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 18.43 0.20 0.100 75
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 35.55
EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 38.5
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 35.58
 FLOW VELOCITY(FEET/SEC.) = 3.39 DEPTH*VELOCITY(FT*FT/SEC.) = 2.64
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 360.0 FT WITH ELEVATION-DROP = 1.8 FT, IS 56.2 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 7.00
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                            7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.15
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                       NUMBER OF PIPES = 1
                   74.11
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.65 Tc(MIN.) =
                                           21.27
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.27
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.126
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                                         SCS
    LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 6.24 0.20 0.100
D 6.35 0.20 0.850
 COMMERCIAL
                                                           75
 PUBLIC PARK
                                2.47
 COMMERCIAL
                        D
                                         0.20
                                                 0.100
 NATURAL POOR COVER
                                3.55
                                         0.20
                        D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.528
 SUBAREA AREA(ACRES) = 18.61 SUBAREA RUNOFF(CFS) = 33.83 

EFFECTIVE AREA(ACRES) = 57.14 AREA-AVERAGED Fm(INCH/HR) = 0.05 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.26
                       57.1
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.1000
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013
```

```
DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 28.22
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 106.64
 PIPE TRAVEL TIME(MIN.) = 0.25
                              5 Tc(MIN.) = 21.52
1.00 TO NODE 9.00
                                                9.00 =
                                                        2890.00 FEET.
 LONGEST FLOWPATH FROM NODE
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 870.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.987
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                                   1.000
                                  13.41
                                           0.20
 "OPEN BRUSH"
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 117.42
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.95
 AVERAGE FLOW DEPTH(FEET) = 0.77 TRAVEL TIME(MIN.) = 2.44
 Tc(MIN.) = 23.96
 SUBAREA AREA(ACRES) = 13.41 SUBAREA RUNOFF(CFS) = 21.57
EFFECTIVE AREA(ACRES) = 70.55 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 FLOW VELOCITY(FEET/SEC.) = 6.01
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                               10.00 =
                                                          3760.00 FEET.
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.890
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                   9.71
                                                    1.000
 "OPEN BRUSH"
                                            0.20
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED OSING ESTIMATED TEST, CLS,

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.96

AVERAGE FILOW DEPTH(FEET) = 1.00 TRAVEL TIME(MIN.) = 2.22
 AVERAGE FLOW DEPTH(FEET) = 1.00 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 26.18
 SUBAREA AREA(ACRES) = 9.71 SUBAREA RUNOFF(CFS) = 14.77
EFFECTIVE AREA(ACRES) = 80.26 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                     80.3
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.00 FLOW VELOCITY(FEET/SEC.) = 4.98
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               11.00 =
********************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.824
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
```

```
"OPEN BRUSH" D 3.89 0.20 1
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                          0.20 1.000 83
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.01
 AVERAGE FLOW DEPTH(FEET) = 1.02 TRAVEL TIME(MIN.) = 1.70
 Tc(MIN.) = 27.88
 SUBAREA AREA(ACRES) = 3.89 SUBAREA RUNOFF(CFS) = 5.69
EFFECTIVE AREA(ACRES) = 84.15 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 84.2 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.00 FLOW VELOCITY(FEET/SEC.) = 5.00
                                              12.00 =
 LONGEST FLOWPATH FROM NODE
                           1.00 TO NODE
                                                         4930.00 FEET.
*********************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 11.01 TO NODE 11.02 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.375
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.630
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Fρ
                                                    Дp
                                                           SCS
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

COMMERCIAL D 0.19 0.20 0.100 75 5.38

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.79
 TOTAL AREA(ACRES) =
                        0.19 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.02 TO NODE 11.03 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.78
 STREET FLOW TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) =
                                                    7.83
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.742
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                  0.20
0.25
                       D 1.84
D 0.25
                                           0.20 0.850 75
0.20 0.100 75
 PUBLIC PARK
 COMMERCIAL
 NATURAL FAIR COVER
  "OPEN BRUSH"
                         D
                                           0.20
                                                    1.000 83
                                  0.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.816
 SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 8.79
EFFECTIVE AREA(ACRES) = 2.92 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.77
```

NATURAL FAIR COVER

END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTH(FEET) = 13.55 FLOW VELOCITY(FEET/SEC.) = 2.57 DEPTH\*VELOCITY(FT\*FT/SEC.) = LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.03 = 450.0 11.01 TO NODE 450.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.03 TO NODE 11.04 IS CODE = 31 \_\_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< \_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.41 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.43PIPE TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.04 = 940.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.04 TO NODE 11.04 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< -----MAINLINE Tc(MIN.) = 9.10\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.436 SUBAREA LOSS RATE DATA(AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.18 0.20 0.100 75
D 1.15 0.20 0.350 75
D 4.75 0.20 0.350 75 LAND USE COMMERCIAL CONDOMINIUMS CONDOMINIUMS SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.308 SUBAREA AREA(ACRES) = 7.08 SUBAREA RUNOFF(CFS) = 21.50

EFFECTIVE AREA(ACRES) = 10.00 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 10.0 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.04 TO NODE 11.05 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-\_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.75 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 30.13PIPE TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 9.87 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.05 = FLOW PROCESS FROM NODE 11.05 TO NODE 11.05 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<> \_\_\_\_\_\_ MAINLINE Tc(MIN.) = 9.87 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.283 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 6.10 0.20 0.350 75 CONDOMINIUMS SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 17.64

EFFECTIVE AREA(ACRES) = 16.10 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41 TOTAL AREA(ACRES) = 16.1 PEAK FLOW RATE(CFS) = \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 11.05 TO NODE 12.00 IS CODE = 31 \_\_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < \_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 910.00 MANNING'S N = 0.013

```
DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.59
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.40
 PIPE TRAVEL TIME(MIN.) = 1.58 Tc(MIN.) = 11.45
LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00
                                                       2250.00 FEET.
                                              12.00 =
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 ______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        46.40
        11.45
        3.018
        0.20(0.08)
        0.41
        16.1
        11.01

 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 12.00 = 2250.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 130.59 27.88 1.824 0.20(0.10) 0.50 84.2 1.00
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 4930.00 FEET.
  ** PEAK FLOW RATE TABLE **
  11.01
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 158.12 Tc(MIN.) = 27.878
EFFECTIVE AREA(ACRES) = 100.25 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.48
 TOTAL AREA(ACRES) = 100.2
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
                                              12.00 =
                                                       4930.00 FEET.
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 11.06 TO NODE 11.07 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
                                  90.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.011
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.456
 SUBAREA TC AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                                     Αp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
CONDOMINIUMS D 1.54 0.20 0.350 75 9.01
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 4.69
 TOTAL AREA(ACRES) =
                       1.54 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 11.07 TO NODE 11.08 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.50
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER
                                      NUMBER OF PIPES = 1
```

```
PIPE-FLOW(CFS) = 4.69
PIPE TRAVEL TIME(MIN.) = 1.36 Tc(MIN.) = 10.38
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.08
                                          11.08 =
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.08 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE TC(MIN.) = 10.38
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.191
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.43 0.20 0.100 75
D 1.14 0.20 0.350 75
D 4.05 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.331
 SUBAREA AREA(ACRES) = 5.62 SUBAREA RUNOFF(CFS) = 15.81

EFFECTIVE AREA(ACRES) = 7.16 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33

TOTAL AREA(ACRES) = 7.2 PEAK FLOW RATE(CFS) = 20.13
********************
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.09 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.77
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 20.13
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 11.45
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.09
                                           11.09 = 1290.00 FEET.
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.09 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 11.45
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.018
 SUBAREA LOSS RATE DATA(AMC II):
                                       Fp
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.41 0.20 0.100 75
D 1.13 0.20 0.350 75
D 0.62 0.20 0.350 75
D 0.48 0.20 0.350 75
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.311
 SUBAREA AREA(ACRES) = 2.64 SUBAREA RUNOFF(CFS) = 7.02

EFFECTIVE AREA(ACRES) = 9.80 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
                        9.8
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.10 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 730.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.35
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 26.04
 PIPE TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) = 12.91
 LONGEST FLOWPATH FROM NODE
                           11.06 TO NODE
                                           11.10 =
                                                    2020.00 FEET.
************************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.91
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.820
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                                Дp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.01 0.20 0.100 75
D 2.10 0.20 0.350 75
D 1.33 0.20 0.350 75
D 7.17 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.328
 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 28.78
EFFECTIVE AREA(ACRES) = 21.41 AREA-AVERAGED Fm(INCH/HR) = 0.07
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) = 21.4 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.11 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
_____
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.03
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 53.08
 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 13.75
LONGEST FLOWPATH FROM NODE 11.06 TO NODE 11.11
                                          11.11 =
                                                    2530.00 FEET.
******************
 FLOW PROCESS FROM NODE 11.11 TO NODE 11.11 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TO(MIN.) = 13.75
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.721
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                                Αp
                                       Fρ
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 0.44 0.20 0.100 75
D 6.60 0.20 0.350 75
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.334
 SUBAREA AREA(ACRES) = 7.04 SUBAREA RUNOFF(CFS) = 16.81

EFFECTIVE AREA(ACRES) = 28.45 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                     28.5
                               PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 11.11 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.63
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 67.97
 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 14.13
 LONGEST FLOWPATH FROM NODE
                          11.06 TO NODE
                                        12.00 =
                                                  2770.00 FEET.
*************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 >>>>CONFIJIENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 ** MEMORY BANK # 2 CONFLUENCE DATA **
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
```

```
NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
         199.38 11.45 3.018 0.20( 0.09) 0.43 73.7
208.56 14.13 2.679 0.20( 0.09) 0.43 87.2
203.84 27.88 1.824 0.20( 0.09) 0.45 128.7
     1
                                                          11.01
                                                              11.06
   TOTAL AREA(ACRES) =
                          128.7
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 208.56 Tc(MIN.) = 14.130
EFFECTIVE AREA(ACRES) = 87.20 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 128.7
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
                                            12.00 = 4930.00 FEET.
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<
______
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.12
ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 208.56
 PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 14.60
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE
                                            20.00 = 5440.00 FEET.
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.60
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.630
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH" D 3.58 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                  1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AVERAGE PERVISOS AREA FRACTION, AP - 1.000
SUBAREA AREA(ACRES) = 3.58

EFFECTIVE AREA(ACRES) = 90.78

AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20

AREA-AVERAGED AP = 0.45

TOTAL AREA(ACRES) = 132.3

PEAK FLOW RATE(CFS) = 208.56
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
*******************
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00

ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 100.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.373
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.380
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                       D
                                 3.17
                                         0.20
                                                0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 9.53
 TOTAL AREA(ACRES) =
                       3.17 PEAK FLOW RATE(CFS) =
*******************
```

```
FLOW PROCESS FROM NODE
                       14.00 TO NODE 15.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
```

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0500 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.07 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.53PIPE TRAVEL TIME(MIN.) = 2.29 Tc(MIN.) = 11.67 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 15.00 = 2030.00 FEET.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

\_\_\_\_\_ MAINLINE Tc(MIN.) = 11.67

25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.986 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fρ αA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL

"11+ DWELLINGS/ACRE" B 31.84 0.30 0.200 PUBLIC PARK D 3.71 0.20 0.850 56 PUBLIC PARK 75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.268

SUBAREA AREA(ACRES) = 35.55 SUBAREA RUNOFF(CFS) = 93.26

EFFECTIVE AREA(ACRES) = 38.72 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.26

TOTAL AREA(ACRES) = 38.7 PEAK FLOW RATE(CFS) =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 51

>>>>COMPITE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>

\_\_\_\_\_\_

CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00 REPRESENTATIVE CHANNEL SLOPE = 0.0400 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00

\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.887 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" D 11.64 0.20 0.200 NATURAL FAIR COVER

A 13.96 0.40 1.000 D 2.65 0.20 0.100 A 1.60 0.40 0.850 "OPEN BRUSH" COMMERCIAL 75 PUBLIC PARK

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.600

TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 18.07 AVERAGE FLOW DEPTH(FEET) = 1.95 TRAVEL TIME(MIN.) =

Tc(MIN.) = 12.38

SUBAREA AREA(ACRES) = 29.85 SUBAREA RUNOFF(CFS) = 71.57

EFFECTIVE AREA(ACRES) = 68.57 AREA-AVERAGED Fm(INCH/HR) = 0.14

AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.41

TOTAL AREA(ACRES) = 68.6 PEAK FLOW RATE(CFS) =

END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 2.11 FLOW VELOCITY(FEET/SEC.) = 19.06

LONGEST FLOWPATH FROM NODE 13.00 TO NODE

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FLOW PROCESS FROM NODE 16.00 TO NODE 16.60 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0050

FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 60.0 INCH PIPE IS 47.7 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 10.14

ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 169.77
PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 12.86
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.60 = 3100.00 FEET.

```
FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.86
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.826
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                                 SCS
                                               Fρ
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.13 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 2.83 EFFECTIVE AREA(ACRES) = 69.70 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.40 TOTAL AREA(ACRES) = 69.7 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
 FLOW PROCESS FROM NODE
                           16.10 TO NODE 16.20 IS CODE = 21
_____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 105.50 DOWNSTREAM(FEET) = 105.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.416
* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.759
 SUBAREA TC AND LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

CONDOMINIUMS D 1.80 0.20 0.350 75 13.42

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 4.36
TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) =
                                                             4.36
*******************
 FLOW PROCESS FROM NODE 16.20 TO NODE 16.30 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.636
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
B 2.42 0.30 0.350 56
B 0.90 0.30 0.100 56
B 1.92 0.30 0.850 56
      LAND USE
 CONDOMINIUMS
  COMMERCIAL
  PUBLIC PARK
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.490
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.92
 AVERAGE FLOW DEPTH(FEET) = 1.32 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 14.54
 SUBAREA AREA(ACRES) = 5.24 SUBAREA RUNOFF(CFS) = 11.74

EFFECTIVE AREA(ACRES) = 7.04 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45
                           7.0
 TOTAL AREA(ACRES) =
                                       PEAK FLOW RATE(CFS) =
         ==>>WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL
             CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM
             ALLOWABLE DEPTH).
             AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM
```

ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS.

DEPTH(FEET) = 1.50 FLOW VELOCITY(FEET/SEC.) = 7.06 ==>FLOWDEPTH EXCEEDS MAXIMUM ALLOWABLE DEPTH LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.30 =730.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.30 TO NODE 16.40 IS CODE = 31 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-\_\_\_\_\_\_ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 790.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.48 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.89 PIPE TRAVEL TIME(MIN.) = 1.76 Tc(MIN.) = 16.10 TO NODE LONGEST FLOWPATH FROM NODE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.40 TO NODE 16.40 IS CODE = 81 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< \_\_\_\_\_\_ MAINLINE Tc(MIN.) = 16.30\* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.471 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN B 3.09 0.30 0.100 56 B 2.54 0.30 0.850 56 B 2.54 0.30 0.850 56 COMMERCIAL PUBLIC PARK PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.566 SUBAREA AREA(ACRES) = 8.17 SUBAREA RUNOFF(CFS) = 16.92 EFFECTIVE AREA(ACRES) = 15.21 AREA-AVERAGED Fm(INCH/HR) = 0.15 AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.51 TOTAL AREA(ACRES) = 15.2 PEAK FLOW RATE(CFS) = FLOW PROCESS FROM NODE 16.40 TO NODE 16.50 IS CODE = 31 \_\_\_\_\_ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < < -----REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 390.00 MANNING'S N = 0.013DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.84 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 31.77PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 17.04LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.50 = 1910.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 81 \_\_\_\_\_\_ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< MAINLINE Tc(MIN.) = 17.04 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.410 SUBAREA LOSS RATE DATA(AMC II): AREA Fp DEVELOPMENT TYPE/ SCS SOIL GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.85 0.20 0.100 75
D 2.51 0.20 0.350 75 LAND USE COMMERCIAL

\_\_\_\_\_\_

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.244 SUBAREA AREA(ACRES) = 4.36 SUBAREA RUNOFF(CFS) = 9.27

EFFECTIVE AREA(ACRES) = 19.57 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45 TOTAL AREA(ACRES) = 19.6 PEAK FLOW RATE(CFS) =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 16.50 TO NODE 16.60 IS CODE = 31

\_\_\_\_\_\_

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<

\_\_\_\_\_\_

REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH(FEET) = 950.00 MANNING'S N = 0.013

```
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.4 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 9.39
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                                    NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 40.20
  PIPE TRAVEL TIME(MIN.) = 1.69 Tc(MIN.) = 18.73
LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.60
                                                             16.60 =
                                                                         2860.00 FEET.
  FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 ______
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
  MAINLINE Tc(MIN.) = 18.73
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.285
  SUBAREA LOSS RATE DATA(AMC II):
  SUBAREA LOSS RATE DATA(AMC 11).

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
PUBLIC PARK D 2.21 0.20 0.850 75
COMMERCIAL D 2.81 0.20 0.100 75
  PUBLIC PARK
  COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.430
 SUBAREA AREA(ACRES) = 5.02 SUBAREA RUNOFF(CFS) = 9.93

EFFECTIVE AREA(ACRES) = 24.59 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.45
  TOTAL AREA(ACRES) = 24.6
                                            PEAK FLOW RATE(CFS) =
************************
  FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        47.92
        18.73
        2.285
        0.27(0.12)
        0.45
        24.6
        16.10

        LONGEST
        FLOWPATH FROM NODE
        16.10
        TO NODE
        16.50
        =
        2860.00
        FEET.

  ** MEMORY BANK # 1 CONFLUENCE DATA **
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 169.77 12.86 2.826 0.33(0.13) 0.40 69.7 13.00

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.50 = 3100.00 FEET.
  ** PEAK FLOW RATE TABLE **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        210.92
        12.86
        2.826
        0.32(0.13)
        0.41
        86.6
        13.00

        2
        183.55
        18.73
        2.285
        0.31(0.13)
        0.42
        94.3
        16.10

    TOTAL AREA(ACRES) =
                                  94.3
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 210.92 Tc(MIN.) = 12.862
EFFECTIVE AREA(ACRES) = 86.59 AREA-AVERAGED Fm(INCH/HR) = 0.13
  AREA-AVERAGED Fp(INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 94.3
  LONGEST FLOWPATH FROM NODE
                                      13.00 TO NODE
                                                             16.50 =
                                                                         3100.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 12
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
**************************
 FLOW PROCESS FROM NODE 16.50 TO NODE 17.00 IS CODE = 31
 ______
  >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
  >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
  REPRESENTATIVE SLOPE = 0.0050
  FLOW LENGTH(FEET) = 1230.00 MANNING'S N = 0.013
  DEPTH OF FLOW IN 66.0 INCH PIPE IS 50.7 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 10.78
ESTIMATED PIPE DIAMETER(INCH) = 66.00
                                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 210.92

PIPE TRAVEL TIME(MIN.) = 1.90 Tc(MIN.) = 14.76

LONGEST FLOWPATH FROM NODE 13.00 TO NODE 17.00
                                                             17.00 = 4330.00 FEET.
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
```

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

```
______
 MAINLINE Tc(MIN.) = 14.76
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.614
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                                  Αp
                                        Fρ
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                 8.07
                                          0.40
 RESIDENTIAL
                        Α
                            6.11 0.40
3.62 0.40
                                                0.200
0.100
 "11+ DWELLINGS/ACRE"
                                                           32
 COMMERCIAL
                         Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.542
 SUBAREA AREA(ACRES) = 17.80 SUBAREA RUNOFF(CFS) = 38.39 EFFECTIVE AREA(ACRES) = 104.39 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.34 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 112.1
                                 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHEAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 60.0 INCH PIPE IS 46.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.30
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 231.84
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 15.08
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                             18.00 =
                                                       4600.00 FEET.
************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
       .____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 15.08
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.583
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                   Αp
                                                         SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                 2.09
                                         0.40
                                                  1.000
                         Α
 NATURAL POOR COVER
                                                 1.000
                                  4.65
 "BARREN"
                                          0.40
                                                           78
                        Α
 COMMERCIAL
                                  2.82
                                          0.40
                                                   0.100
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A 13.94 0.40 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 "11+ DWELLINGS/ACRE"
                                                 0.200
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA AREA(ACRES) = 23.50 SUBAREA RUNOFF(CFS) = 51.09
EFFECTIVE AREA(ACRES) = 127.89 AREA-AVERAGED FM(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 135.6
                                PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 18.00 TO NODE 19.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.478
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                   αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
  "OPEN BRUSH"
                                 2.68
                                          0.40
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        Α
                                         0.40
                                 9.73
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 293.02
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.87
 AVERAGE FLOW DEPTH(FEET) = 0.90 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 16.22
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 26.01 EFFECTIVE AREA(ACRES) = 140.30 AREA-AVERAGED Fm(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) = 0.15
```

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 148.0 PEAK FLOW RATE(CFS) = 293.95 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.90 FLOW VELOCITY(FEET/SEC.) = 8.90 19.00 = 5210.00 FEET. LONGEST FLOWPATH FROM NODE 13.00 TO NODE \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51 \_\_\_\_\_\_ >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.299 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 32
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME COMPUTED USING ESTIMATED LEGALCETY (FEET/SEC.) = 2.62
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.62 AVERAGE FLOW DEPTH(FEET) = 0.84 TRAVEL TIME(MIN.) = Tc(MIN.) = 18.52SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 3.21

EFFECTIVE AREA(ACRES) = 141.88 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.42

TOTAL AREA(ACRES) = 149.6 PEAK FLOW RATE(CFS) = 293.95 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.84 FLOW VELOCITY(FEET/SEC.) = 2.62 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5570.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11 >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY< \_\_\_\_\_\_ NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 293.95 18.52 2.299 0.35(0.15) 0.42 141.9 13.00
2 256.41 24.65 1.956 0.35(0.15) 0.42 149.6 16.10
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 5570.00 FRET \*\* MAIN STREAM CONFLUENCE DATA \*\* \*\* MEMORY BANK # 3 CONFLUENCE DATA \*\* CUDEVM En/Em)

| SIREAM  | Q          | 10        | Incensicy | rp(rm)      | Ap    | Ae      | HEADWAIER   |
|---------|------------|-----------|-----------|-------------|-------|---------|-------------|
| NUMBER  | (CFS)      | (MIN.)    | (INCH/HR) | (INCH/HR)   |       | (ACRES) | NODE        |
| 1       | 199.38     | 11.92     | 2.950     | 0.20( 0.09) | 0.45  | 77.3    | 11.01       |
| 2       | 208.56     | 14.60     | 2.630     | 0.20( 0.09) | 0.45  | 90.8    | 11.06       |
| 3       | 204.03     | 28.35     | 1.807     | 0.20( 0.09) | 0.46  | 132.3   | 1.00        |
| LONGEST | FLOWPATH F | FROM NODE | 1.00      | ) TO NODE   | 20.00 | = 544   | 40.00 FEET. |
|         |            |           |           |             |       |         |             |

## \*\* DEAK FLOW RATE TABLE \*\*

| LDAK   | I LOW ICHIL | TADLI  |           |             |      |         |           |
|--------|-------------|--------|-----------|-------------|------|---------|-----------|
| STREAM | Q           | Tc     | Intensity | Fp(Fm)      | Аp   | Ae      | HEADWATER |
| NUMBER | (CFS)       | (MIN.) | (INCH/HR) | (INCH/HR)   |      | (ACRES) | NODE      |
| 1      | 445.86      | 11.92  | 2.950     | 0.28( 0.12) | 0.44 | 168.6   | 11.01     |
| 2      | 475.99      | 14.60  | 2.630     | 0.28( 0.12) | 0.43 | 202.6   | 11.06     |
| 3      | 501.22      | 18.52  | 2.299     | 0.29( 0.12) | 0.44 | 244.5   | 13.00     |
| 4      | 461.66      | 24.65  | 1.956     | 0.28( 0.12) | 0.44 | 270.7   | 16.10     |
| 5      | 439.33      | 28.35  | 1.807     | 0.27( 0.12) | 0.44 | 281.9   | 1.00      |
| TOTAL  | AREA (ACRES | 5) =   | 281.9     |             |      |         |           |
|        |             |        |           |             |      |         |           |

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 501.22 Tc(MIN.) = 18.518

EFFECTIVE AREA(ACRES) = 244.49 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 281.9

5570.00 FEET. LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 =

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 12

>>>>CLEAR MEMORY BANK # 3 <<<< \_\_\_\_\_\_\_

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.115 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" A 11.87 0.40 0.200 NATURAL FAIR COVER "OPEN BRUSH" D 5.63 0.20 1.000 COMMERCIAL A 1.56 0.40 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.428 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 518.41 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.24 AVERAGE FLOW DEPTH(FEET) = 1.18 TRAVEL TIME(MIN.) = 2.93 Tc(MIN.) = 21.45SUBAREA AREA(ACRES) = 19.06 SUBAREA RUNOFF(CFS) = 34.36 EFFECTIVE AREA(ACRES) = 263.55 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 300.9 PEAK FLOW RATE(CFS) = NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 21.00 = 6140.00 FEET. FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.960 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL A 1.73 0.40 0.100 32 COMMERCIAL NATURAL FAIR COVER 0.20 1.000 "OPEN BRUSH" D 4.03 83 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.730 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.22
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 3.10 AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = Tc(MIN.) = 24.56SUBAREA AREA(ACRES) = 5.76 SUBAREA RUNOFF(CFS) = 9.37 EFFECTIVE AREA(ACRES) = 269.31 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44 TOTAL AREA(ACRES) = 306.7 PEAK FLOW RATE(CFS) = NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21 13.00 TO NODE 22.00 = LONGEST FLOWPATH FROM NODE 6740.00 FEET. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>> \_\_\_\_\_\_ CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 REPRESENTATIVE CHANNEL SLOPE = 0.0050 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00 \* 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.862 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "11+ DWELLINGS/ACRE" A 3.62 0.40 0.200

```
NATURAL FAIR COVER
                       D 4.01 0.20 1.000
A 1.68 0.40 0.100
   "OPEN BRIISH"
                                                                                              83
  COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.527
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.22
AVERAGE FLOW DEPTH(FEET) = 1.16 TRAVEL TIME(MIN.) = 2.33
  Tc(MIN.) = 26.88
  SUBAREA AREA(ACRES) = 9.31 SUBAREA RUNOFF(CFS) = 14.56 EFFECTIVE AREA(ACRES) = 278.62 AREA-AVERAGED Fm(INCH/HR) = 0.12
  AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 316.0 PEAK FLOW RATE(CFS) = 501.22
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) = 3.21
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7190.00 FEET.
______
  END OF STUDY SUMMARY:
  TUTAL AREA(ACRES) = 316.0 TC(MIN.) = 26.88

EFFECTIVE AREA(ACRES) = 278.62 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.444

PEAK FLOW RATE(CFS) = 501.22
  TOTAL AREA(ACRES) =
                                           316.0 \text{ TC}(MIN.) =
                                                                          26.88
  ** PEAK FLOW RATE TABLE **
  ** PEAK FLOW RATE TABLE **

STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 445.86 20.63 2.163 0.27(0.12) 0.45 202.7 11.01

2 475.99 23.11 2.028 0.27(0.12) 0.44 236.8 11.06

3 501.22 26.88 1.862 0.28(0.12) 0.44 278.6 13.00

4 461.66 33.27 1.650 0.27(0.12) 0.45 304.8 16.10

5 439.33 37.15 1.550 0.27(0.12) 0.45 316.0 1.00
                                                                                               11.01
                                                                                                   11.06
                                                                                                  13.00
                                                                                                   1.00
______
```

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

## Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P025 B.DAT
 TIME/DATE OF STUDY: 09:36 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
 1 30.0 20.0 0.018/0.018/0.020 0.67
                                        2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.841
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                              Ap SCS Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 75 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.86
 TOTAL AREA(ACRES) =
                    0.54 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 7.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.58
  STREET FLOW TRAVEL TIME(MIN.) = 2.97 Tc(MIN.) = 10.44
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.180
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Аp
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.63 0.20 0.100 75
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 1.79
EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                         1.2
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.34
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) = 0.64 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FEE
                                                52.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
  SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 9.41
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.14
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71

STREET FLOW TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 13.56
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.743
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                                                        Дp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.72 0.20 0.100 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 1.76
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 9.84
 FLOW VELOCITY (FEET/SEC.) = 2.19 DEPTH*VELOCITY (FT*FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                                                53.00 = 1050.00 FEET.
******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
_____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
  >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 16.63
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.443
  SUBAREA LOSS RATE DATA(AMC II):
                  E DATA (APIC 11).

E/ SCS SOIL AREA FP AP SCS

GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 6.76 0.20 0.100 75
  DEVELOPMENT TYPE/
      LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 14.74

EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 8.7
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.16
 FLOW VELOCITY(FEET/SEC.) = 3.00 DEPTH*VELOCITY(FT*FT/SEC.) = 1.46
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                  54.00 = 1550.00 FEET.
************************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
 ________
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 600.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 20.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.73
  STREET FLOW TRAVEL TIME(MIN.) = 3.07 Tc(MIN.) = 19.70
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.220
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 7.46 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 14.77

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                                       PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                           16.1
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.38
 FLOW VELOCITY(FEET/SEC.) = 3.42 DEPTH*VELOCITY(FT*FT/SEC.) = 1.92
 LONGEST FLOWPATH FROM NODE
                                50.00 TO NODE
                                                  55.00 = 2150.00 FEET.
******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
-----
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                            33.26
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.57
    HALFSTREET FLOOD WIDTH(FEET) = 22.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.45
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.96
  STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) =
                                                        22.12
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.079
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 1.47 0.20 0.100 75

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 2.72 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.6 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 22.54
 FLOW VELOCITY(FEET/SEC.) = 3.44 DEPTH*VELOCITY(FT*FT/SEC.) = 1.95 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
******************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.20
AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.69
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.26
 STREET FLOW TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 24.74 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.951
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fp
                                                          Аp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 12.28 0.20 0.100 75
      LAND USE
  COMMERCIAL
                                                        0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 21.34
EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                            29.9
                                       PEAK FLOW RATE(CFS) =
                                                                  51.90
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.07
 FLOW VELOCITY(FEET/SEC.) = 3.85 DEPTH*VELOCITY(FT*FT/SEC.) = 2.49 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FE
                                                    57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
       ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00
                                  CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) = 33.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.44
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.55 Tc(MIN.) = 27.29
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.846
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 75
D 9.91 0.20 0.600 75
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 64.38 EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED FM(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                               PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 36.44
 FLOW VELOCITY(FEET/SEC.) = 4.91 DEPTH*VELOCITY(FT*FT/SEC.) = 3.90
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 680.0 FT WITH ELEVATION-DROP = 6.8 FT, IS 112.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 58.00
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 58.00 = 3910.00 FEET.
******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.84
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 113.45
 PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) =
                                           28.36
 LONGEST FLOWPATH FROM NODE
                            50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 28.36
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.806
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 18.39
EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                     81.0
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 37.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 12.34
ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 129.35
```

```
PIPE TRAVEL TIME(MIN.) = 0.78 Tc(MIN.) = 29.15
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                      5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                        60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 29.15
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.779
 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 13.88 0.20 0.100 75
 SUBAREA LOSS RATE DATA(AMC II):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                         D
                                 4.45
                                          0.20
                                                   0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.124
 SUBAREA AREA(ACRES) = 18.33 SUBAREA RUNOFF(CFS) = 28.93

EFFECTIVE AREA(ACRES) = 99.35 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                    99.4
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 940.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 1.719
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                        D 24.16 0.20
D 4.43 0.20
                                                 1.000
0.350
 "OPEN BRUSH"
                                                           83
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.899
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 176.08
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 8.73
 AVERAGE FLOW DEPTH(FEET) = 1.10 TRAVEL TIME(MIN.) = 1.79
 Tc(MIN.) = 30.94
 SUBAREA AREA(ACRES) = 28.59 SUBAREA RUNOFF(CFS) = 39.61 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) =
                     127.9
                                    PEAK FLOW RATE(CFS) =
                                                           190.59
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.15 FLOW VELOCITY(FEET/SEC.) =
                                               8.99
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 = 6190.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                           127.9 \text{ TC}(MIN.) =
 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.321
PEAK FLOW RATE(CFS) = 190.59
______
______
```

END OF RATIONAL METHOD ANALYSIS

## Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P025 C.DAT
 TIME/DATE OF STUDY: 09:37 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 25.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                                 (FT)
                                        (FT) (FT) (FT)
NO.
    (FT)
          (FT)
                  SIDE / SIDE/ WAY
1 30.0 20.0 0.018/0.018/0.020 0.67
                                       2.00 0.0313 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
***********************
 FLOW PROCESS FROM NODE 80.00 TO NODE 81.00 IS CODE = 21
 ______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
                             108.00 DOWNSTREAM(FEET) = 106.00
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.003
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.693
 SUBAREA TO AND LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                             Ap
                                                   SCS Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
                              1.53
                                             1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 3.43
 TOTAL AREA(ACRES) =
                     1.53 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 12.85
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.97
 STREET FLOW TRAVEL TIME(MIN.) = 2.36 Tc(MIN.) =
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.466
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
                          D
                                  4.73
                                            0.20
  "BARREN"
                                                     1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.73 SUBAREA RUNOFF(CFS) = 9.65
EFFECTIVE AREA(ACRES) = 6.26 AREA-AVERAGED Fm(INCH/HR) = 0.20
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.43
 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) = 1.21 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FE
                                                         650.00 FEET.
************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 360.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.02
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.77
PIPE TRAVEL TIME(MIN.) = 0.86 Tc(MIN.) = 17.21
 LONGEST FLOWPATH FROM NODE
                            80.00 TO NODE
                                              83.00 = 1010.00 FEET.
 FLOW PROCESS FROM NODE 83.00 TO NODE 83.00 IS CODE = 81
     _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.21
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.396
 SUBAREA LOSS RATE DATA(AMC II):
                                         Fp
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                                     qД
                                                            SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 2.81 0.20 0.100 75
D 2.09 0.20 0.350 75
D 3.05 0.20 0.350 75
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.262
 SUBAREA AREA(ACRES) = 7.95 SUBAREA RUNOFF(CFS) = 16.77
EFFECTIVE AREA(ACRES) = 14.21 AREA-AVERAGED Fm(INCH/HR) = 0.12
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 14.2
                                  PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.42
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 29.14
 PIPE TRAVEL TIME(MIN.) = 0.49
                             49 Tc(MIN.) = 17.71
80.00 TO NODE 84.0
 LONGEST FLOWPATH FROM NODE
                                               84.00 = 1260.00 FEET.
*******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 84.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TC(MIN.) = 17.71
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.358
```

\*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =

```
SUBAREA LOSS RATE DATA(AMC II):
  CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.256
 SUBAREA AREA(ACRES) = 1.94 SUBAREA RUNOFF(CFS) = 4.03
EFFECTIVE AREA(ACRES) = 16.15 AREA-AVERAGED Fm(INCH/HR) = 0.11
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.55
                    16.1
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.88
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 32.68
 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) = 18.05
 LONGEST FLOWPATH FROM NODE
                           80.00 TO NODE
                                           85.00 =
                                                    1440.00 FEET.
************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 85.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.05
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.333
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.32 0.20 0.100 75
D 2.49 0.20 0.350 75
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.322
 SUBAREA AREA(ACRES) = 2.81 SUBAREA RUNOFF(CFS) = 5.74
EFFECTIVE AREA(ACRES) = 18.96 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) =
                      19.0
                                PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 85.00 TO NODE 86.00 IS CODE = 31
      _____
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 340.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.05
 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 18.67
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                           86.00 = 1780.00 FEET.
 FLOW PROCESS FROM NODE 86.00 TO NODE 86.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.67
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.288
 SUBAREA LOSS RATE DATA(AMC II):
                                       Fp
                               AREA
  DEVELOPMENT TYPE/ SCS SOIL
                                                 Аp
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 3.14 0.20 0.350 75
COMMERCIAL D 0.62 0.20 0.100 75
PUBLIC PARK D 1.37 0.20 0.850 75
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.453
 SUBAREA AREA(ACRES) = 5.13 SUBAREA RUNOFF(CFS) = 10.15
EFFECTIVE AREA(ACRES) = 24.09 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 24.1 PEAK FLOW RATE(CFS) =
********************
```

FLOW PROCESS FROM NODE 86.00 TO NODE 87.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.61
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.44
 PIPE TRAVEL TIME(MIN.) = 1.09 Tc(MIN.) = 19.77
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                              87.00 = 2410.00 FEET.
 FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.77
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.216
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.51 0.20 0.350 75
D 1.12 0.20 0.100 75
      LAND USE
 CONDOMINIUMS
 COMMERCIAL
 NATURAL FAIR COVER
                         D
                                  0.43
  "OPEN BRUSH"
                                           0.20
                                                   1.000 83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 5.06 SUBAREA RUNOFF(CFS) = 9.77

EFFECTIVE AREA(ACRES) = 29.15 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) = 29.1 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 87.00 TO NODE 88.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.10
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 55.64
 PIPE TRAVEL TIME(MIN.) = 0.46
                                Tc(MIN.) = 20.23
                                                       2690.00 FEET.
 LONGEST FLOWPATH FROM NODE
                             80.00 TO NODE
                                              88.00 =
********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.23
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.187
 SUBAREA LOSS RATE DATA(AMC II):
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.34 0.20 0.350 75
D 0.48 0.20 0.100 75
D 2.16 0.20 0.350 77
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                          Fр
                                                     Аp
     LAND USE
 CONDOMINIUMS
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.335
 SUBAREA AREA(ACRES) = 7.98 SUBAREA RUNOFF(CFS) = 15.22 EFFECTIVE AREA(ACRES) = 37.13 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                       37.1
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 88.00 TO NODE 89.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.68
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 70.11
PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 20.65
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 89.00 = 2960.00 FEET.
```

```
FLOW PROCESS FROM NODE 89.00 TO NODE 89.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.65
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.161
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                                   SCS
                                     Fρ
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                     D 2.41 0.20 0.350
D 2.55 0.20 0.100
 CONDOMINIUMS
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.221
 SUBAREA AREA(ACRES) = 4.96 SUBAREA RUNOFF(CFS) = 9.45
EFFECTIVE AREA(ACRES) = 42.09 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
                 42.1
 TOTAL AREA(ACRES) =
                            PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 89.00 TO NODE 97.00 IS CODE = 31
     _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 560.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.08
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 78.71
 PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                        80.00 TO NODE 97.00 = 3520.00 FEET.
******************
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21
     -----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            108.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.392
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                                  Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Ap SCS Tc
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
ERCIAL D 0.88 0.20 0.100 75 9.31
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                     2.67
 TOTAL AREA(ACRES) =
                   0.88 PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 260.00
                           CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
```

STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:

```
STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) = 9.28
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.13
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.70
 STREET FLOW TRAVEL TIME(MIN.) = 2.03 Tc(MIN.) = 11.35
  25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.034
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA FP AP SCS
GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.06 0.20 0.100 75
  DEVELOPMENT TYPE/
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 2.88

EFFECTIVE AREA(ACRES) = 1.94 AREA-AVERAGED FM(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                        1.9
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.43
 FLOW VELOCITY(FEET/SEC.) = 2.26 DEPTH*VELOCITY(FT*FT/SEC.) = 0.79
 LONGEST FLOWPATH FROM NODE
                            90.00 TO NODE
                                           92.00 =
                                                     560.00 FEET.
************************
 FLOW PROCESS FROM NODE 92.00 TO NODE 93.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) =
                              5.62
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.26
PIPE TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 13.21
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
*********************
 FLOW PROCESS FROM NODE 93.00 TO NODE 93.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.21
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.783
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                        D 5.84 0.20 0.350
D 2.34 0.20 0.100
D 8.66 0.20 0.350
 CONDOMINIUMS
                                                          75
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.315
 SUBAREA AREA(ACRES) = 16.84 SUBAREA RUNOFF(CFS) = 41.22 EFFECTIVE AREA(ACRES) = 18.78 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) = 18.8
                               PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 93.00 TO NODE 94.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.58
ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 46.04
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 13.63
 LONGEST FLOWPATH FROM NODE
                           90.00 TO NODE
                                           94.00 = 1430.00 FEET.
*************************
 FLOW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 81
   >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 13.63
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.734
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fρ
                                                  Яp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.80 0.20 0.850 75
     LAND USE
 PUBLIC PARK
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.800
 SUBAREA AREA(ACRES) = 4.07 SUBAREA RUNOFF(CFS) = 9.43

EFFECTIVE AREA(ACRES) = 22.85 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
                      22.9
                                PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
********************
                       94.00 TO NODE 95.00 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 25.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07
ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 54.65
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) =
                                          13.95
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                           95.00 =
                                                    1620.00 FEET.
*************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 95.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.95
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.699
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
    LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                       D 0.20 0.20 0.100
D 2.24 0.20 0.350
 COMMERCIAL
                                                        75
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.330
 SUBAREA AREA(ACRES) = 2.44 SUBAREA RUNOFF(CFS) = 5.78 EFFECTIVE AREA(ACRES) = 25.29 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                      25.3
                                PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 96.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.18
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 59.71
 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 14.45
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                          96.00 =
 FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 14.45
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.645
 SUBAREA LOSS RATE DATA(AMC II):
                                     Fp Ap
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       SCS
              GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.07 0.20 0.850 75
     LAND USE
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 5.07 SUBAREA RUNOFF(CFS) = 11.29 

EFFECTIVE AREA(ACRES) = 30.36 AREA-AVERAGED Fm(INCH/HR) = 0.09 

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.46
                      30.4
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 96.00 TO NODE 97.00 IS CODE = 31
 ._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013
```

0.20

0.100 75

0.27

D

```
DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.67
ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                            NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 69.78
 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 14.81
LONGEST FLOWPATH FROM NODE 90.00 TO NODE 97.00
                                                     97.00 =
                                                               2160.00 FEET.
  FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 11
 ______
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        69.78
        14.81
        2.609
        0.20(0.09)
        0.46
        30.4
        90.00

  LONGEST FLOWPATH FROM NODE 90.00 TO NODE 97.00 = 2160.00 FEET.
  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 78.71 21.49 2.113 0.20(0.08) 0.42 42.1 80.00 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 97.00 = 3520.00 FEET.
  ** PEAK FLOW RATE TABLE **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 137.27 14.81 2.609 0.20(0.09) 0.44 59.4 90.00
2 134.75 21.49 2.113 0.20(0.09) 0.43 72.4 80.00
                                                                          80.00
    TOTAL AREA(ACRES) =
                               72.4
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 137.27 Tc(MIN.) = 14.813
EFFECTIVE AREA(ACRES) = 59.37 AREA-AVERAGED Fm(INCH/HR) = 0.09
  AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
  TOTAL AREA(ACRES) = 72.4
                                                     97.00 = 3520.00 FEET.
                                 80.00 TO NODE
  LONGEST FLOWPATH FROM NODE
  FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 97.00 TO NODE 98.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
  REPRESENTATIVE SLOPE = 0.0100
  FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
  DEPTH OF FLOW IN 51.0 INCH PIPE IS 36.4 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 12.69
                                            NUMBER OF PIPES = 1
  ESTIMATED PIPE DIAMETER(INCH) = 51.00
  PIPE-FLOW(CFS) = 137.27
 PIPE TRAVEL TIME(MIN.) = 0.37 Tc(MIN.) = 15.18
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 98.00
                                                     98.00 =
                                                                 3800.00 FEET.
******************
 FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 81
       ______
  >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 15.18
  * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.573
  SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                      AREA
                                                            Ap
                                                 Fρ
                           GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                                      22.13
                                                0.20
  "OPEN BRUSH"
  NATURAL POOR COVER
  "BARREN"
                              D
                                       9.76
                                                 0.20
                                                            1.000
                                                                      93
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 31.89 SUBAREA RUNOFF(CFS) = 68.10

EFFECTIVE AREA(ACRES) = 91.26 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.63

TOTAL AREA(ACRES) = 104.3 PEAK FLOW RATE(CFS) = 200.88
______
  END OF STUDY SUMMARY:
                       = 104.3 TC(MIN.) = 15.18
 TOTAL AREA(ACRES)
```

EFFECTIVE AREA(ACRES) = 91.26 AREA-AVERAGED Fm(INCH/HR) = 0.13
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.634
PEAK FLOW RATE(CFS) = 200.88

| ** PEAK  | FLOW RATE | TABLE ** | ŧ         |             |       |         |           |
|----------|-----------|----------|-----------|-------------|-------|---------|-----------|
| STREAM   | Q         | Tc       | Intensity | Fp(Fm)      | Аp    | Ae      | HEADWATER |
| NUMBER   | (CFS)     | (MIN.)   | (INCH/HR) | (INCH/HR)   |       | (ACRES) | NODE      |
| 1        | 200.88    | 15.18    | 2.573     | 0.20( 0.13) | 0.63  | 91.3    | 90.00     |
| 2        | 185.08    | 21.87    | 2.092     | 0.20( 0.12) | 0.61  | 104.3   | 80.00     |
| ======== | =======   |          | ========  |             | ===== | ======= | ========  |

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

ii. EV 2-Year Storm Event

## Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P002 A.DAT
 TIME/DATE OF STUDY: 09:37 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
NO. (FT)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0312 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
******************
 FLOW PROCESS FROM NODE
                       1.00 TO NODE
                                        2.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 240.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               106.20 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.372
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        D
                                0.68
                                         0.20
                                                 0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) =
                       0.70
 TOTAL AREA(ACRES) =
                      0.68 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0050
 STREET LENGTH(FEET) = 300.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.26
   HALFSTREET FLOOD WIDTH(FEET) = 5.34
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.33
  STREET FLOW TRAVEL TIME(MIN.) = 3.86 Tc(MIN.) = 12.24
      2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.949
  SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 1.13 0.20 (
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                       0.200 57
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 0.92

EFFECTIVE AREA(ACRES) = 1.81 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 6.34
 FLOW VELOCITY(FEET/SEC.) = 1.34 DEPTH*VELOCITY(FT*FT/SEC.) = 0.37 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 540.00 FEET.
*************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 260.00
                                   CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.32
    HALFSTREET FLOOD WIDTH(FEET) = 8.97
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.48
 STREET FLOW TRAVEL TIME(MIN.) = 2.93 TC(MIN.) = 15.16
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.839
 SUBAREA LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                                       0.200 57
                            D
                                     3.39
                                               0.20
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 3.39 SUBAREA RUNOFF(CFS) = 2.44

EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 5.2
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 10.51
 FLOW VELOCITY(FEET/SEC.) = 1.58 DEPTH*VELOCITY(FT*FT/SEC.) = 0.56
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 800.00 FE
                                                   4.00 = 800.00 FEET.
********************
 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.75
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         0.69
 STREET FLOW TRAVEL TIME(MIN.) = 2.95 Tc(MIN.) = 18.11
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.758
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" D 6.51 0.20 0
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                 0.200 57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 6.51 SUBAREA RUNOFF(CFS) = 4.21 EFFECTIVE AREA(ACRES) = 11.71 AREA-AVERAGED FM(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 11.7
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.34
 FLOW VELOCITY(FEET/SEC.) = 1.86 DEPTH*VELOCITY(FT*FT/SEC.) = 0.78 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1110.00 FEET.
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 440.00
                               CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.13
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.00
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.90
 STREET FLOW TRAVEL TIME(MIN.) = 3.67 Tc(MIN.) = 21.78
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.682
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                                    Аp
                                 AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 8.39 0.20 0.100 57
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 8.39 SUBAREA RUNOFF(CFS) = 5.00 EFFECTIVE AREA(ACRES) = 20.10 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                         20.1
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.23
 FLOW VELOCITY(FEET/SEC.) = 2.07 DEPTH*VELOCITY(FT*FT/SEC.) = 0.97
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               6.00 = 1550.00 FEET.
*************************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
```

```
REPRESENTATIVE SLOPE = 0.0050
STREET LENGTH(FEET) = 360.00
                                CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 19.96
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.25
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.17
 STREET FLOW TRAVEL TIME(MIN.) = 2.67 Tc(MIN.) =
                                                   24.45
 * 2 YEAR RAINFALL INTENSITICING, ...,
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 18.43 0.20 0.100 57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 18.43 SUBAREA RUNOFF(CFS) = 10.25
EFFECTIVE AREA(ACRES) = 38.53 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
 TOTAL AREA(ACRES) = 38.5
                                  PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.84
 FLOW VELOCITY(FEET/SEC.) = 2.38 DEPTH*VELOCITY(FT*FT/SEC.) = 1.32
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                             7.00 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 550.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.07
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.21
PIPE TRAVEL TIME(MIN.) = 0.91 Tc(MIN.) =
                                              25.36
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
**********************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 25.36
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.625
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
    LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                        D 6.24 0.20 0.100
D 6.35 0.20 0.850
D 2.47 0.20 0.100
 COMMERCIAL
 PUBLIC PARK
                                                    0.100
                         D
 COMMERCIAL
 NATURAL POOR COVER
 "BARREN" D 3.55 0.20 1 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.528
 SUBAREA AREA(ACRES) = 18.61 SUBAREA RUNOFF(CFS) = 8.69
EFFECTIVE AREA(ACRES) = 57.14 AREA-AVERAGED Fm(INCH/HR) = 0.05
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.26
 TOTAL AREA(ACRES) =
                        57.1
                                   PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31
 ________
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.1000
 FLOW LENGTH(FEET) = 430.00 MANNING'S N = 0.013
```

\_\_\_\_\_\_

```
DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 20.26
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 29.45
 PIPE TRAVEL TIME(MIN.) = 0.35
                              5 Tc(MIN.) = 25.71
1.00 TO NODE 9.00
 LONGEST FLOWPATH FROM NODE
                                                9.00 =
                                                        2890.00 FEET.
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 51
 _____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 870.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0300
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.570
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                                   1.000
                                  13.41
                                           0.20
 "OPEN BRUSH"
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.59
 AVERAGE FLOW DEPTH(FEET) = 0.35 TRAVEL TIME(MIN.) = 4.04
 Tc(MIN.) = 29.75
 SUBAREA AREA(ACRES) = 13.41 SUBAREA RUNOFF(CFS) = 4.46
EFFECTIVE AREA(ACRES) = 70.55 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 3.54
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                               10.00 =
                                                          3760.00 FEET.
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 660.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.532
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
                                   9.71
 "OPEN BRUSH"
                                            0.20
                                                     1.000
                          D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED USING ESTIMATED THOM (C.C.)

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.92

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.76
 AVERAGE FLOW DEPTH(FEET) = 0.44 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 33.51
 SUBAREA AREA(ACRES) = 9.71 SUBAREA RUNOFF(CFS) = 2.90
EFFECTIVE AREA(ACRES) = 80.26 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                     80.3
                                     PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 FLOW VELOCITY(FEET/SEC.) = 2.89
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               11.00 =
********************
 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 510.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0150
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 10.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.507
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
```

```
"OPEN BRUSH" D 3.89 0.20 1
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                          0.20 1.000 67
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.93
 AVERAGE FLOW DEPTH(FEET) = 0.43 TRAVEL TIME(MIN.) = 2.90
 Tc(MIN.) = 36.42
 SUBAREA AREA(ACRES) = 3.89 SUBAREA RUNOFF(CFS) = 1.08 EFFECTIVE AREA(ACRES) = 84.15 AREA-AVERAGED Fm(INCH/HR) =
                                   AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 84.2 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 FLOW VELOCITY(FEET/SEC.) = 2.89
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 =
                                                       4930.00 FEET.
************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
*******************
 FLOW PROCESS FROM NODE 11.01 TO NODE 11.02 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 120.00
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.375
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.522
 SUBAREA TC AND LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA
LAND USE CROWN (ACRES) (II
                                           Fρ
                                                     Αр
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL D 0.19 0.20 0.100 57 5.38 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.26
TOTAL AREA(ACRES) = 0.19
                         0.19 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 FLOW PROCESS FROM NODE 11.02 TO NODE 11.03 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.25
   HALFSTREET FLOOD WIDTH(FEET) = 4.97
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.83
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.46
 STREET FLOW TRAVEL TIME(MIN.) = 3.01 Tc(MIN.) =
                                                   8.38
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.179
  SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                 AREA
                                                            SCS
                                           Fρ
                                                     Αp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.84 0.20 0.850 57
D 0.25 0.20 0.100 57
     LAND USE
 PUBLIC PARK
 COMMERCIAL
 NATURAL FAIR COVER
  "OPEN BRUSH"
                         D
                                  0.64
                                          0.20
                                                   1.000
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.816
SUBAREA AREA(ACRES) = 2.73 SUBAREA RUNOFF(CFS) = 2.50
EFFECTIVE AREA(ACRES) = 2.92 AREA-AVERAGED FM(INCH/HR) = 0.15
```

NATURAL FAIR COVER

```
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.77
 TOTAL AREA(ACRES) = 2.9 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) =
 FLOW VELOCITY(FEET/SEC.) = 1.97 DEPTH*VELOCITY(FT*FT/SEC.) = 0.58 LONGEST FLOWPATH FROM NODE 11.01 TO NODE 11.03 = 450.00 FEET.
*************************
                        11.03 TO NODE 11.04 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 490.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.78
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.69
 PIPE TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) = 10.09
 LONGEST FLOWPATH FROM NODE 11.01 TO NODE
                                            11.04 =
                                                       940.00 FEET.
************************
 FLOW PROCESS FROM NODE 11.04 TO NODE 11.04 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.09
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.060
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 1.18 0.20 0.100 57
D 1.15 0.20 0.350 57
D 4.75 0.20 0.350 57
    LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.308
 SUBAREA AREA(ACRES) = 7.08 SUBAREA RUNOFF(CFS) = 6.36
EFFECTIVE AREA(ACRES) = 10.00 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                    10.0
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
********************
 FLOW PROCESS FROM NODE 11.04 TO NODE 11.05 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.36
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.74
PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                            11.01 TO NODE
************************
 FLOW PROCESS FROM NODE 11.05 TO NODE 11.05 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE Tc(MIN.) = 11.14
   2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.002
 SUBAREA LOSS RATE DATA(AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
CONDOMINIUMS D 6.10 0.20 0.350 57
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 6.10 SUBAREA RUNOFF(CFS) = 5.11

EFFECTIVE AREA(ACRES) = 16.10 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                       16.1
                                 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 11.05 TO NODE 12.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
```

REPRESENTATIVE SLOPE = 0.0100

```
FLOW LENGTH(FEET) = 910.00 MANNING'S N = 0.013
   DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.4 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 7.06
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                                                     NUMBER OF PIPES = 1
   PIPE-FLOW(CFS) = 13.33
   PIPE TRAVEL TIME(MIN.) = 2.15
                                                            Tc(MIN.) =
                                                                                13.29
                                                   11.01 TO NODE
   LONGEST FLOWPATH FROM NODE
                                                                                 12.00 = 2250.00 FEET.
*************************
  FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
   ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        13.33
        13.29
        0.905
        0.20(0.08)
        0.41
        16.1
        11.01

        LONGEST
        FLOWPATH FROM NODE
        11.01
        TO NODE
        12.00
        =
        2250.00
        FEET.

   ** MEMORY BANK # 1 CONFLUENCE DATA **
STREAM Q TC Intensity
   ** MEMORY BANK # 1 CONFLOENCE DATA ""

STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 31.61 36.42 0.507 0.20(0.10) 0.50 84.2 1.00

LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 4930.00 FEET.
   ** PEAK FLOW RATE TABLE **
    | Teach | Table | Tabl
      TOTAL AREA(ACRES) =
                                                100.2
   COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
   AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.48
   TOTAL AREA(ACRES) = 100.2
   LONGEST FLOWPATH FROM NODE
                                                      1.00 TO NODE
                                                                                 12.00 = 4930.00 \text{ FEET}.
*************************
  FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
  >>>>CLEAR MEMORY BANK # 1 <<<<
______
******************
  FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 10
  >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<
_____
***********************
  FLOW PROCESS FROM NODE 11.06 TO NODE 11.07 IS CODE = 21
______
   >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
  >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
   INITIAL SUBAREA FLOW-LENGTH(FEET) = 340.00
   ELEVATION DATA: UPSTREAM(FEET) =
                                                             90.00 DOWNSTREAM(FEET) =
   Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
   SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.011
   * 2 YEAR RAINFALL INTENSITY(INCH/HR) =
   SUBAREA TC AND LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

CONDOMINIUMS D 1.54 0.20 0.350 57 9.01
   SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
   SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
   SUBAREA RUNOFF(CFS) = 1.47
TOTAL AREA(ACRES) = 1.54 PEAK FLOW RATE(CFS) =
  FLOW PROCESS FROM NODE 11.07 TO NODE 11.08 IS CODE = 31
   >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
   >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
   REPRESENTATIVE SLOPE = 0.0100
  FLOW LENGTH(FEET) = 450.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.9 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 4.03
```

```
PIPE-FLOW(CFS) = 1.47
PIPE TRAVEL TIME(MIN.) = 1.86 Tc(MIN.) = 10.87
                           11.06 TO NODE
 LONGEST FLOWPATH FROM NODE
*******************
 FLOW PROCESS FROM NODE 11.08 TO NODE 11.08 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.87
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.016
 SUBAREA LOSS RATE DATA(AMC I ):
                   SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                       D 0.43 0.20 0.100
D 1.14 0.20 0.350
D 4.05 0.20 0.350
 COMMERCIAL
                                                         57
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.331
 SUBAREA AREA(ACRES) = 5.62 SUBAREA RUNOFF(CFS) = 4.80

EFFECTIVE AREA(ACRES) = 7.16 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
                    7.2
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       11.08 TO NODE 11.09 IS CODE = 31
 FLOW PROCESS FROM NODE
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 500.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 12.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.69
 ESTIMATED PIPE DIAMETER(INCH) = 15.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.11
 PIPE TRAVEL TIME(MIN.) = 1.46 Tc(MIN.) =
                                          12.34
 LONGEST FLOWPATH FROM NODE 11.06 TO NODE
                                           11.09 = 1290.00 FEET.
*************************
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.09 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.34
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.945
 SUBAREA LOSS RATE DATA(AMC I ):
                                      Fp
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                Ap
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.41 0.20 0.100 57
D 1.13 0.20 0.350 57
D 0.62 0.20 0.350 57
D 0.48 0.20 0.350 57
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 CONDOMINIUMS
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.311
 SUBAREA AREA(ACRES) = 2.64 SUBAREA RUNOFF(CFS) = 2.10

EFFECTIVE AREA(ACRES) = 9.80 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                    9.8
                                PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 11.09 TO NODE 11.10 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 730.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.23
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
 PIPE-FLOW(CFS) = 7.75
 PIPE TRAVEL TIME(MIN.) = 1.95
LONGEST FLOWPATH FROM NODE 1
                           95 Tc(MIN.) = 14.29
11.06 TO NODE 11.10
                                            11.10 =
                                                    2020.00 FEET.
******************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.10 IS CODE = 81
  ._____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE TO(MIN.) = 14.29
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.868
```

NUMBER OF PIPES = 1

ESTIMATED PIPE DIAMETER(INCH) = 9.00

```
SUBAREA LOSS RATE DATA(AMC I ):
  CONDOMINIUMS
 CONDOMINIUMS
 CONDOMINIUMS
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.328
 SUBAREA AREA(ACRES) = 11.61 SUBAREA RUNOFF(CFS) = 8.39
EFFECTIVE AREA(ACRES) = 21.41 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
                       21.4
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 11.10 TO NODE 11.11 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.44
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                           NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 15.46
 PIPE TRAVEL TIME(MIN.) = 1.14 Tc(MIN.) = 15.43
 LONGEST FLOWPATH FROM NODE 11.06 TO NODE
                                                 11.11 = 2530.00 FEET.
 FLOW PROCESS FROM NODE 11.11 TO NODE 11.11 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.43
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.831
  SUBAREA LOSS RATE DATA(AMC I ):
                                            Fp
                                    AREA
  DEVELOPMENT TYPE/ SCS SOIL
      LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN ERCIAL D 0.44 0.20 0.100 57 OMINIUMS D 6.60 0.20 0.350 57
  COMMERCIAL
 CONDOMINIUMS
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.334
 SUBAREA AREA(ACRES) = 7.04 SUBAREA RUNOFF(CFS) = 4.84

EFFECTIVE AREA(ACRES) = 28.45 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) = 28.5
                                   PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 11.11 TO NODE 12.00 IS CODE = 31
 ______
  >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.74
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                           NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.58
PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 15.95
                                                 12.00 =
************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 11
 _____
 >>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        19.58
        15.95
        0.815
        0.20(0.07)
        0.33
        28.5
        11.06

        LONGEST
        FLOWPATH FROM NODE
        11.06
        TO NODE
        12.00
        =
        2770.00
        FEET.

  ** MEMORY BANK # 2 CONFLUENCE DATA **
                                                       Ae HEADWATER (ACRES)
  STREAM Q Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES
             36.11 13.29 0.905 0.20(0.09) 0.47 46.8 11.01
38.51 36.42 0.507 0.20(0.10) 0.48 100.2 1.00
    1
2
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 4930.00 FEET.
```

<sup>\*\*</sup> PEAK FLOW RATE TABLE \*\*

```
MBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 54.38 13.29 0.905 0.20(0.08) 0.42 70.5 11.01
2 55.97 15.95 0.815 0.20(0.08) 0.42 81.4 11.06
3 50.04 36.42 0.507 0.20(0.09) 0.45 120 7
  NUMBER
   3 50.04 36.42 0.507
TOTAL AREA(ACRES) = 128.7
                           0.507 0.20( 0.09) 0.45
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 55.97 Tc(MIN.) = 15.948
EFFECTIVE AREA(ACRES) = 81.40 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) = 128.7
 LONGEST FLOWPATH FROM NODE
                             1.00 TO NODE
                                             12.00 =
                                                     4930.00 FEET.
************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 2 <<<<<
_____
 FLOW PROCESS FROM NODE 12.00 TO NODE 20.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0200
 FLOW LENGTH(FEET) = 510.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.24
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 55.97
 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 16.59
 LONGEST FLOWPATH FROM NODE
                            1.00 TO NODE 20.00 = 5440.00 FEET.
*****************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 16.59
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.797
 SUBAREA LOSS RATE DATA(AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH" D 3.58 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                   1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 3.58 SUBAREA RINOFF(CFS) = 1.92

EFFECTIVE AREA(ACRES) = 84.98 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 132.3 PEAK FLOW RATE(CFS) = 55.97
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*************************
 FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 3 <<<<
______
 FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 370.00
 ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 100.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.106
 SUBAREA TC AND LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        D
                                 3.17
                                                   0.200 57 9.37
                                          0.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA RUNOFF(CFS) = 3.04
TOTAL AREA(ACRES) = 3.17 PEAK FLOW RATE(CFS) = 3.04
```

STREAM

```
********************
 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0500
 FLOW LENGTH(FEET) = 1660.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.94
 ESTIMATED PIPE DIAMETER(INCH) =
                             9.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.04
PIPE TRAVEL TIME(MIN.) = 3.10 Tc(MIN.) = 12.47
                                                 2030.00 FEET.
 LONGEST FLOWPATH FROM NODE
                          13.00 TO NODE
                                         15.00 =
*******************
 FLOW PROCESS FROM NODE 15.00 TO NODE 15.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.47
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.939
 SUBAREA LOSS RATE DATA(AMC I ):
                 SCS SOIL
                                   Fp Ap
  DEVELOPMENT TYPE/
                              AREA
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                            31.84 0.30 0.200
3.71 0.20 0.850
                      В
 "11+ DWELLINGS/ACRE"
                      D
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.268
 SUBAREA AREA(ACRES) = 35.55 SUBAREA RUNOFF(CFS) = 27.75 EFFECTIVE AREA(ACRES) = 38.72 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.26
                  38.7
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
*****************
 FLOW PROCESS FROM NODE
                      15.00 TO NODE
                                     16.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 780.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0400
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.899
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 RESTDENTIAL
 "11+ DWELLINGS/ACRE"
                      D
                            11.64
                                      0.20
                                              0.200
 NATURAL FAIR COVER
                          13.96 0.40
2.65 0.20
1.60 0.40
 "OPEN BRUSH"
                                            0.100
0.850
                                               1.000
                                                      28
                       Α
 COMMERCIAL
                       D
                                                      57
                      Α
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.37
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.600
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 13.28
 AVERAGE FLOW DEPTH(FEET) = 1.22 TRAVEL TIME(MIN.) = 0.98
 Tc(MIN.) = 13.45
 SUBAREA AREA(ACRES) = 29.85 SUBAREA RUNOFF(CFS) = 18.17

EFFECTIVE AREA(ACRES) = 68.57 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.31 FLOW VELOCITY(FEET/SEC.) = 13.77
 LONGEST FLOWPATH FROM NODE
                          13.00 TO NODE
                                         16.00 =
                                                   2810.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.00 TO NODE 16.60 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.49
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
PIPE-FLOW(CFS) = 47.09
                                    NUMBER OF PIPES = 1
```

PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) = 14.09

```
*******************
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.09
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.875
 SUBAREA LOSS RATE DATA(AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.13 0.40 0.100 17
SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.40
SUBAREA AVERAGE PERVIOUS AREA FRACTION, AP = 0.100
 SUBAREA AREA(ACRES) = 1.13 SUBAREA RUNOFF(CFS) = 0.85

EFFECTIVE AREA(ACRES) = 69.70 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.33 AREA-AVERAGED Ap = 0.40

TOTAL AREA(ACRES) = 69.7 PEAK FLOW RATE(CFS) = 47.09
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
*******************
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 10
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
*******************
 FLOW PROCESS FROM NODE 16.10 TO NODE 16.20 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 105.50 DOWNSTREAM(FEET) = 105.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.416
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.900
 SUBAREA TC AND LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

CONDOMINIUMS D 1.80 0.20 0.350 57 13.42

SUBAREA AVERAGE PERVIOUS LOSS RATE, FP(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) = 1.34
TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 16.20 TO NODE
                                           16.30 \text{ TS CODE} = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 1.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.846
 SUBAREA LOSS RATE DATA(AMC I ):
                                         Fp
  DEVELOPMENT TYPE/ SCS SOIL
                                  AREA
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                         B 2.42 0.30 0.350
B 0.90 0.30 0.100
B 1.92 0.30 0.850
 CONDOMINIUMS
 COMMERCIAL
                                                      0.850
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.490
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.00
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.36
AVERAGE FLOW DEPTH(FEET) = 0.83 TRAVEL TIME(MIN.) = 1.53
 Tc(MIN.) = 14.94
 TC(MIN.) = 14.94

SUBAREA AREA(ACRES) = 5.24

SUBAREA RUNOFF(CFS) = 3.30

EFFECTIVE AREA(ACRES) = 7.04

AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28

AREA-AVERAGED Ap = 0.45
                           7.0
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.97 FLOW VELOCITY(FEET/SEC.) = 4.82
 LONGEST FLOWPATH FROM NODE
                               16.10 TO NODE
                                                16.30 =
*****************
 FLOW PROCESS FROM NODE 16.30 TO NODE 16.40 IS CODE = 31
 ______
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
_____
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 790.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.47
ESTIMATED PIPE DIAMETER(INCH) = 15.00
 ESTIMATED PIPE DIAMETER.

PIPE-FLOW(CFS) = 4.55

PIPE TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) = 17.35

- FLOWDATH FROM NODE 16.10 TO NODE 16.40
                                      NUMBER OF PIPES = 1
                                                    1520.00 FEET.
                                            16.40 =
********************
 FLOW PROCESS FROM NODE 16.40 TO NODE 16.40 IS CODE = 81
      _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
-----
 MAINLINE TO(MIN.) = 17.35
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.777
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                        Fρ
                                                  Αp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
B 3.09 0.30 0.100 36
B 2.54 0.30 0.850 36
B 2.54 0.30 0.850 36
    LAND USE
 COMMERCIAL
 PUBLIC PARK
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.566
 SUBAREA AREA(ACRES) = 8.17 SUBAREA RUNOFF(CFS) = 4.46
EFFECTIVE AREA(ACRES) = 15.21 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) = 15.2
                                PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 16.40 TO NODE 16.50 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 390.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.34
ESTIMATED PIPE DIAMETER(INCH) = 18.00
 ESTIMATED PIPE DIAMETER()...

PIPE-FLOW(CFS) = 8.57

PIPE TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 18.38

TOWDATH FROM NODE 16.10 TO NODE 16.50
                                      NUMBER OF PIPES = 1
                                           16.50 = 1910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.38
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.244
 SUBAREA AREA(ACRES) = 4.36 SUBAREA RUNOFF(CFS) = 2.76

EFFECTIVE AREA(ACRES) = 19.57 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.45
 TOTAL AREA(ACRES) = 19.6
                                PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.60 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 950.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.82
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.99
 PIPE TRAVEL TIME(MIN.) = 2.32 Tc(MIN.) = 20.70
LONGEST FLOWPATH FROM NODE 16.10 TO NODE 16.60 =
***********************
 FLOW PROCESS FROM NODE 16.60 TO NODE 16.60 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.70
   2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.702
 SUBAREA LOSS RATE DATA(AMC I ):
                                             Fp Ap
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                                  SCS
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 2.21 0.20 0.850 57
D 2.81 0.20 0.100 57
      LAND USE
 PUBLIC PARK
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.430
 SUBAREA AREA(ACRES) = 5.02 SUBAREA RUNOFF(CFS) = 2.78

EFFECTIVE AREA(ACRES) = 24.59 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.45
 TOTAL AREA(ACRES) =
                        24.6
                                     PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 11
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        12.90
        20.70
        0.702
        0.27(0.12)
        0.45
        24.6
        16.10

        LONGEST
        FLOWPATH FROM NODE
        16.10
        TO NODE
        16.50
        =
        2860.00
        FEET.

  ** MEMORY BANK # 1 CONFLUENCE DATA **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 47.09 14.09 0.875 0.33(0.13) 0.40 69.7 13.00
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 16.50 = 3100.00 FEET.
  ** PEAK FLOW RATE TABLE **
  STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
   1 58.49 14.09 0.875 0.32(0.13) 0.41
2 48.98 20.70 0.702 0.31(0.13) 0.42
TOTAL AREA(ACRES) = 94.3
                                                         86.4
                                                                    13.00
                                                             94.3
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 58.49 Tc(MIN.) = 14.093
EFFECTIVE AREA(ACRES) = 86.44 AREA-AVERAGED Fm(INCH/HR) = 0.13
AREA-AVERAGED Fp(INCH/HR) = 0.31 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) = 94.3
 LONGEST FLOWPATH FROM NODE
                                 13.00 TO NODE
                                                    16.50 =
                                                              3100.00 FEET.
*******************
 FLOW PROCESS FROM NODE 16.50 TO NODE 16.50 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
********************
 FLOW PROCESS FROM NODE 16.50 TO NODE 17.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0050
 FLOW LENGTH(FEET) = 1230.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.90
                                           NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
 PIPE-FLOW(CFS) = 58.49
 PIPE TRAVEL TIME(MIN.) = 2.60 Tc(MIN.) = 16.69
 LONGEST FLOWPATH FROM NODE
                                13.00 TO NODE
                                                   17.00 =
                                                               4330.00 FEET.
*******************
 FLOW PROCESS FROM NODE 17.00 TO NODE 17.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.69
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.794
 SUBAREA LOSS RATE DATA(AMC I):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                               Fρ
                          GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 NATURAL FAIR COVER
                            A
  "OPEN BRUSH"
                                     8.07
                                               0.40 1.000 28
```

RESIDENTIAL

```
"11+ DWELLINGS/ACRE" A 6.11 0.40 0.200 17
COMMERCIAL A 3.62 0.40 0.100 17
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.542
 SUBAREA AREA(ACRES) = 17.80 SUBAREA RUNOFF(CFS) = 9.25

EFFECTIVE AREA(ACRES) = 104.24 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.34 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 112.1
                               PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 31
      ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.19
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 60.81
 PIPE TRAVEL TIME(MIN.) = 0.44
                                Tc(MIN.) = 17.13
 LONGEST FLOWPATH FROM NODE
                           13.00 TO NODE
                                           18.00 = 4600.00 FEET.
*************************
 FLOW PROCESS FROM NODE 18.00 TO NODE 18.00 IS CODE = 81
     ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 17.13
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.782
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fρ
                                                  Αp
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL FAIR COVER
 "OPEN BRUSH"
                               2.09
                                         0.40
                                                1.000
 NATURAL POOR COVER
                       A 4.65 0.40
A 2.82 0.40
                                                1.000
 "BARREN"
 COMMERCIAL
                                                0.100 17
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                       Α
                               13.94
                                        0.40
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA AREA(ACRES) = 23.50 SUBAREA RUNOFF(CFS) = 13.02

EFFECTIVE AREA(ACRES) = 127.74 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 135.6
                               PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 18.00 TO NODE
                                       19.00 \text{ TS CODE} = 51
 ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0100
CHANNEL BASE(FEET) = 35.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 3.00
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.736
 SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL
                               AREA Fp
                                                Ap
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                                 2.68
                                         0.40
 RESIDENTIAL
 "11+ DWELLINGS/ACRE" A
                                               0.200
                                9.73
                                      0.40
                                                         17
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.29
 AVERAGE FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 1.92
 Tc(MIN.) = 19.05
 SUBAREA AREA(ACRES) = 12.41 SUBAREA RUNOFF(CFS) = 6.56

EFFECTIVE AREA(ACRES) = 140.15 AREA-AVERAGED Fm(INCH/HR) = 0.15

AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 148.0
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 5.25
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 19.00 =
********************
```

FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 51

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 360.00
  REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
  MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.661
  SUBAREA LOSS RATE DATA(AMC I ):
   DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       Fp
  LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL A 1.58 0.40 0.100 17
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.40
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
  TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
  TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.53
  AVERAGE FLOW DEPTH(FEET) = 0.37 TRAVEL TIME(MIN.) = 3.92
  Tc(MIN.) = 22.98
 SUBAREA AREA(ACRES) = 1.58 SUBAREA RUNOFF(CFS) = 0.88
EFFECTIVE AREA(ACRES) = 141.73 AREA-AVERAGED Fm(INCH/HR) = 0.15
AREA-AVERAGED Fp(INCH/HR) = 0.35 AREA-AVERAGED Ap = 0.42
  TOTAL AREA(ACRES) = 149.6
                                         PEAK FLOW RATE(CFS) =
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 1.52
  LONGEST FLOWPATH FROM NODE 13.00 TO NODE
  FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 11
  >>>>CONFLUENCE MEMORY BANK # 3 WITH THE MAIN-STREAM MEMORY<
______
  ** MAIN STREAM CONFLUENCE DATA **
   STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
                                                                               13.00
  1 73.95 22.98 0.661 0.35(0.15) 0.42 141.7
2 62.40 30.13 0.566 0.35(0.15) 0.42 149.6
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 20.00 = 557
                                                           20.00 = 5570.00 FEET.
 ** MEMORY BANK # 3 CONFLUENCE DATA **

STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 54.38 13.95 0.880 0.20(0.09) 0.45 74.1 11.01

2 55.97 16.59 0.797 0.20(0.09) 0.44 85.0 11.06

3 50.04 37.09 0.502 0.20(0.09) 0.46 132.3 1.00

LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 = 5440.00 FEET.
  ** PEAK FLOW RATE TABLE **
   ** PEAK FLOW RATE TABLE **
STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 118.49 13.95 0.880 0.28( 0.12) 0.43 160.1 11.01
2 123.51 16.59 0.797 0.28( 0.12) 0.43 187.3 11.06
3 128.07 22.98 0.661 0.29( 0.12) 0.43 241.5 13.00
4 114.45 30.13 0.566 0.28( 0.12) 0.44 265.8 16.10
5 102.96 37.09 0.502 0.27( 0.12) 0.44 281.9 1.00
TOTAL AREA(ACRES) = 281.9
                                                                                   11.06
  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 128.07 Tc(MIN.) = 22.978
EFFECTIVE AREA(ACRES) = 241.45 AREA-AVERAGED Fm(INCH/HR) = 0.12
  AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.43
  TOTAL AREA(ACRES) = 281.9
  LONGEST FLOWPATH FROM NODE
                                       13.00 TO NODE
                                                            20.00 = 5570.00 FEET.
*******************
 FLOW PROCESS FROM NODE 20.00 TO NODE
                                                      20.00 \text{ IS CODE} = 12
 >>>>CLEAR MEMORY BANK # 3 <<<<
 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 51
        ______
  >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
  CHANNEL LENGTH THRU SUBAREA(FEET) = 570.00
  REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
  MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
```

```
SUBAREA LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                     11.87
                                                0.40
                                                          0.200
                                                                    17
                            Α
 NATURAL FAIR COVER
                            D 5.63 0.20 1.000
A 1.56 0.40 0.100
  "OPEN BRUSH"
  COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.428
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 132.18
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.91
AVERAGE FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 4.97
 Tc(MIN.) = 27.95
 SUBAREA AREA(ACRES) = 19.06 SUBAREA RUNOFF(CFS) = 8.21 EFFECTIVE AREA(ACRES) = 260.51 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.43 TOTAL AREA(ACRES) = 300.9 PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 FLOW VELOCITY(FEET/SEC.) = 1.90
                                                              6140.00 FEET.
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 21.00 =
*******************
 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 51
       ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
-----
 CHANNEL LENGTH THRU SUBAREA(FEET) = 600.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
 * 2 YEAR RAINFALL INTENSITION, SUBAREA LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL A 1.73 0.40 0.100 17
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.535
  "OPEN BRUSH"
                             D
                                      4.03
                                                 0.20
                                                           1.000
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.730
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.89
 AVERAGE FLOW DEPTH(FEET) = 0.51 TRAVEL TIME(MIN.) = 5.28
 Tc(MIN.) = 33.23
 SUBAREA AREA(ACRES) = 5.76 SUBAREA RUNOFF(CFS) = 1.98

EFFECTIVE AREA(ACRES) = 266.27 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44

TOTAL AREA(ACRES) = 306.7 PEAK FLOW RATE(CFS) = 128.07
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 FLOW VELOCITY(FEET/SEC.) = 1.90
 LONGEST FLOWPATH FROM NODE
                                13.00 TO NODE
                                                    22.00 =
************************
 FLOW PROCESS FROM NODE 22.00 TO NODE 23.00 IS CODE = 51
 _____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0050
CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 6.00
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.502
 SUBAREA LOSS RATE DATA(AMC I ):
                                             Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                                 SCS
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
  "11+ DWELLINGS/ACRE"
                                      3.62
                                                 0.40
                                                          0.200
                                                                    17
                            Α
 NATURAL FAIR COVER
                                      4.01 0.20
1.68 0.40
                                                        1.000
0.100
  "OPEN BRUSH"
                            D
  COMMERCIAL
                             Α
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.24
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.527
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 129.65
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.90
AVERAGE FLOW DEPTH(FEET) = 0.51 TRAVEL TIME(MIN.) = 3.94
 Tc(MIN.) = 37.17
```

\* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.591

```
SUBAREA AREA(ACRES) = 9.31 SUBAREA RUNOFF(CFS) = 3.16

EFFECTIVE AREA(ACRES) = 275.58 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.44
  TOTAL AREA(ACRES) = 316.0 PEAK FLOW RATE(CFS) =
  NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
  END OF SUBAREA CHANNEL FLOW HYDRAULICS:
  DEPTH(FEET) = 0.51 FLOW VELOCITY(FEET/SEC.) = 1.90
LONGEST FLOWPATH FROM NODE 13.00 TO NODE 23.00 = 7190.00 FEET.
______
  END OF STUDY SUMMARY:
 END OF STUDY SUMMAR:

TOTAL AREA(ACRES) = 316.0 TC(MIN.) = 37.17

EFFECTIVE AREA(ACRES) = 275.58 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.443

DEAK FLOW RATE(CFS) = 128.07
  ** PEAK FLOW RATE TABLE **
               Q Tc Intensity Fp(Fm) Ap (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                                              Ae HEADWATER (ACRES) NODE
   STREAM
   NUMBER
       1 118.49 28.53 0.584 0.27(0.12) 0.45
2 123.51 30.97 0.557 0.27(0.12) 0.44
3 128.07 37.17 0.502 0.28(0.12) 0.44
4 114.45 44.94 0.450 0.27(0.12) 0.45
5 102.96 52.50 0.411 0.27(0.12) 0.45
                                                                             194.3
                                                                                              11.01
                                                                             221.4
275.6
299.9
316.0
                                                                                                 11.06
                                                                                                 13.00
                                                                                            16.10
1.00
______
```

\_\_\_\_\_\_

END OF RATIONAL METHOD ANALYSIS

## Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes)

Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P002 B.DAT
 TIME/DATE OF STUDY: 09:38 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                  0.018/0.018/0.020 0.67
                                         2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
********************
 FLOW PROCESS FROM NODE
                       50.00 TO NODE
                                      51.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              110.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.477
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                Αp
                                                      SCS
                                                            TC
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
D 0.54 0.20 0.100 57 7.48
     LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                       0.60
 TOTAL AREA(ACRES) =
                     0.54 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                            CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
```

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.20
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.43
  STREET FLOW TRAVEL TIME(MIN.) = 2.69 Tc(MIN.) = 10.16
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.056
 SUBAREA LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

COMMERCIAL D 0.63 0.20 0.100 57
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.63 SUBAREA RUNOFF(CFS) = 0.59

EFFECTIVE AREA(ACRES) = 1.17 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                       1.2
                                     PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 3.34
 FLOW VELOCITY(FEET/SEC.) = 1.86 DEPTH*VELOCITY(FT*FT/SEC.) = 0.41 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00 = 650.00 FE
                                               52.00 = 650.00 FEET.
*****************
 FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <>>>
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
    **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.82
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.44
STREET FLOW TRAVEL TIME(MIN.) = 3.67 Tc(MIN.) = 13.83
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.885
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                        Ap
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.72 0.20 0.100 57
     LAND USE
 COMMERCIAL
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 0.56
EFFECTIVE AREA(ACRES) = 1.89 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 4.84
 FLOW VELOCITY(FEET/SEC.) = 1.82 DEPTH*VELOCITY(FT*FT/SEC.) = 0.45
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00 = 1050.00 FE
                               50.00 TO NODE 53.00 = 1050.00 FEET.
*******************
 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 62
 _____
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 500.00
                                 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.32
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.67
 STREET FLOW TRAVEL TIME(MIN.) = 3.97 Tc(MIN.) = 17.81
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.765
 SUBAREA LOSS RATE DATA(AMC I ):
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 6.76 0.20 0.100 57
      LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 6.76 SUBAREA RUNOFF(CFS) = 4.53
EFFECTIVE AREA(ACRES) = 8.65 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                          8.7
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 10.98
 FLOW VELOCITY(FEET/SEC.) = 2.28 DEPTH*VELOCITY(FT*FT/SEC.) = 0.82 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 54.00 = 1550.00 FE
                                                           1550.00 FEET.
********************
 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 600.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                           8.02
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 12.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.46
 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.96
STREET FLOW TRAVEL TIME(MIN.) = 4.07 Tc(MIN.) = 21.88
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.680
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D 7.46 0.20 0.100 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, F_P(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.46 SUBAREA RUNOFF(CFS) = 4.43

EFFECTIVE AREA(ACRES) = 16.11 AREA-AVERAGED FM(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 16.1
                                    PEAK FLOW RATE(CFS) =
                                                                  9.57
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.71
 FLOW VELOCITY(FEET/SEC.) = 2.55 DEPTH*VELOCITY(FT*FT/SEC.) = 1.04 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 55.00 = 2150.00 FE
                                                 55.00 = 2150.00 FEET.
*******************
 FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 13.95
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 2.58
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
 STREET FLOW TRAVEL TIME(MIN.) = 3.23 Tc(MIN.) = 25.11
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.628
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D 1.47 0.20 0.100 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.47 SUBAREA RUNOFF(CFS) = 0.80 EFFECTIVE AREA(ACRES) = 17.58 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                         17.6
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.71
 FLOW VELOCITY(FEET/SEC.) = 2.57 DEPTH*VELOCITY(FT*FT/SEC.) = 1.05
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 = 2650.00 FEET.
********************
 FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRU SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 580.00
                                CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 15.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.74
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.20
 STREET FLOW TRAVEL TIME(MIN.) = 3.52 Tc(MIN.) = 28.63
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.583
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 12.28 0.20 0.100 57
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 12.28 SUBAREA RUNOFF(CFS) = 6.22

EFFECTIVE AREA(ACRES) = 29.86 AREA-AVERAGED Fm(INCH/HR) = 0.02

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
                        29.9
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
                                                               15.12
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.60
 FLOW VELOCITY(FEET/SEC.) = 2.85 DEPTH*VELOCITY(FT*FT/SEC.) = 1.31
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 57.00 = 3230.00 FEET.
 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 62
 ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
```

```
REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 19.96
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.66
 STREET FLOW TRAVEL TIME(MIN.) = 3.53 Tc(MIN.) =
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.545
 SUBAREA LOSS RATE DATA(AMC I ):
                                        Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 29.81 0.20 0.100 57
D 9.91 0.20 0.600 57
                                                   Aр
     LAND USE
 COMMERCIAL
 SCHOOL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.225
 SUBAREA AREA(ACRES) = 39.72 SUBAREA RUNOFF(CFS) = 17.87
EFFECTIVE AREA(ACRES) = 69.58 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 69.6
                                 PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.38
 FLOW VELOCITY(FEET/SEC.) = 3.43 DEPTH*VELOCITY(FT*FT/SEC.) = 1.93
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE
                                           58.00 = 3910.00 FEET.
*******************
 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 760.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.85
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                8.85
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.98
 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) = 33.59
 LONGEST FLOWPATH FROM NODE
                             50.00 TO NODE
*******************
 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 81
  ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 33.59
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.532
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 11.44 0.20 0.100 57
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 11.44 SUBAREA RUNOFF(CFS) = 5.27

EFFECTIVE AREA(ACRES) = 81.02 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
                       81.0
 TOTAL AREA(ACRES) =
                                  PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.01
ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    36.41
```

```
PIPE TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 34.67
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 60.00 =
                                                     5250.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                        60.00 TO NODE 60.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 34.67
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.522
 SUBAREA LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN

D 13.88 0.20 0.100 57
 SUBAREA LOSS RATE DATA(AMC I ):
 COMMERCIAL
 RESIDENTIAL
 "11+ DWELLINGS/ACRE"
                        D
                                 4.45
                                          0.20
                                                  0.200
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.124
 SUBAREA AREA(ACRES) = 18.33 SUBAREA RUNOFF(CFS) = 8.20
EFFECTIVE AREA(ACRES) = 99.35 AREA-AVERAGED Fm(INCH/HR) = 0.03
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
                    99.4
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 CHANNEL LENGTH THRU SUBAREA(FEET) = 940.00
 REPRESENTATIVE CHANNEL SLOPE = 0.0350
CHANNEL BASE(FEET) = 15.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 7.00
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.499
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 NATURAL FAIR COVER
                        D 24.16 0.20
D 4.43 0.20
                                                1.000
0.350
 "OPEN BRUSH"
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.899
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 5.63
 AVERAGE FLOW DEPTH(FEET) = 0.52 TRAVEL TIME(MIN.) = 2.78
 Tc(MIN.) = 37.45
 SUBAREA AREA(ACRES) = 28.59 SUBAREA RUNOFF(CFS) = 8.22 EFFECTIVE AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) =
                    127.9
                                   PEAK FLOW RATE(CFS) =
                                                           50.11
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 FLOW VELOCITY(FEET/SEC.) =
                                              5.69
 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 61.00 = 6190.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                          127.9 \text{ TC}(MIN.) =
 TOTAL AREA(ACRES) = 127.94 AREA-AVERAGED Fm(INCH/HR) = 0.06
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.321
 PEAK FLOW RATE(CFS) =
                         50.11
______
______
```

END OF RATIONAL METHOD ANALYSIS

## Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2007 Advanced Engineering Software (aes) Ver. 13.5 Release Date: 02/06/2007 License ID 1355

Analysis prepared by:

```
FILE NAME: P002 C.DAT
 TIME/DATE OF STUDY: 09:38 04/09/2008
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.5740
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.3810
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
         (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n)
=== ====
   30.0
                   0.018/0.018/0.020 0.67
                                          2.00 0.0313 0.167 0.0150
           20.0
 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
******************
 FLOW PROCESS FROM NODE
                       80.00 TO NODE
                                      81.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               108.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.003
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.878
 SUBAREA TC AND LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fρ
                                                       SCS
                                                            TC
                                                 αA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL POOR COVER
 "BARREN"
                                1.53
                                         0.20
                                                1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) =
                       0.93
 TOTAL AREA(ACRES) =
                      1.53 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 81.00 TO NODE 82.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 350.00
                             CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.28
   HALFSTREET FLOOD WIDTH(FEET) = 6.53
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.53
 STREET FLOW TRAVEL TIME(MIN.) = 3.08 Tc(MIN.) = 17.08
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.784
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 NATURAL POOR COVER
 "BARREN" D 4.73 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                  1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 4.73 SUBAREA RUNOFF(CFS) = 2.48

EFFECTIVE AREA(ACRES) = 6.26 AREA-AVERAGED Fm(INCH/HR) = 0.20

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                     6.3
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 8.28
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) = 0.63 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 82.00 = 650.00 FEET.
*************************
 FLOW PROCESS FROM NODE 82.00 TO NODE 83.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 360.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.91
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.29
PIPE TRAVEL TIME(MIN.) = 1.22 Tc(MIN.) = 18.30
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                              83.00 = 1010.00 FEET.
*****************
 FLOW PROCESS FROM NODE 83.00 TO NODE 83.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE TC(MIN.) = 18.30
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.753
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                          Fp
                                  AREA
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 2.81 0.20 0.100 57
CONDOMINIUMS D 2.09 0.20 0.350 57
CONDOMINIUMS D 3.05 0.20 0.350 57
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.262
 SUBAREA AREA(ACRES) = 7.95 SUBAREA RUNOFF(CFS) = 5.01

EFFECTIVE AREA(ACRES) = 14.21 AREA-AVERAGED Fm(INCH/HR) = 0.12

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) =
                     14.2
                                   PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 83.00 TO NODE 84.00 IS CODE = 31
      ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.29
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                        NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.13
PIPE TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 18.97
 LONGEST FLOWPATH FROM NODE
                              80.00 TO NODE
*****************
 FLOW PROCESS FROM NODE 84.00 TO NODE 84.00 IS CODE = 81
 ______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.97
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.738
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
     LAND USE
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.73 0.20 0.100 57
D 1.21 0.20 0.350 57
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.256
 SUBAREA AREA(ACRES) = 1.94 SUBAREA RUNOFF(CFS) = 1.20

EFFECTIVE AREA(ACRES) = 16.15 AREA-AVERAGED Fm(INCH/HR) = 0.11

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 16.1
                                PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 84.00 TO NODE 85.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.39
ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.14
PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = 19.43
                                                     1440.00 FEET.
 LONGEST FLOWPATH FROM NODE
                            80.00 TO NODE
                                             85.00 =
*******************
 FLOW PROCESS FROM NODE 85.00 TO NODE 85.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 19.43
  2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.728
 * 2 YEAR RAINFALL INTENSITY THEN, TO,
SUBAREA LOSS RATE DATA(AMC I ):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
COMMERCIAL D 0.32 0.20 0.100 57
CONDOMINIUMS D 2.49 0.20 0.350 57
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.322
 SUBAREA AREA(ACRES) = 2.81 SUBAREA RUNOFF(CFS) = 1.68
EFFECTIVE AREA(ACRES) = 18.96 AREA-AVERAGED Fm(INCH/HR) = 0.10
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.51
 TOTAL AREA(ACRES) = 19.0
                                 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 85.00 TO NODE 86.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SHBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 340.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.78
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.66
 PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) =
                                           20.27
 LONGEST FLOWPATH FROM NODE 80.00 TO NODE
                                             86.00 =
*******************
 FLOW PROCESS FROM NODE 86.00 TO NODE 86.00 IS CODE = 81
     _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 20.27
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.710
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                                          SCS
                                         Fρ
                                                   Дp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                              3.14 0.20 0.350
 CONDOMINIUMS
                       D
                        D
D
                                                 0.100
                                 0.62
                                          0.20
 COMMERCIAL
                                 1.37 0.20
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.453
 SUBAREA AREA(ACRES) = 5.13 SUBAREA RUNOFF(CFS) = 2.86

EFFECTIVE AREA(ACRES) = 24.09 AREA-AVERAGED Fm(INCH/HR) = 0.10

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.50
```

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

```
FLOW PROCESS FROM NODE 86.00 TO NODE 87.00 IS CODE = 31
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.05
 ESTIMATED PIPE DIAPETER.

PIPE-FLOW(CFS) = 13.23

PIPE TRAVEL TIME(MIN.) = 1.49 Tc(MIN.) = 21.76

RECOMDATH FROM NODE 80.00 TO NODE 87.00
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                          NUMBER OF PIPES = 1
                                                 87.00 =
                                                            2410.00 FEET.
*******************
 FLOW PROCESS FROM NODE 87.00 TO NODE 87.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.76
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.682
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL
                                   AREA
                                             Fρ
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 3.51 0.20 0.350 57
D 1.12 0.20 0.100 57
                                                              SCS
                                                        Αp
     LAND USE
 CONDOMINIUMS
 COMMERCIAL
 NATURAL FAIR COVER
 "OPEN BRUSH" D 0.43 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
                                                       1.000
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 5.06 SUBAREA RUNOFF(CFS) = 2.79

EFFECTIVE AREA(ACRES) = 29.15 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) = 29.1
                                    PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 87.00 TO NODE 88.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<-
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.43
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 15.40
PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE
                               80.00 TO NODE
**********************
 FLOW PROCESS FROM NODE 88.00 TO NODE 88.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 22.39
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.671
 SUBAREA LOSS RATE DATA(AMC I ):
                                            Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN

        CONDOMINIUMS
        D
        5.34
        0.20
        0.350

        COMMERCIAL
        D
        0.48
        0.20
        0.100

        CONDOMINIUMS
        D
        2.16
        0.20
        0.350

        SUBAREA AVERAGE
        PERVIOUS
        LOSS
        RATE, Fp(INCH/HR) = 0.20

 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.335
 SUBAREA AREA(ACRES) = 7.98 SUBAREA RUNOFF(CFS) = 4.34 EFFECTIVE AREA(ACRES) = 37.13 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
                         37.1
 TOTAL AREA(ACRES) =
                                     PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 88.00 TO NODE 89.00 IS CODE = 31
       ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
-----
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 270.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.74
```

```
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.45
PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 22.97
                           80.00 TO NODE
 LONGEST FLOWPATH FROM NODE
********************
 FLOW PROCESS FROM NODE 89.00 TO NODE 89.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 22.97
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.661
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 CONDOMINIUMS
                      D 2.41 0.20 0.350
D 2.55 0.20 0.100
                                                          57
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.221
 SUBAREA AREA(ACRES) = 4.96 SUBAREA RUNOFF(CFS) = 2.75

EFFECTIVE AREA(ACRES) = 42.09 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
                    42.1
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
*************************
 FLOW PROCESS FROM NODE 89.00 TO NODE 97.00 IS CODE = 31
   ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 560.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.10
ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.87
 PIPE TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) = 24.12
LONGEST FLOWPATH FROM NODE 80.00 TO NODE 97.00
                                           97.00 = 3520.00 FEET.
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 10
 _____
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<
______
 FLOW PROCESS FROM NODE 90.00 TO NODE 91.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>IISE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00
ELEVATION DATA: UPSTREAM(FEET) = 108.00 DOWNSTREAM(FEET) = 107.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.314
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.110
 SUBAREA TC AND LOSS RATE DATA(AMC I ):

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS TC

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

COMMERCIAL D 0.88 0.20 0.100 57 9.31
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.86

TOTAL AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 91.00 TO NODE 92.00 IS CODE = 62
 >>>>COMPLITE STREET FLOW TRAVEL TIME THRII SUBAREA
 >>>>(STREET TABLE SECTION # 1 USED) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 STREET LENGTH(FEET) = 260.00
                              CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 30.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.018
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
```

```
Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.32
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.24
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.82
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.44
 STREET FLOW TRAVEL TIME(MIN.) = 2.38 Tc(MIN.) = 11.70
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.974
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL D 1.06 0.20 0.100 57 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.06 SUBAREA RUNOFF(CFS) = 0.91
EFFECTIVE AREA(ACRES) = 1.94 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 1.9
                                   PEAK FLOW RATE(CFS) =
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.26 HALFSTREET FLOOD WIDTH(FEET) = 5.41
 FLOW VELOCITY(FEET/SEC.) = 1.83 DEPTH*VELOCITY(FT*FT/SEC.) = 0.47 LONGEST FLOWPATH FROM NODE 90.00 TO NODE 92.00 = 560.00 FE
************************
 FLOW PROCESS FROM NODE 92.00 TO NODE 93.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 630.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.29
ESTIMATED PIPE DIAMETER(INCH) = 12.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.67
PIPE TRAVEL TIME(MIN.) = 2.45 Tc(MIN.) = 14.14
 LONGEST FLOWPATH FROM NODE
                              90.00 TO NODE
                                                93.00 = 1190.00 FEET.
 FLOW PROCESS FROM NODE 93.00 TO NODE 93.00 IS CODE = 81
      ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>
______
 MAINLINE Tc(MIN.) = 14.14
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.873
 SUBAREA LOSS RATE DATA(AMC I ):
                                           Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                      qД
                                                              SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 5.84 0.20 0.350 57
D 2.34 0.20 0.100 57
D 8.66 0.20 0.350 57
     LAND USE
 CONDOMINIUMS
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.315
 SUBAREA AREA(ACRES) = 16.84 SUBAREA RUNOFF(CFS) = 12.28 EFFECTIVE AREA(ACRES) = 18.78 AREA-AVERAGED Fm(INCH/HR) = 0.06 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) = 18.8
                                    PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 93.00 TO NODE 94.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.8 INCHES
```

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 7.09
ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.77
 PIPE TRAVEL TIME(MIN.) = 0.56
LONGEST FLOWPATH FROM NODE 9
                          56 Tc(MIN.) = 14.71
90.00 TO NODE 94.0
                                                  1430.00 FEET.
                                          94.00 =
******************
 FLOW PROCESS FROM NODE 94.00 TO NODE 94.00 IS CODE = 81
 ______
```

\_\_\_\_\_\_

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>

\* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.854

MAINLINE TC(MIN.) = 14.71

```
SUBAREA LOSS RATE DATA(AMC I ):
  COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.800
 SUBAREA AREA(ACRES) = 4.07 SUBAREA RUNOFF(CFS) = 2.54

EFFECTIVE AREA(ACRES) = 22.85 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
                   22.9
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 94.00 TO NODE 95.00 IS CODE = 31
      _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.49
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 15.98
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 15.13
 LONGEST FLOWPATH FROM NODE
                          90.00 TO NODE
                                          95.00 =
                                                   1620.00 FEET.
************************
 FLOW PROCESS FROM NODE 95.00 TO NODE 95.00 IS CODE = 81
 ______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.13
  * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.840
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN
D 0.20 0.20 0.100 57
D 2.24 0.20 0.350 57
     LAND USE
 COMMERCIAL
 CONDOMINIUMS
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.330
 SUBAREA AREA(ACRES) = 2.44 SUBAREA RUNOFF(CFS) = 1.70 EFFECTIVE AREA(ACRES) = 25.29 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                      25.3
                                PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 95.00 TO NODE 96.00 IS CODE = 31
      _____
 >>>>COMPLITE PIPE-FLOW TRAVEL TIME THREE SUBAREA
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.61
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 17.40
 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 15.81
 LONGEST FLOWPATH FROM NODE 90.00 TO NODE
                                          96.00 = 1930.00 FEET.
 FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 15.81
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.819
 SUBAREA LOSS RATE DATA(AMC I ):
  SUBAREA LOSS RATE DATA(AMC 1 ).

DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
PUBLIC PARK D 5.07 0.20 0.850 57
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 5.07 SUBAREA RUNOFF(CFS) = 2.96

EFFECTIVE AREA(ACRES) = 30.36 AREA-AVERAGED FM(INCH/HR) = 0.09

AREA-AVERAGED FM(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.46
 TOTAL AREA(ACRES) = 30.4
                               PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 96.00 TO NODE 97.00 IS CODE = 31
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.76
ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.89
 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 16.30
 LONGEST FLOWPATH FROM NODE
                        90.00 TO NODE
                                      97.00 =
                                               2160.00 FEET.
************************
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 11
_____
                     _____
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
 ** MEMORY BANK # 1 CONFLUENCE DATA **
 ** PEAK FLOW RATE TABLE **
          TP(FM) AP AE HEADWATER (ACRES) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 38.96 16.30 0.805 0.20(0.09) 0.44 58.8 90.00 37.24 24.12 0.643 0.20(0.09) 0.43 70.4 A(ACRES) = 72.4
  STREAM Q Tc Intensity Fp(Fm) Ap Ae NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES
  1 2
                                                     80.00
   TOTAL AREA(ACRES) =
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 38.96 Tc(MIN.) = 16.303
EFFECTIVE AREA(ACRES) = 58.81 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 72.4
 LONGEST FLOWPATH FROM NODE
                        80.00 TO NODE
                                       97.00 =
                                               3520.00 FEET.
************************
 FLOW PROCESS FROM NODE 97.00 TO NODE 97.00 IS CODE = 12
_____
 >>>>CLEAR MEMORY BANK # 1 <<<<<
------
********************
 FLOW PROCESS FROM NODE 97.00 TO NODE 98.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH(FEET) = 280.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 21.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.33
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.96
 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 16.80
                        80.00 TO NODE
 LONGEST FLOWPATH FROM NODE
                                      98.00 =
                                              3800.00 FEET.
**************************
 FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.80
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 0.791
 SUBAREA LOSS RATE DATA(AMC I ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 NATURAL FAIR COVER
 "OPEN BRUSH"
                            22.13
                                   0.20
                     D
                                           1.000
 NATURAL POOR COVER
                            9.76 0.20
                                            1.000
 "BARREN"
                     D
                                                   83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 31.89 SUBAREA RUNOFF(CFS) = 16.96
EFFECTIVE AREA(ACRES) = 90.70 AREA-AVERAGED Fm(INCH/HR) = 0.13
AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.64
```

| TOTAL AREA                                                       | A(ACRES)                          | = 1                   | 104.3               | PEAK FLOW F                                  | RATE (CI         | FS) =    | 54.19                                   |
|------------------------------------------------------------------|-----------------------------------|-----------------------|---------------------|----------------------------------------------|------------------|----------|-----------------------------------------|
| END OF STU<br>TOTAL AREA<br>EFFECTIVE<br>AREA-AVERA<br>PEAK FLOW | A(ACRES)<br>AREA(ACR<br>AGED Fp(I | =<br>ES) =<br>NCH/HR) | 90.70               | TC(MIN.) =<br>AREA-AVERAGEI<br>AREA-AVERAGEI | Fm(II            | NCH/HR)= | 0.13                                    |
| ** PEAK FI                                                       | LOW RATE                          | TABLE *               | ŧ                   |                                              |                  |          |                                         |
| STREAM                                                           | Q                                 | Tc                    | Intensity           | Fp(Fm)                                       | Ap               | Ae       | HEADWATER                               |
| NUMBER                                                           | (CFS)                             | (MIN.)                | (INCH/HR)           | (INCH/HR)                                    |                  | (ACRES)  | NODE                                    |
| 1                                                                | 54.19                             | 16.80                 | 0.791               | 0.20( 0.13)                                  | 0.64             | 90.7     | 90.00                                   |
| 2                                                                | 48.23                             | 24.64                 | 0.635               | 0.20( 0.12)                                  | 0.61             | 104.3    | 80.00                                   |
|                                                                  |                                   | ======                | :======<br>:======= | =======================================      | :====:<br>:====: |          | ======================================= |

END OF RATIONAL METHOD ANALYSIS

a) High Confidence Events

i. Infiltration Analysis

# INFILTRATION RATE CALCULATION SUMMARY NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 100-YEAR HIGH-CONFIDENCE EVENT

|                     | Existing Condition |        |       |       |       |      |      |      |      |       |      |  |  |  |  |
|---------------------|--------------------|--------|-------|-------|-------|------|------|------|------|-------|------|--|--|--|--|
| Node                | Α                  | В      | С     | D     | E     | F    | G    | Н    | I    | J     | К    |  |  |  |  |
| Total Area (ac)     | 349.56             | 135.09 | 63.61 | 14.29 | 97.15 | 5.80 | 1.75 | 6.99 | 1.06 | 11.00 | 6.30 |  |  |  |  |
| Y                   | 0.89               | 0.95   | 0.89  | 0.93  | 0.96  | 0.84 | 0.84 | 0.84 | 0.84 | 0.84  | 0.84 |  |  |  |  |
| Ybar                | 0.11               | 0.05   | 0.11  | 0.07  | 0.04  | 0.16 | 0.16 | 0.16 | 0.16 | 0.16  | 0.16 |  |  |  |  |
| Average $a_p$       | 0.64               | 0.37   | 1.00  | 0.68  | 0.30  | 0.20 | 0.20 | 0.20 | 0.20 | 0.20  | 0.20 |  |  |  |  |
| Total Fm<br>(in/hr) | 0.15               | 0.07   | 0.20  | 0.14  | 0.06  | 0.08 | 0.08 | 0.08 | 0.08 | 0.08  | 0.08 |  |  |  |  |

#### INFILTRATION RATE CALCULATION SPREADSHEET

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 100-YEAR HIGH-CONFIDENCE EVENT**

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

5.63 P24, 100-Year Storm Event for Mountainous Area (in) = 11.27

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ Total Area (ac) = 349.56

0.89 Ybar = 1 - Y =

ap - See Figure C-4 Fp - See Table C-2

Average a<sub>n</sub> = 0.64 Total Fm (in/hr) = 0.15

|       |                              |                   |          |                                       |            |            |                         |          |            |                     |                |                                |                | lotai                     | Fm (in/hr) =              | <u>0.15</u>                               |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|-------|------------------------------|-------------------|----------|---------------------------------------|------------|------------|-------------------------|----------|------------|---------------------|----------------|--------------------------------|----------------|---------------------------|---------------------------|-------------------------------------------|-------|-------|-------|----------|-------|-------|-------|------|------|------|-------|------|------|------|-------|
|       |                              | 15 . 1            |          |                                       |            |            | Offsite Area            | l<br>I   | 1          | Laurtair            | Data Vh        |                                | 1              | Man Lin                   | - Deta E                  |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| No.   | Land Use                     | Pervious-<br>ness | Area     | Soil                                  | Pervious/  | Area       | A <sub>j</sub><br>(Area | CN       |            | Low Loss Rate, Ybar |                |                                |                | Max. Loss Rate, $F_m$     |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| INO.  | Land Ose                     | (%)               | (ac)     | Group                                 | Impervious | (ac)       | Fraction)               | AMC III  | S          | l <sub>a</sub>      | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | (in/hr)                   | (in/hr)                                   |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 1     | Urban Cover - Roadway        | 10%               | 7.57     | Α                                     | Pervious   | 0.76       | 0.002                   | 52       | 9.23       | 1.85                | 0.20           | 0.000                          | 0.10           | 0.40                      | 0.04                      | 0.001                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       | Olban Gover Roadway          | 1070              | 7.07     | Α                                     | Impervious | 6.81       | 0.019                   | 100      | 0.00       | 0.00                | 1.00           | 0.019                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 2     | Urban Cover - Roadway        | 10%               | 10% 2.65 | D                                     | Pervious   | 0.27       | 0.001                   | 91       | 0.99       | 0.20                | 0.82           | 0.001                          | 0.10           | 0.20                      | 0.02                      | 0.000                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       |                              |                   |          |                                       | Impervious | 2.39       | 0.007                   | 100      | 0.00       | 0.00                | 1.00           | 0.007                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 3     | Single Family Residential    | 20%               | 45,27    | Α                                     | Pervious   | 9.05       | 0.026                   | 52       | 9.23       | 1.85                | 0.20           | 0.005                          | 0.20           | 0.40                      | 0.08                      | 0.010                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       | (>10 dwellings/acre)         | 2070              | 10.21    | , , , , , , , , , , , , , , , , , , , | Impervious | 36.22      | 0.104                   | 100      | 0.00       | 0.00                | 1.00           | 0.104                          |                |                           |                           | l                                         |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 4     | Single Family Residential    | 20%               | 31.84    | В                                     | Pervious   | 6.37       | 0.018                   | 76       | 3.16       | 0.63                | 0.54           | 0.010                          | 0.20           | 0.30                      | 0.06                      | 0.005                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       | (>10 dwellings/acre)         | 2070              | 0.101    |                                       | Impervious | 25.47      | 0.073                   | 100      | 0.00       | 0.00                | 1.00           | 0.073                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 5     | Single Family Residential    | 20%               | 26.51    | D                                     | Pervious   | 5.30       | 0.015                   | 91       | 0.99       | 0.20                | 0.82           | 0.012                          | 0.20           | 0.20                      | 0.04                      | 0.003                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| J     | (>10 dwellings/acre)         |                   | 2070     | 2070                                  | 20.51      | 20.51      | 20.51                   |          | Impervious | 21.21               | 0.061          | 100                            | 0.00           | 0.00                      | 1.00                      | 0.061                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 6     | Commercial / Industrial      | 10% 31            | 10%      | 31 01                                 | 31 91      | 31.91      | ı D                     | Pervious | 3.19       | 0.009               | 91             | 0.99                           | 0.20           | 0.82                      | 0.007                     | 0.10                                      | 0.20  | 0.02  | 0.002 |          |       |       |       |      |      |      |       |      |      |      |       |
|       | Commordar, mademar           |                   | 01.01    |                                       | Impervious | 28.72      | 0.082                   | 100      | 0.00       | 0.00                | 1.00           | 0.082                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 7     | Oil Operations               | 100%              | 100%     | 100%                                  | 100%       | 100%       | 100%                    | 100%     | 100%       | 100%                | 100%           | 11 80                          | 11 80          | 11.89                     | D                         | Pervious                                  | 11.89 | 0.034 | 99    | 0.10     | 0.02  | 0.98  | 0.033 | 1.00 | 0.20 | 0.20 | 0.007 |      |      |      |       |
|       | On Operations                | 10070             | 11.00    |                                       | Impervious | 0.00       | 0.000                   | 100      | 0.00       | 0.00                | 1.00           | 0.000                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 8     | Open Space / Habitat Area    | 100%              | 100%     | 100%                                  | 100%       | 100%       | 100%                    | 100%     | 100%       | 100%                | 100%           | 100%                           | 100%           | 100%                      | 100%                      | 16.64                                     | 16 64 | 16.64 | . A   | Pervious | 16.64 | 0.048 | 66    | 5.15 | 1.03 | 0.39 | 0.018 | 1.00 | 0.40 | 0.40 | 0.019 |
|       | open opace / Habitat / trea  | 10070             | 10.01    |                                       | Impervious | 0.00       | 0.000                   | 100      | 0.00       | 0.00                | 1.00           | 0.000                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 9     | Oxbow Loop Channel           | 10%               | 6.55     | Α                                     | Pervious   | 0.66       | 0.002                   | 93       | 0.75       | 0.15                | 0.86           | 0.002                          | 0.10           | 0.40                      | 0.04                      | 0.001                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| J     | Oxbow Loop Grianner          | 1070              | 0.00     | Α                                     | Impervious | 5.90       | 0.017                   | 100      | 0.00       | 0.00                | 1.00           | 0.017                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       |                              |                   |          |                                       |            |            | Onsite Area             | 1        |            |                     |                |                                |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| l., l |                              | Pervious-         | Area     | Soil                                  | Pervious/  | Area       | $A_{j}$                 | CN       |            | Low Loss            | Rate, Ybar     | 1                              |                |                           | s Rate, F <sub>m</sub>    |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| No.   | Land Use                     | ness<br>(%) (ac)  | (ac)     | Group                                 | Impervious | (ac)       | (Area<br>Fraction)      | AMC III  | s          | l <sub>a</sub>      | $Y_{j}$        | $Y_j^*A_j$                     | $a_p$          | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       |                              | , ,               |          |                                       | Pervious   | 4.78       | 0.014                   | 93       | 0.75       | 0.15                | 0.86           | 0.012                          | 1.00           | 0.40                      | 0.40                      | 0.005                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 1     | Oil Operations / Barren Area | 100%              | 4.78     | 4.78                                  | Α          | Impervious | 0.00                    | 0.000    | 100        | 0.00                | 0.00           | 1.00                           | 0.000          |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       | 0110 11 15 1                 | 4000/             | 40.00    |                                       | Pervious   | 10.98      | 0.031                   | 93       | 0.75       | 0.15                | 0.86           | 0.027                          | 1.00           | 0.20                      | 0.20                      | 0.006                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 2     | Oil Operations / Barren Area | 100%              | 6 10.98  | 0.98 D                                | Impervious | 0.00       | 0.000                   | 100      | 0.00       | 0.00                | 1.00           | 0.000                          |                |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       | Ones Crees / Habitat Acces   | 4000/             | 450.07   | Б                                     | Pervious   | 152.97     | 0.438                   | 96       | 0.42       | 0.08                | 0.92           | 0.401                          | 1.00           | 0.20                      | 0.20                      | 0.088                                     |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
| 3     | Open Space / Habitat Area    | 100%              | 152.97   | D                                     | Impervious | 0.00       | 0.000                   | 100      | 0.00       | 0.00                | 1.00           | 0.000                          | 1              |                           |                           |                                           |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |
|       |                              | Total Area =      | 349.56   |                                       |            |            |                         |          | •          | •                   | Y =            | 0.89                           | •              |                           | Total F <sub>m</sub> =    | 0.15                                      |       |       |       |          |       |       |       |      |      |      |       |      |      |      |       |

Ybar = 1 - Y = 0.11

### **INFILTRATION RATE CALCULATION SPREADSHEET**

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 100-YEAR HIGH-CONFIDENCE EVENT**

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 135.09

ap - See Figure C-4

$$S = \frac{1000}{CN} - 10$$
  $I_a = 0.25$ 

P24, 100-Year Storm Event for Mountainous Area (in) =

0.95

5.63

11.27

Fp - See Table C-2 Average a<sub>p</sub> = 0.37

CN - See Figure C-1 and C-3

Ybar = 1 - Y = 0.05

Total Fm (in/hr) = 0.07

|     |                              |                 |        |          |            |            |                                                    |               |      |          |                |                    |                | Total                     | FIII (III/III) =          | 0.07                                      |  |
|-----|------------------------------|-----------------|--------|----------|------------|------------|----------------------------------------------------|---------------|------|----------|----------------|--------------------|----------------|---------------------------|---------------------------|-------------------------------------------|--|
|     |                              |                 |        |          |            |            | Offsite Area                                       |               |      |          |                |                    |                |                           |                           |                                           |  |
|     |                              | Pervious-       | Area   | Soil     | Pervious/  | Area       | $A_{j}$                                            | CN<br>AMC III |      | Low Loss | Rate, Ybar     |                    |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |  |
| No. | Land Use                     | ness<br>(%)     | (ac)   | Group    | Impervious | (ac)       | (Area<br>Fraction)                                 |               | S    | la       | $Y_j$          | $Y_j^{\star}A_j$   | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |  |
| 4   | 1 Urban Cover - Roadway 10%  | 5.35            | D      | Pervious | 0.54       | 0.004      | 91                                                 | 0.99          | 0.20 | 0.82     | 0.003          | 0.10               | 0.20           | 0.02                      | 0.001                     |                                           |  |
| '   | Urban Cover - Roadway        | 10%             | 5.35   | D        | Impervious | 4.82       | 0.036                                              | 100           | 0.00 | 0.00     | 1.00           | 0.036              |                |                           |                           | ĺ                                         |  |
| 2   | Single Family Residential    | 20%             | 5.94   | D        | Pervious   | 1.19       | 0.009                                              | 91            | 0.99 | 0.20     | 0.82           | 0.007              | 0.20           | 0.20                      | 0.04                      | 0.002                                     |  |
| 2   | (>10 dwellings/acre)         | dwellings/acre) | 5.94   | D        | Impervious | 4.75       | 0.035                                              | 100           | 0.00 | 0.00     | 1.00           | 0.035              |                |                           |                           |                                           |  |
| 3   | Commercial / Industrial      | 10%             | 80.09  | D        | Pervious   | 8.01       | 0.059                                              | 91            | 0.99 | 0.20     | 0.82           | 0.048              | 0.10           | 0.20                      | 0.02                      | 0.012                                     |  |
| 3   | Commerciai / Industriai      | 10%             | 60.09  | 60.09    | U          | Impervious | 72.08                                              | 0.534         | 100  | 0.00     | 0.00           | 1.00               | 0.534          |                           | 1                         |                                           |  |
| 4   | Cobool                       | School 60% 9.91 | 0.01   | 9.91 D   | Pervious   | 5.95       | 0.044                                              | 91            | 0.99 | 0.20     | 0.82           | 0.036              | 0.60           | 0.20                      | 0.12                      | 0.009                                     |  |
| 4   | SCHOOL                       |                 | 9.91   |          | Impervious | 3.96       | 0.029                                              | 100           | 0.00 | 0.00     | 1.00           | 0.029              |                |                           |                           | 1                                         |  |
|     |                              |                 |        |          |            |            | Onsite Area                                        | ı             |      |          |                |                    |                |                           |                           |                                           |  |
|     |                              | Pervious-       | Area   | Soil     | Pervious/  | Area       | rea A <sub>j</sub> CN Low Loss Rate, Ybar Max. Los |               |      |          |                |                    |                | oss Rate, F <sub>m</sub>  |                           |                                           |  |
| No. | Land Use                     | ness<br>(%)     | (ac)   | Group    | Impervious | (ac)       | (Area<br>Fraction)                                 | AMC III       | S    | la       | Y <sub>j</sub> | $Y_j{}^{\star}A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |  |
| 4   | 011.0                        | 100%            | 12.82  | D        | Pervious   | 12.82      | 0.095                                              | 91            | 0.99 | 0.20     | 0.82           | 0.077              | 1.00           | 0.20                      | 0.20                      | 0.019                                     |  |
| '   | Oil Operations / Barren Area | 100%            | 12.02  | D        | Impervious | 0.00       | 0.000                                              | 100           | 0.00 | 0.00     | 1.00           | 0.000              |                |                           |                           |                                           |  |
| 2   | Open Space / Habitat Area    | 1000/           | 20.98  | _        | Pervious   | ıs 20.98   | 0.155                                              | 96            | 0.42 | 0.08     | 0.92           | 0.142              | 1.00           | 0.20                      | 0.20                      | 0.031                                     |  |
| 2   | Open Space / Habitat Area    | 100%            | 20.98  | D        | Impervious | 0.00       | 0.000                                              | 100           | 0.00 | 0.00     | 1.00           | 0.000              |                |                           |                           |                                           |  |
| •   |                              | Total Area =    | 135.09 |          | •          |            |                                                    |               |      |          | Y =            | 0.95               |                |                           | Total F <sub>m</sub> =    | 0.07                                      |  |

Ybar = 1 - Y = 0.05

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 100-YEAR HIGH-CONFIDENCE EVENT**

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$Y_j = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a + S)P_a}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

63.61

0.89

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

5.63 Total Area (ac) = 11.27

ap - See Figure C-4 Fp - See Table C-2

P24, 100-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y =

Average a<sub>p</sub> = 1.00

Total Fm (in/hr) = 0.20

|     |                              |              |              |       |            |              | Onsite Area        | ı       |      |                |                |            |       |                           |                           |                                           |
|-----|------------------------------|--------------|--------------|-------|------------|--------------|--------------------|---------|------|----------------|----------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|     |                              | Pervious-    | Aroo         | Soil  | Pervious/  | Aron         | $A_j$              | CN      |      | Low Loss       | Rate, Ybar     |            |       | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%)  | Area<br>(ac) | Group | Impervious | Area<br>(ac) | (Area<br>Fraction) | AMC III | S    | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Oil Operations / Barren Area | 100%         | 17.24        | D     | Pervious   | 17.24        | 0.271              | 91      | 0.99 | 0.20           | 0.82           | 0.221      | 1.00  | 0.20                      | 0.20                      | 0.054                                     |
| '   | Oil Operations / Barren Area | 100 /6       | 17.24        | D     | Impervious | 0.00         | 0.000              | 100     | 0.00 | 0.00           | 1.00           | 0.000      |       |                           |                           |                                           |
| 2   | Open Space / Habitat Area    | 100%         | 46.37        | D     | Pervious   | 46.37        | 0.729              | 96      | 0.42 | 0.08           | 0.92           | 0.668      | 1.00  | 0.20                      | 0.20                      | 0.146                                     |
|     | Ореп Зрасе / навітат Агеа    | 100%         | 40.37        | D     | Impervious | 0.00         | 0.000              | 100     | 0.00 | 0.00           | 1.00           | 0.000      |       |                           |                           |                                           |
|     |                              | Total Area = | 63.61        |       |            |              |                    |         |      |                | Y =            | 0.89       |       |                           | Total F <sub>m</sub> =    | 0.20                                      |

# PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA D

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 14.29 0.93

ap - See Figure C-4

P24, 100-Year Storm Event for Mountainous Area (in) =

Fp - See Table C-2 Average a<sub>p</sub> = 0.68

Ybar = 1 - Y = 0.07

Total Fm (in/hr) = 0.14

|     |                           |             |              |               |                         |              | Offsite Area       |               |      |          |            |            |                |                           | FIII (III/III) =          | <u>0.14</u>                               |
|-----|---------------------------|-------------|--------------|---------------|-------------------------|--------------|--------------------|---------------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-   | A            | 0 - 1         | Des des est             |              | A <sub>i</sub>     |               |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | Area<br>(ac) | Soil<br>Group | Pervious/<br>Impervious | Area<br>(ac) | (Area<br>Fraction) | CN<br>AMC III | S    | la       | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%         | 5.68         | D             | Pervious                | 1.14         | 0.079              | 91            | 0.99 | 0.20     | 0.82       | 0.065      | 0.20           | 0.20                      | 0.04                      | 0.016                                     |
| 1   | (>10 dwellings/acre)      | 20%         | 5.08         | D             | Impervious              | 4.54         | 0.318              | 100           | 0.00 | 0.00     | 1.00       | 0.318      |                |                           |                           |                                           |
|     |                           |             |              |               |                         |              | Onsite Area        | ı             |      | •        |            |            |                | •                         |                           |                                           |
|     |                           | Pervious-   | Area         | Soil          | Pervious/               | Area         | A <sub>j</sub>     | CN            |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)         | Group         | Impervious              | (ac)         | (Area<br>Fraction) | AMC III       | S    | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Open Space / Habitat Area | 100%        | 8.61         | D             | Pervious                | 8.61         | 0.603              | 96            | 0.42 | 0.08     | 0.92       | 0.552      | 1.00           | 0.20                      | 0.20                      | 0.121                                     |
| '   | Open Space / Habitat Area | 100%        | 0.01         | D             | Impervious              | 0.00         | 0.000              | 100           | 0.00 | 0.00     | 1.00       | 0.000      |                |                           |                           |                                           |
|     |                           | Tatal Asses | 44.00        |               |                         |              |                    |               |      |          |            | 0.00       | •              |                           | Tatal                     | 0.44                                      |

Total Area =

5.63

11.27

Total F<sub>m</sub> =

# PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA E

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 97.15 0.96

5.63

ap - See Figure C-4

CN - See Figure C-1 and C-3

P24, 100-Year Storm Event for Mountainous Area (in) = 11.27

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 0.30

Total  $F_m = 0.06$ 

Total Fm (in/hr) = 0.06

|     |                           |             |       |       |            |       | Offsite Area       | l       |      |                |            |            |       |                           |                           |                                           |
|-----|---------------------------|-------------|-------|-------|------------|-------|--------------------|---------|------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | $A_{j}$            | CN      |      | Low Loss       | Rate, Ybar |            |       | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%         | 44.48 | D     | Pervious   | 8.90  | 0.092              | 91      | 0.99 | 0.20           | 0.82       | 0.075      | 0.20  | 0.20                      | 0.04                      | 0.018                                     |
| '   | (>10 dwellings/acre)      | 2076        | 44.40 | D     | Impervious | 35.58 | 0.366              | 100     | 0.00 | 0.00           | 1.00       | 0.366      |       |                           |                           |                                           |
| 2   | Commercial / Industrial   | 10%         | 36.05 | D     | Pervious   | 3.61  | 0.037              | 91      | 0.99 | 0.20           | 0.82       | 0.030      | 0.10  | 0.20                      | 0.02                      | 0.007                                     |
|     | Commercial / industrial   | 10 /6       | 30.03 | D     | Impervious | 32.45 | 0.334              | 100     | 0.00 | 0.00           | 1.00       | 0.334      |       |                           |                           |                                           |
| 2   | Open Space / Habitat Area | 100%        | 16.62 | D     | Pervious   | 16.62 | 0.171              | 96      | 0.42 | 0.08           | 0.92       | 0.157      | 1.00  | 0.20                      | 0.20                      | 0.034                                     |
| 3   | Open Opace / Habitat Area | 100 %       | 10.02 | ט     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00           | 1.00       | 0.000      |       |                           |                           |                                           |

Total Area =

97.15

Y = 0.96 Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

5.63

11.27

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

P24, 100-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

ap - See Figure C-4 Total Area (ac) = 5.80 0.84 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.20

0.08

 $F_m = a_p F_p$ 

Total Fm (in/hr) =

|     |                           |              |      |       |            | C    | Offsite Area       | -F      |      |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|---------|------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | A <sub>j</sub>     | CN      |      | Low Loss       | Rate, Ybar |            |                | Max. Los                  | Rate, F <sub>m</sub>      |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC III | S    | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 5.80 | ۸     | Pervious   | 1.16 | 0.200              | 52      | 9.23 | 1.85           | 0.20       | 0.039      | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
|     | (>10 dwellings/acre)      | 2076         | 5.60 | А     | Impervious | 4.64 | 0.800              | 100     | 0.00 | 0.00           | 1.00       | 0.800      |                |                           |                           |                                           |
|     |                           | Total Area = | 5.80 | •     | •          |      |                    | ·       |      |                | Y =        | 0.84       |                |                           | Total F <sub>m</sub> =    | 0.08                                      |

5.80 0.84 Ybar = 1 - Y = 0.16

|     |                           |              |              |       |            | 0    | ffsite Area -      | ·G      |      |          |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|--------------|-------|------------|------|--------------------|---------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Aron         | Soil  | Pervious/  | Area | $A_j$              | CN      |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | Area<br>(ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC III | S    | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 1.75         | ۸     | Pervious   | 0.35 | 0.200              | 52      | 9.23 | 1.85     | 0.20       | 0.039      | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
| '   | (>10 dwellings/acre)      | 2076         | 1.73         | A     | Impervious | 1.40 | 0.800              | 100     | 0.00 | 0.00     | 1.00       | 0.800      |                |                           |                           |                                           |
|     |                           | Total Area = | 1.75         |       |            |      |                    |         |      |          | Y =        | 0.84       |                |                           | Total F <sub>m</sub> =    | 0.08                                      |

1.75 Ybar = 1 - Y = 0.16

|    |                           |             |              |       |            | 0            | ffsite Area -      | Н       |      |          |                |            |                |                           |                           |                                           |
|----|---------------------------|-------------|--------------|-------|------------|--------------|--------------------|---------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|    |                           | Pervious-   | Aron         | Soil  | Pervious/  | Aroo         | A <sub>j</sub>     | CN      |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No | . Land Use                | ness<br>(%) | Area<br>(ac) | Group | Impervious | Area<br>(ac) | (Area<br>Fraction) | AMC III | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Single Family Residential | 20%         | 6.99         | ۸     | Pervious   | 1.40         | 0.200              | 52      | 9.23 | 1.85     | 0.20           | 0.039      | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
| '  | (>10 dwellings/acre)      | 2076        | 0.99         | ^     | Impervious | 5.59         | 0.800              | 100     | 0.00 | 0.00     | 1.00           | 0.800      |                |                           |                           |                                           |

Y = 0.84 Total F<sub>m</sub> = 0.08 Total Area = 6.99 Ybar = 1 - Y = 0.16

PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

|     |                           |              |      |       |            | C    | Offsite Area       | -1      |      |                |            |            |       |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|---------|------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN      |      | Low Loss       | Rate, Ybar |            |       | Max. Loss                 | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC III | S    | l <sub>a</sub> | $Y_{j}$    | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
|     | Single Family Residential |              |      |       | Pervious   | 0.21 | 0.200              | 52      | 9.23 | 1.85           | 0.20       | 0.039      | 0.20  | 0.40                      | 0.08                      | 0.080                                     |
| 1   | (>10 dwellings/acre)      | 20%          | 1.06 | А     | Impervious | 0.85 | 0.800              | 100     | 0.00 | 0.00           | 1.00       | 0.800      |       |                           |                           |                                           |
|     |                           | Total Area = | 1.06 |       |            |      |                    |         |      |                | Y =        | 0.84       |       |                           | Total F <sub>m</sub> =    | 0.08                                      |

Total Area = 1.06 Y = **0.84** 

Ybar = 1 - Y = 0.16

Offsite Area -J Max. Loss Rate, F<sub>m</sub> Pervious-Low Loss Rate, Ybar Soil CN Area Pervious/ Area No. Land Use ness (Area Fp F<sub>m</sub> F<sub>m</sub>\*A<sub>i</sub> (ac) Group Impervious (ac) AMC III S  $Y_i$  $Y_j^*A_j$  $a_p$ (%) Fraction) (in/hr) (in/hr) (in/hr) 0.20 0.40 0.08 0.080 0.200 9.23 0.039 Single Family Residential Pervious 1.85 0.20 20% 11.00 Α (>10 dwellings/acre) 8.80 0.800 100 0.00 0.00 1.00 0.800 Impervious

> 0.84 Total F<sub>m</sub> = 11.00 0.08 Total Area = Y =

Ybar = 1 - Y = 0.16

|    |                           |              |      |       |            | C    | offsite Area -     | ·K      |      |                |                |                  |                |                           |                           |                                           |
|----|---------------------------|--------------|------|-------|------------|------|--------------------|---------|------|----------------|----------------|------------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|    |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_j$              | CN      |      | Low Loss       | Rate, Ybar     |                  |                | Max. Los                  | Rate, F <sub>m</sub>      |                                           |
| No | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC III | Ø    | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^{\star}A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Single Family Residential | 20%          | 6.30 | ۸     | Pervious   | 1.26 | 0.200              | 52      | 9.23 | 1.85           | 0.20           | 0.039            | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
| '  | (>10 dwellings/acre)      | 2076         | 0.30 | А     | Impervious | 5.04 | 0.800              | 100     | 0.00 | 0.00           | 1.00           | 0.800            |                |                           |                           |                                           |
|    |                           | Total Area = | 6.30 |       |            |      |                    |         |      |                | Y =            | 0.84             |                |                           | Total F <sub>m</sub> =    | 0.08                                      |

# INFILTRATION RATE CALCULATION SUMMARY NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 25-YEAR HIGH-CONFIDENCE EVENT

|                     |        |        |       |       | Existing ( | Condition |      |      |      |       |      |
|---------------------|--------|--------|-------|-------|------------|-----------|------|------|------|-------|------|
| Node                | Α      | В      | С     | D     | E          | F         | G    | Н    | I    | J     | К    |
| Total Area (ac)     | 349.56 | 135.09 | 63.61 | 14.29 | 97.15      | 5.80      | 1.75 | 6.99 | 1.06 | 11.00 | 6.30 |
| Y                   | 0.69   | 0.83   | 0.66  | 0.70  | 0.83       | 0.76      | 0.76 | 0.76 | 0.76 | 0.76  | 0.76 |
| Ybar                | 0.31   | 0.17   | 0.34  | 0.30  | 0.17       | 0.24      | 0.24 | 0.24 | 0.24 | 0.24  | 0.24 |
| Average $a_p$       | 0.64   | 0.37   | 1.00  | 0.68  | 0.30       | 0.20      | 0.20 | 0.20 | 0.20 | 0.20  | 0.20 |
| Total Fm<br>(in/hr) | 0.15   | 0.07   | 0.20  | 0.14  | 0.06       | 0.08      | 0.08 | 0.08 | 0.08 | 0.08  | 0.08 |

# **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$Y_{j} = \frac{(F_{24} - I_{a})}{(P_{24} - I_{a} + S)}$$

4.49

8.76

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 349.56 0.69

ap - See Figure C-4

P24, 25-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y = 0.31 Fp - See Table C-2

Average a<sub>p</sub> = 0.64 0.15

Total Fm (in/hr) =

|     |          |                              |             |        |       |            |        |                    |        |       |                |            |            |       | I otal                    | Fm (in/hr) =              | <u>0.15</u>                               | -                              |
|-----|----------|------------------------------|-------------|--------|-------|------------|--------|--------------------|--------|-------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     |          |                              |             |        |       |            | Offs   | site Area          |        |       |                |            |            |       |                           |                           |                                           |                                |
|     | Infil.   |                              | Pervious-   | Area   | Soil  | Pervious/  | Area   | $A_{j}$            | CN     |       | Low Loss       | Rate, Ybar |            |       |                           | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class    | Land Use                     | ness<br>(%) | (ac)   | Group | Impervious | (ac)   | (Area<br>Fraction) | AMC II | S     | la             | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9        | Urban Cover - Roadway        | 10%         | 7.57   | Α     | Pervious   | 0.76   | 0.002              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.10  | 0.40                      | 0.04                      | 0.001                                     | 0.002                          |
|     | 9        | Olbaii Covei - Roadway       | 1076        | 7.57   | ^     | Impervious | 6.81   | 0.019              | 98     | 0.20  | 0.04           | 0.95       | 0.018      |       |                           |                           |                                           |                                |
| 2   | 9        | Urban Cover - Roadway        | 10%         | 2.65   | D     | Pervious   | 0.27   | 0.001              | 75     | 3.33  | 0.67           | 0.45       | 0.000      | 0.10  | 0.20                      | 0.02                      | 0.000                                     | 0.001                          |
| _   | 9        | Olbaii Covei - Roadway       | 1076        | 2.03   |       | Impervious | 2.39   | 0.007              | 98     | 0.20  | 0.04           | 0.95       | 0.006      |       |                           |                           |                                           |                                |
| 3   | 9        | Single Family Residential    | 20%         | 45.27  | А     | Pervious   | 9.05   | 0.026              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.20  | 0.40                      | 0.08                      | 0.010                                     | 0.026                          |
| 3   | 9        | (>10 dwellings/acre)         | 2076        | 45.27  | ^     | Impervious | 36.22  | 0.104              | 98     | 0.20  | 0.04           | 0.95       | 0.098      |       |                           |                           |                                           |                                |
| 4   | 9        | Single Family Residential    | 20%         | 31.84  | В     | Pervious   | 6.37   | 0.018              | 56     | 7.86  | 1.57           | 0.18       | 0.003      | 0.20  | 0.30                      | 0.06                      | 0.005                                     | 0.018                          |
| 4   | 9        | (>10 dwellings/acre)         | 2076        | 31.04  | Ь     | Impervious | 25.47  | 0.073              | 98     | 0.20  | 0.04           | 0.95       | 0.069      |       |                           |                           |                                           |                                |
| 5   | 9        | Single Family Residential    | 20%         | 26.51  | D     | Pervious   | 5.30   | 0.015              | 75     | 3.33  | 0.67           | 0.45       | 0.007      | 0.20  | 0.20                      | 0.04                      | 0.003                                     | 0.015                          |
| 5   | 9        | (>10 dwellings/acre)         | 20%         | 20.51  | D     | Impervious | 21.21  | 0.061              | 98     | 0.20  | 0.04           | 0.95       | 0.057      |       |                           |                           |                                           |                                |
| 6   | 9        | Commercial / Industrial      | 10%         | 31.91  | D     | Pervious   | 3.19   | 0.009              | 75     | 3.33  | 0.67           | 0.45       | 0.004      | 0.10  | 0.20                      | 0.02                      | 0.002                                     | 0.009                          |
| 0   | 9        | Commercial / industrial      | 1076        | 31.81  | D     | Impervious | 28.72  | 0.082              | 98     | 0.20  | 0.04           | 0.95       | 0.078      |       |                           |                           |                                           |                                |
| 7   | 4        | Oil Operations               | 100%        | 11.89  | D     | Pervious   | 11.89  | 0.034              | 93     | 0.75  | 0.15           | 0.82       | 0.028      | 1.00  | 0.20                      | 0.20                      | 0.007                                     | 0.034                          |
| _ ′ | '        | Oil Operations               | 100%        | 11.09  | D     | Impervious | 0.00   | 0.000              | 98     | 0.20  | 0.04           | 0.95       | 0.000      |       |                           |                           |                                           |                                |
| 8   | 6        | Open Space / Habitat Area    | 100%        | 16.64  | А     | Pervious   | 16.64  | 0.048              | 46     | 11.74 | 2.35           | 0.07       | 0.004      | 1.00  | 0.40                      | 0.40                      | 0.019                                     | 0.048                          |
| 0   | O        | Орен Зрасе / Павнан Агеа     | 100 /6      | 10.04  | ^     | Impervious | 0.00   | 0.000              | 98     | 0.20  | 0.04           | 0.95       | 0.000      |       |                           |                           |                                           |                                |
| 9   | 1        | Oxbow Loop Channel           | 10%         | 6.55   | А     | Pervious   | 0.66   | 0.002              | 78     | 2.82  | 0.56           | 0.51       | 0.001      | 0.10  | 0.40                      | 0.04                      | 0.001                                     | 0.002                          |
| 9   | 1        | Oxbow Loop Channel           | 10%         | 6.55   | A     | Impervious | 5.90   | 0.017              | 98     | 0.20  | 0.04           | 0.95       | 0.016      |       |                           |                           |                                           |                                |
|     |          |                              |             |        |       |            | Ons    | site Area          |        |       | •              |            |            |       | •                         |                           |                                           |                                |
|     | Infil.   |                              | Pervious-   | Area   | Soil  | Pervious/  | Area   | $A_j$              | CN     |       | Low Loss       | Rate, Ybar |            |       |                           | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class    | Land Use                     | ness<br>(%) | (ac)   | Group | Impervious | (ac)   | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | $a_p^*A_j$                     |
| 1   | 1        | Oil Operations / Barren Area | 100%        | 4.78   | А     | Pervious   | 4.78   | 0.014              | 78     | 2.82  | 0.56           | 0.51       | 0.007      | 1.00  | 0.40                      | 0.40                      | 0.005                                     | 0.014                          |
|     | '        | On Operations / Barrell Area | 10070       | 7.70   |       | Impervious | 0.00   | 0.000              | 98     | 0.20  | 0.04           | 0.95       | 0.000      |       |                           |                           |                                           |                                |
| 2   | 1        | Oil Operations / Barren Area | 100%        | 10.98  | D     | Pervious   | 10.98  | 0.031              | 93     | 0.75  | 0.15           | 0.82       | 0.026      | 1.00  | 0.20                      | 0.20                      | 0.006                                     | 0.031                          |
|     | <u>'</u> | Oii Operations / Barren Area | 100 /6      | 10.96  |       | Impervious | 0.00   | 0.000              | 98     | 0.20  | 0.04           | 0.95       | 0.000      |       |                           |                           |                                           |                                |
| 3   | 6        | Open Space / Habitat Area    | 100%        | 152.97 | D     | Pervious   | 152.97 | 0.438              | 83     | 2.05  | 0.41           | 0.61       | 0.265      | 1.00  | 0.20                      | 0.20                      | 0.088                                     | 0.438                          |
|     | U        | Open Opace / Habitat Alea    | 10076       | 132.37 |       | Impervious | 0.00   | 0.000              | 98     | 0.20  | 0.04           | 0.95       | 0.000      |       |                           |                           |                                           |                                |
|     |          |                              |             |        |       |            |        |                    |        |       |                |            |            |       |                           |                           |                                           |                                |

Total Area =

349.56

0.69 Ybar = 1 - Y =

0.64

# **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2a}}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) = 4.49

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 135.09

ap - See Figure C-4 0.83 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.37

 $F_m = a_p F_p$ 

|     |        |                               |              |        |       |            |       |                    |        |      |          |                |            |                | Total                     | Fm (in/hr) =              | <u>0.07</u>                               |                                |
|-----|--------|-------------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     |        |                               |              |        |       |            | Offs  | site Area          |        |      |          |                |            |                |                           |                           |                                           |                                |
|     | Infil. |                               | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                      | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9      | Urban Cover - Roadway         | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.45           | 0.002      | 0.10           | 0.20                      | 0.02                      | 0.001                                     | 0.004                          |
|     | 9      | Olbali Covel - Roadway        | 10 /6        | 5.55   | ם     | Impervious | 4.82  | 0.036              | 98     | 0.20 | 0.04     | 0.95           | 0.034      |                |                           |                           |                                           |                                |
| 2   | 9      | Single Family Residential     | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.45           | 0.004      | 0.20           | 0.20                      | 0.04                      | 0.002                                     | 0.009                          |
|     | 9      | (>10 dwellings/acre)          | 2076         | 5.94   | D     | Impervious | 4.75  | 0.035              | 98     | 0.20 | 0.04     | 0.95           | 0.033      |                |                           |                           |                                           |                                |
| 3   | 9      | Commercial / Industrial       | 10%          | 80.09  | D     | Pervious   | 8.01  | 0.059              | 75     | 3.33 | 0.67     | 0.45           | 0.027      | 0.10           | 0.20                      | 0.02                      | 0.012                                     | 0.059                          |
| 3   | 9      | Commercial / modernal         | 10 /6        | 60.09  | D     | Impervious | 72.08 | 0.534              | 98     | 0.20 | 0.04     | 0.95           | 0.506      |                |                           |                           |                                           |                                |
| 4   | 9      | School                        | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.044              | 75     | 3.33 | 0.67     | 0.45           | 0.020      | 0.60           | 0.20                      | 0.12                      | 0.009                                     | 0.044                          |
| 4   | 3      | School                        | 0078         | 3.31   | D     | Impervious | 3.96  | 0.029              | 98     | 0.20 | 0.04     | 0.95           | 0.028      |                |                           |                           |                                           |                                |
|     |        |                               |              |        |       |            | Ons   | site Area          |        |      |          |                |            |                |                           |                           |                                           |                                |
|     | Infil. |                               | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                      | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | $a_p^*A_j$                     |
| 1   | 1      | Oil Operations / Barren Area  | 100%         | 12.82  | D     | Pervious   | 12.82 | 0.095              | 93     | 0.75 | 0.15     | 0.82           | 0.078      | 1.00           | 0.20                      | 0.20                      | 0.019                                     | 0.095                          |
|     | '      | Oii Operations / Darrett Area | 100 /6       | 12.02  | נ     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |                                |
| 2   | 6      | Open Space / Habitat Area     | 100%         | 20.98  | D     | Pervious   | 20.98 | 0.155              | 83     | 2.05 | 0.41     | 0.61           | 0.094      | 1.00           | 0.20                      | 0.20                      | 0.031                                     | 0.155                          |
| 2   | 0      | Open Space / Habitat Area     | 100%         | 20.90  | ט     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |                                |
| -   |        |                               | Total Area = | 135.09 |       |            |       |                    |        |      |          | Y =            | 0.83       |                |                           | Total F <sub>m</sub> =    | 0.07                                      | 0.37                           |

# **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

4.49

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) =

Ybar = 1 - Y =

0.66

ap - See Figure C-4

0.20

 $F_m = a_p F_p$ 

Fp - See Table C-2 Average a<sub>p</sub> = 1.00

Total Fm (in/hr) =

|   |      |        |                              |              |       |       |            | On    | site Area          |        |      |          |                |            |       |                           |                           |                                           |            |
|---|------|--------|------------------------------|--------------|-------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|------------|
|   |      | Infil. |                              | Pervious-    | Area  | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |       | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |            |
| ١ | ı∩ I | Class  | Land Use                     | ness<br>(%)  | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | s    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | $a_p^*A_j$ |
|   | 1    | 1      | Oil Operations / Barren Area | 100%         | 17.24 | D     | Pervious   | 17.24 | 0.271              | 93     | 0.75 | 0.15     | 0.82           | 0.223      | 1.00  | 0.20                      | 0.20                      | 0.054                                     | 0.271      |
|   | '    | '      | Oil Operations / Barren Area | 100 /6       | 17.24 | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |       |                           |                           |                                           |            |
|   | 2    | 6      | Open Space / Habitat Area    | 100%         | 46.37 | D     | Pervious   | 46.37 | 0.729              | 83     | 2.05 | 0.41     | 0.61           | 0.441      | 1.00  | 0.20                      | 0.20                      | 0.146                                     | 0.729      |
|   | _    | 6      | Open Space / Habitat Alea    | 100%         | 40.37 | ט     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |       |                           |                           |                                           |            |
|   |      |        |                              | Total Area = | 63.61 |       |            |       |                    |        |      |          | Y =            | 0.66       | _     |                           | Total F <sub>m</sub> =    | 0.20                                      | 1.00       |

# PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA D

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2}}$$

4.49

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) =

14.29 ap - See Figure C-4 0.70 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>n</sub> = 0.68

 $F_m = a_p F_p$ 

|     |                                                                                                             |                                                                                    |              |       |       |            |      |                    |        |      |          |            |                                |                | Total                     | Fm (in/hr) =              | <u>0.14</u>                               | _                              |
|-----|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|-------|-------|------------|------|--------------------|--------|------|----------|------------|--------------------------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     |                                                                                                             |                                                                                    |              |       |       |            | Offs | site Area          |        |      |          |            |                                |                |                           |                           |                                           |                                |
|     | Infil.                                                                                                      |                                                                                    | Pervious-    | Area  | Soil  | Pervious/  | Area | A <sub>i</sub>     | CN     |      | Low Loss | Rate, Ybar |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class                                                                                                       | Land Use                                                                           | ness<br>(%)  | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la       | Yj         | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | Single Family Residential 20% 5.68 D Pervious 1.14 0.079 75 3.33 0.67 0.45 0.036 0.20 0.20 0.04 0.016 0.079 |                                                                                    |              |       |       |            |      |                    |        |      |          |            |                                |                |                           |                           |                                           |                                |
| '   | 9 (>10 dwellings/acre) 20% 5.68 D Impervious 4.54 0.318 98 0.20 0.04 0.95 0.301                             |                                                                                    |              |       |       |            |      |                    |        |      |          |            |                                |                |                           |                           |                                           |                                |
|     |                                                                                                             | (210 dwellings/acte)   Impervious   4.54   0.318   98   0.20   0.04   0.95   0.301 |              |       |       |            |      |                    |        |      |          |            |                                |                |                           |                           |                                           |                                |
|     | Infil.                                                                                                      |                                                                                    | Pervious-    | Area  | Soil  | Pervious/  | Area | $A_{i}$            | CN     |      | Low Loss | Rate, Ybar |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class                                                                                                       | Land Use                                                                           | ness<br>(%)  | (ac)  | Group | Impervious |      | (Area<br>Fraction) | AMC II | S    | la       | $Y_j$      | $Y_j^*A_j$                     | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 6                                                                                                           | Open Space / Habitat Area                                                          | 100%         | 8.61  | D     | Pervious   | 8.61 | 0.603              | 83     | 2.05 | 0.41     | 0.61       | 0.365                          | 1.00           | 0.20                      | 0.20                      | 0.121                                     | 0.603                          |
| '   | б                                                                                                           | Open Space / Habitat Alea                                                          | 100%         | 0.01  | D     | Impervious | 0.00 | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000                          |                |                           |                           |                                           | İ                              |
|     |                                                                                                             |                                                                                    | Total Area = | 14.29 |       |            |      |                    |        |      |          | Y =        | 0.70                           |                |                           | Total F <sub>m</sub> =    | 0.14                                      | 0.68                           |

# PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA E

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) =

0.83

Ybar = 1 - Y =

ap - See Figure C-4

 $F_m = a_p F_p$ 

Fp - See Table C-2

Average a<sub>p</sub> = 0.30 0.06

Total Fm (in/hr) =

|    |        |                           |              |       |       |            | Offs  | site Area          |        |      |          |            |            |                |                           |                           |                                           |            |
|----|--------|---------------------------|--------------|-------|-------|------------|-------|--------------------|--------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|------------|
|    | Infil. |                           | Pervious-    | Area  | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |            |
| No | Class  | Land Use                  | ness<br>(%)  | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | $a_p^*A_j$ |
| 1  | 9      | Single Family Residential | 20%          | 44.48 | D     | Pervious   | 8.90  | 0.092              | 75     | 3.33 | 0.67     | 0.45       | 0.042      | 0.20           | 0.20                      | 0.04                      | 0.018                                     | 0.092      |
| '  | 9      | (>10 dwellings/acre)      | 2076         | 44.40 | D     | Impervious | 35.58 | 0.366              | 98     | 0.20 | 0.04     | 0.95       | 0.347      |                |                           |                           |                                           |            |
|    | 0      | Commercial / Industrial   | 10%          | 36.05 | D     | Pervious   | 3.61  | 0.037              | 75     | 3.33 | 0.67     | 0.45       | 0.017      | 0.10           | 0.20                      | 0.02                      | 0.007                                     | 0.037      |
| -  | 9      | Commercial/industrial     | 1076         | 30.03 | D     | Impervious | 32.45 | 0.334              | 98     | 0.20 | 0.04     | 0.95       | 0.316      |                |                           |                           |                                           |            |
| 3  | 6      | Open Space / Habitat Area | 100%         | 16.62 | D     | Pervious   | 16.62 | 0.171              | 83     | 2.05 | 0.41     | 0.61       | 0.104      | 1.00           | 0.20                      | 0.20                      | 0.034                                     | 0.171      |
| 3  | 0      | Open Space / Habitat Area | 100%         | 10.02 | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000      |                |                           |                           |                                           |            |
|    |        |                           | Total Area - | 07.15 |       |            |       |                    |        |      |          | V _        | 0.02       |                |                           | Total E -                 | 0.06                                      | 0.20       |

Total Area =

97.15

#### PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

$$Y = \frac{Y_1 A_1}{A_1}$$

Total Area (ac) =

0.76

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>n</sub> = 0.20 0.08

Total Fm (in/hr) =

 $F_m = a_p F_p$ 

| _   |                                                                                                                                                                                                                                                    |                           |           |      |      |            |       |                |    |       |          |            |       |      |                                | (,)                    | <u> </u> |       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------|------|------------|-------|----------------|----|-------|----------|------------|-------|------|--------------------------------|------------------------|----------|-------|
|     |                                                                                                                                                                                                                                                    |                           |           |      |      |            | Offsi | te Area -F     |    |       |          |            |       |      |                                |                        |          |       |
|     | Infil.                                                                                                                                                                                                                                             |                           | Pervious- | Area | Soil | Pervious/  | Area  | A <sub>j</sub> | CN |       | Low Loss | Rate, Ybar |       |      | Max. Los                       | s Rate, F <sub>m</sub> |          |       |
| No. | No. Class Land Use ness (ac) Group Impervious (ac) (Area Fraction) AMC II S Ia Y <sub>j</sub> Y <sub>j</sub> *A <sub>j</sub> a <sub>p</sub> F <sub>p</sub> F <sub>m</sub> F <sub>m</sub> *A <sub>j</sub> (in/hr) (in/hr) (in/hr) a <sub>p</sub> *A |                           |           |      |      |            |       |                |    |       |          |            |       |      | a <sub>p</sub> *A <sub>j</sub> |                        |          |       |
| 1   | 0                                                                                                                                                                                                                                                  | Single Family Residential | 20%       | 5.80 | ۸    | Pervious   | 1.16  | 0.200          | 32 | 21.25 | 4.25     | 0.00       | 0.000 | 0.20 | 0.40                           | 0.08                   | 0.080    | 0.200 |
| '   | 9                                                                                                                                                                                                                                                  | (>10 dwellings/acre)      | 2076      | 5.60 | ^    | Impervious | 4.64  | 0.800          | 98 | 0.20  | 0.04     | 0.95       | 0.758 |      |                                |                        |          |       |
|     | Total Area = 5.80 $Y = 0.76$ Total F <sub>m</sub> = 0.08 0.20                                                                                                                                                                                      |                           |           |      |      |            |       |                |    |       |          |            |       |      |                                |                        |          |       |

Ybar = 1 - Y = **0.24** 

|     |        |                           |              |      |       |            | Offsi | te Area -G         |        |       |          |            |            |                |                           |                           |                                           | İ                              |
|-----|--------|---------------------------|--------------|------|-------|------------|-------|--------------------|--------|-------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     | Infil. |                           | Pervious-    | Area | Soil  | Pervious/  | Area  | $A_j$              | CN     |       | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious |       | (Area<br>Fraction) | AMC II | S     | la       | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 0      | Single Family Residential | 20%          | 1.75 | ۸     | Pervious   | 0.35  | 0.200              | 32     | 21.25 | 4.25     | 0.00       | 0.000      | 0.20           | 0.40                      | 0.08                      | 0.080                                     | 0.200                          |
| '   | 9      | (>10 dwellings/acre)      | 2076         | 1.73 | ^     | Impervious | 1.40  | 0.800              | 98     | 0.20  | 0.04     | 0.95       | 0.758      |                |                           |                           |                                           | ĺ                              |
|     |        |                           | Total Area = | 1.75 |       |            |       |                    |        |       |          | Y =        | 0.76       |                |                           | Total F <sub>m</sub> =    | 0.08                                      | 0.20                           |

Ybar = 1 - Y = 0.24

Offsite Area -H Max. Loss Rate, F<sub>m</sub> Pervious-Low Loss Rate, Ybar Infil. Pervious/ Area Soil Area CN No. Land Use ness (Area  $F_m*A_i$ Class (ac) (ac) Group Impervious AMC II S  $I_a$  $Y_j$  $Y_i^*A_i$ a<sub>p</sub>\*A<sub>i</sub>  $a_p$ (%) Fraction) (in/hr) (in/hr) (in/hr) 0.20 0.40 0.08 0.080 0.200 Single Family Residential Pervious 1.40 0.200 32 21.25 4.25 0.00 0.000 9 20% 6.99 Α (>10 dwellings/acre) Impervious 5.59 0.800 98 0.20 0.04 0.95 0.758 Y = 0.76 Total F<sub>m</sub> = Total Area = 6.99 0.08 0.20

### PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

|     |        |                           |              |      |       |            | Offsi | ite Area -l        |        |       |                |            |            |       |                           |                           |                                           |                                |
|-----|--------|---------------------------|--------------|------|-------|------------|-------|--------------------|--------|-------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     | Infil. |                           | Pervious-    | Area | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |       | Low Loss       | Rate, Ybar |            |       | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious |       | (Area<br>Fraction) | AMC II | Ø     | l <sub>a</sub> | $Y_{j}$    | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 0      | Single Family Residential | 20%          | 1.06 | ۸     | Pervious   | 0.21  | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.20  | 0.40                      | 0.08                      | 0.080                                     | 0.200                          |
| '   | 9      | (>10 dwellings/acre)      | 2076         | 1.00 | Α     | Impervious | 0.85  | 0.800              | 98     | 0.20  | 0.04           | 0.95       | 0.758      |       |                           |                           |                                           |                                |
|     |        |                           | Total Area = | 1.06 |       |            |       |                    |        |       |                | Y =        | 0.76       |       |                           | Total F <sub>m</sub> =    | 80.0                                      | 0.20                           |

Ybar = 1 - Y = **0.2** 

|   |     |       |                           |           |       |       |            | Offsi | te Area -J |        |       |                |            |        |      |          |                        |            |                                |
|---|-----|-------|---------------------------|-----------|-------|-------|------------|-------|------------|--------|-------|----------------|------------|--------|------|----------|------------------------|------------|--------------------------------|
|   | Ir  | nfil. |                           | Pervious- | Area  | Soil  | Pervious/  | Area  | $A_{j}$    | CN     |       | Low Loss       | Rate, Ybar |        |      | Max. Los | s Rate, F <sub>m</sub> |            |                                |
| 1 | lo. | lass  | Land Use                  | ness      | (ac)  | Group | Impervious | (ac)  | (Area      | AMC II | S     | l <sub>o</sub> | Y:         | Y;*A;  | a,   | $F_p$    | F <sub>m</sub>         | $F_m^*A_j$ | a <sub>p</sub> *A <sub>i</sub> |
|   |     |       |                           | (%)       | ()    |       |            | ()    | Fraction)  |        |       | ·a             | • 1        | 1) 1 1 | - P  | (in/hr)  | (in/hr)                | (in/hr)    | ' '                            |
|   | 1   | 9     | Single Family Residential | 20%       | 11.00 | ٨     | Pervious   | 2.20  | 0.200      | 32     | 21.25 | 4.25           | 0.00       | 0.000  | 0.20 | 0.40     | 0.08                   | 0.080      | 0.200                          |
|   | '   | 3     | (>10 dwellings/acre)      | 2078      | 11.00 | Λ     | Impervious | 8.80  | 0.800      | 98     | 0.20  | 0.04           | 0.95       | 0.758  |      |          |                        |            |                                |

Total Area = 11.00 Y = 0.76 Total F<sub>m</sub> = 0.08

Ybar = 1 - Y = **0.24** 

|     |        |                           |              |      |       |            | Offsi | te Area -K         |        |       |                |            |            |       |                           |                           |                                           |                                |
|-----|--------|---------------------------|--------------|------|-------|------------|-------|--------------------|--------|-------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     | Infil. |                           | Pervious-    | Area | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |       | Low Loss       | Rate, Ybar |            |       | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious |       | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_{j}$    | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 0      | Single Family Residential | 20%          | 6.30 | ۸     | Pervious   | 1.26  | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.20  | 0.40                      | 0.08                      | 0.080                                     | 0.200                          |
| '   | 9      | (>10 dwellings/acre)      | 2076         | 0.30 | Α     | Impervious | 5.04  | 0.800              | 98     | 0.20  | 0.04           | 0.95       | 0.758      |       |                           |                           |                                           |                                |
|     |        |                           | Total Area = | 6.30 |       |            |       |                    |        |       |                | Y =        | 0.76       |       |                           | Total F <sub>m</sub> =    | 0.08                                      | 0.20                           |

Ybar = 1 - Y = 0.3

0.20

# INFILTRATION RATE CALCULATION SUMMARY NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 10-YEAR HIGH-CONFIDENCE EVENT

|                     |        |        |       |       | Existing ( | Condition |      |      |      |       |      |
|---------------------|--------|--------|-------|-------|------------|-----------|------|------|------|-------|------|
| Node                | Α      | В      | С     | D     | E          | F         | G    | Н    | I    | J     | К    |
| Total Area (ac)     | 349.56 | 135.09 | 63.61 | 14.29 | 97.15      | 5.80      | 1.75 | 6.99 | 1.06 | 11.00 | 6.30 |
| Y                   | 0.65   | 0.80   | 0.61  | 0.66  | 0.80       | 0.75      | 0.75 | 0.75 | 0.75 | 0.75  | 0.75 |
| Ybar                | 0.35   | 0.20   | 0.39  | 0.34  | 0.20       | 0.25      | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 |
| Average $a_p$       | 0.64   | 0.37   | 1.00  | 0.68  | 0.30       | 0.20      | 0.20 | 0.20 | 0.20 | 0.20  | 0.20 |
| Total Fm<br>(in/hr) | 0.15   | 0.07   | 0.20  | 0.14  | 0.06       | 0.08      | 0.08 | 0.08 | 0.08 | 0.08  | 0.08 |

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION** 10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

3.68

7.05

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ ap - See Figure C-4

Total Area (ac) = 349.56 0.65

Fp - See Table C-2 Average a<sub>p</sub> = 0.64

Ybar = 1 - Y =

Total Fm (in/hr) = 0.15

|     |                                |              |              |               |                         |              | Offsite Area       | 1            |       |                |                |            |                |                           | FIII (III/III) =          | 0.13                                      |
|-----|--------------------------------|--------------|--------------|---------------|-------------------------|--------------|--------------------|--------------|-------|----------------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                                | Pervious-    |              | 0 "           | 5                       |              | A <sub>i</sub>     | 011          |       | Low Loss       | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                       | ness<br>(%)  | Area<br>(ac) | Soil<br>Group | Pervious/<br>Impervious | Area<br>(ac) | (Area<br>Fraction) | CN<br>AMC II | S     | la             | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub> (in/hr)    | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway          | 10%          | 7.57         | А             | Pervious                | 0.76         | 0.002              | 32           | 21.25 | 4.25           | 0.00           | 0.000      | 0.10           | 0.40                      | 0.04                      | 0.001                                     |
| '   | Olbali Covel - Roadway         | 1076         | 1.51         | A             | Impervious              | 6.81         | 0.019              | 98           | 0.20  | 0.04           | 0.94           | 0.018      |                |                           |                           |                                           |
| 2   | Urban Cover - Roadway          | 10%          | 2.65         | D             | Pervious                | 0.27         | 0.001              | 75           | 3.33  | 0.67           | 0.39           | 0.000      | 0.10           | 0.20                      | 0.02                      | 0.000                                     |
| 2   | Olbali Covel - Roadway         | 1076         | 2.03         | ם             | Impervious              | 2.39         | 0.007              | 98           | 0.20  | 0.04           | 0.94           | 0.006      |                |                           |                           |                                           |
| 3   | Single Family Residential      | 20%          | 45.27        | А             | Pervious                | 9.05         | 0.026              | 32           | 21.25 | 4.25           | 0.00           | 0.000      | 0.20           | 0.40                      | 0.08                      | 0.010                                     |
| J   | (>10 dwellings/acre)           | 2070         | 40.21        |               | Impervious              | 36.22        | 0.104              | 98           | 0.20  | 0.04           | 0.94           | 0.097      |                |                           |                           |                                           |
| 4   | Single Family Residential      | 20%          | 31.84        | В             | Pervious                | 6.37         | 0.018              | 56           | 7.86  | 1.57           | 0.12           | 0.002      | 0.20           | 0.30                      | 0.06                      | 0.005                                     |
|     | (>10 dwellings/acre)           | 2070         | 01.01        |               | Impervious              | 25.47        | 0.073              | 98           | 0.20  | 0.04           | 0.94           | 0.068      |                |                           |                           |                                           |
| 5   | Single Family Residential      | 20%          | 26.51        | D             | Pervious                | 5.30         | 0.015              | 75           | 3.33  | 0.67           | 0.39           | 0.006      | 0.20           | 0.20                      | 0.04                      | 0.003                                     |
| J   | (>10 dwellings/acre)           | 2070         | 20.01        |               | Impervious              | 21.21        | 0.061              | 98           | 0.20  | 0.04           | 0.94           | 0.057      |                |                           |                           |                                           |
| 6   | Commercial / Industrial        | 10%          | 31.91        | D             | Pervious                | 3.19         | 0.009              | 75           | 3.33  | 0.67           | 0.39           | 0.004      | 0.10           | 0.20                      | 0.02                      | 0.002                                     |
| Ů   | Commercial / madema            | 1070         | 01.01        |               | Impervious              | 28.72        | 0.082              | 98           | 0.20  | 0.04           | 0.94           | 0.077      |                |                           |                           |                                           |
| 7   | Oil Operations                 | 100%         | 11.89        | D             | Pervious                | 11.89        | 0.034              | 93           | 0.75  | 0.15           | 0.79           | 0.027      | 1.00           | 0.20                      | 0.20                      | 0.007                                     |
|     | On Operations                  | 10070        | 11.00        |               | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.94           | 0.000      |                |                           |                           |                                           |
| 8   | Open Space / Habitat Area      | 100%         | 16.64        | А             | Pervious                | 16.64        | 0.048              | 46           | 11.74 | 2.35           | 0.04           | 0.002      | 1.00           | 0.40                      | 0.40                      | 0.019                                     |
|     |                                |              |              |               | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.94           | 0.000      |                |                           |                           |                                           |
| 9   | Oxbow Loop Channel             | 10%          | 6.55         | А             | Pervious                | 0.66         | 0.002              | 78           | 2.82  | 0.56           | 0.44           | 0.001      | 0.10           | 0.40                      | 0.04                      | 0.001                                     |
|     | CASCH LOOP CHAINE              | 1070         | 0.00         | • • •         | Impervious              | 5.90         | 0.017              | 98           | 0.20  | 0.04           | 0.94           | 0.016      |                |                           |                           |                                           |
|     |                                | 1            |              |               | 1                       |              | Onsite Area        | 1            | 1     |                |                |            | 1              |                           |                           |                                           |
| No. | Land Use                       | Pervious-    | Area         | Soil          | Pervious/               | Area         | A <sub>j</sub>     | CN           |       | Low Loss       | Rate, Ybar     | 1          |                |                           | s Rate, F <sub>m</sub>    | F +A                                      |
| NO. | Land Use                       | ness<br>(%)  | (ac)         | Group         | Impervious              | (ac)         | (Area<br>Fraction) | AMC II       | S     | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Oil Operations / Barren Area   | 100%         | 4.78         | А             | Pervious                | 4.78         | 0.014              | 78           | 2.82  | 0.56           | 0.44           | 0.006      | 1.00           | 0.40                      | 0.40                      | 0.005                                     |
|     | On Operations / Barrett / troa | 10070        | 1.70         | , ,           | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.94           | 0.000      |                |                           |                           |                                           |
| 2   | Oil Operations / Barren Area   | 100%         | 10.98        | D             | Pervious                | 10.98        | 0.031              | 93           | 0.75  | 0.15           | 0.79           | 0.025      | 1.00           | 0.20                      | 0.20                      | 0.006                                     |
| _   | S.: Sporations / Barrott Area  | 10070        | 10.00        |               | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.94           | 0.000      |                |                           |                           |                                           |
| 3   | Open Space / Habitat Area      | 100%         | 152.97       | D             | Pervious                | 152.97       | 0.438              | 83           | 2.05  | 0.41           | 0.55           | 0.239      | 1.00           | 0.20                      | 0.20                      | 0.088                                     |
|     | Sport Space / Habitat Alea     | 10070        | 102.07       |               | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.94           | 0.000      |                |                           |                           |                                           |
|     |                                | Total Area = | 349.56       |               |                         |              |                    |              |       |                | Y =            | 0.65       |                |                           | Total F <sub>m</sub> =    | 0.15                                      |

Total Area =

349.56

Ybar = 1 - Y =

lotal F<sub>m</sub> =

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION** 10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

3.68

7.05

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 135.09

0.80 Ybar = 1 - Y =

 $F_m = a_p F_p$ ap - See Figure C-4

Fp - See Table C-2 Average a<sub>p</sub> = 0.37

|     |                               |              |        |       |            |       |                    |        |      |          |                |                                |                | Total                     | Fm (in/hr) =              | 0.07                                      |
|-----|-------------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|--------------------------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                               |              |        |       |            |       | Offsite Area       | 1      |      |          |                |                                |                |                           |                           |                                           |
|     |                               | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                      | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cayor Boodway           | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.39           | 0.002                          | 0.10           | 0.20                      | 0.02                      | 0.001                                     |
| '   | Urban Cover - Roadway         | 10%          | 5.35   | D     | Impervious | 4.82  | 0.036              | 98     | 0.20 | 0.04     | 0.94           | 0.033                          |                |                           |                           |                                           |
| 2   | Single Family Residential     | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.39           | 0.003                          | 0.20           | 0.20                      | 0.04                      | 0.002                                     |
|     | (>10 dwellings/acre)          | 20%          | 5.94   | D     | Impervious | 4.75  | 0.035              | 98     | 0.20 | 0.04     | 0.94           | 0.033                          |                |                           |                           |                                           |
| 3   | Communical / Indicatrial      | 10%          | 00.00  | D     | Pervious   | 8.01  | 0.059              | 75     | 3.33 | 0.67     | 0.39           | 0.023                          | 0.10           | 0.20                      | 0.02                      | 0.012                                     |
| 3   | Commercial / Industrial       | 10%          | 80.09  | D     | Impervious | 72.08 | 0.534              | 98     | 0.20 | 0.04     | 0.94           | 0.500                          |                |                           |                           |                                           |
| 4   | School                        | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.044              | 75     | 3.33 | 0.67     | 0.39           | 0.017                          | 0.60           | 0.20                      | 0.12                      | 0.009                                     |
| 4   | School                        | 00%          | 9.91   | D     | Impervious | 3.96  | 0.029              | 98     | 0.20 | 0.04     | 0.94           | 0.027                          |                |                           |                           |                                           |
|     |                               | •            |        | •     |            |       | Onsite Area        | 1      |      | •        | •              | •                              | •              | •                         |                           |                                           |
|     |                               | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_j$              | CN     |      | Low Loss | Rate, Ybar     |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                      | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 4   | Oil Operations / Barren Area  | 100%         | 12.82  | D     | Pervious   | 12.82 | 0.095              | 93     | 0.75 | 0.15     | 0.79           | 0.075                          | 1.00           | 0.20                      | 0.20                      | 0.019                                     |
|     | Oii Operations / Barrett Area | 100%         | 12.02  | U     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000                          |                |                           |                           |                                           |
| 2   | Open Space / Habitat Area     | 100%         | 20.98  | D     | Pervious   | 20.98 | 0.155              | 83     | 2.05 | 0.41     | 0.55           | 0.085                          | 1.00           | 0.20                      | 0.20                      | 0.031                                     |
|     | Open Space / Habitat Area     | 100%         | 20.90  | J 0   | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000                          |                |                           |                           |                                           |
|     |                               | Total Area = | 135.09 |       |            |       |                    |        |      |          | Y =            | 0.80                           |                |                           | Total F <sub>m</sub> =    | 0.07                                      |

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION** 10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

CN - See Figure C-1 and C-3

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

3.68 P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

7.05

Total Area (ac) = 63.61 0.61

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>p</sub> = 1.00

Total Fm (in/hr) = 0.20

|     |                              |              |       |       |            |       | Onsite Area        |        |      |                |            |            |                |                           |                           |                                           |
|-----|------------------------------|--------------|-------|-------|------------|-------|--------------------|--------|------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                              | Pervious-    | Area  | Soil  | Pervious/  | Area  | $A_j$              | CN     |      | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%)  | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Oil Operations / Barren Area | 100%         | 17.24 | D     | Pervious   | 17.24 | 0.271              | 93     | 0.75 | 0.15           | 0.79       | 0.214      | 1.00           | 0.20                      | 0.20                      | 0.054                                     |
| l ' | Oil Operations / Barren Area | 100 /6       | 17.24 | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.94       | 0.000      |                |                           |                           |                                           |
| 2   | Open Space / Habitat Area    | 100%         | 46.37 | D     | Pervious   | 46.37 | 0.729              | 83     | 2.05 | 0.41           | 0.55       | 0.398      | 1.00           | 0.20                      | 0.20                      | 0.146                                     |
| -   | Open Space / Habitat Area    | 100%         | 40.37 | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.94       | 0.000      |                |                           |                           |                                           |
|     |                              | Total Area = | 63.61 |       |            |       |                    |        |      |                | Y =        | 0.61       |                |                           | Total F <sub>m</sub> =    | 0.20                                      |

### PROPOSED NEWPORT BANNING RANCH PROJECT

10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA D

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

3.68

7.05

Total Area (ac) = 14.29 0.66

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.68

Total Fm (in/hr) =

|     |                                                                                     |                                                                                                                                                 |       |       |            |      |                    |        |      |          |            |            |                | rotai                     | Fm (in/hr) =              | 0.14                                      |
|-----|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------|------|--------------------|--------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                                                                                     |                                                                                                                                                 |       |       |            |      | Offsite Area       |        |      |          |            |            |                |                           |                           |                                           |
|     |                                                                                     | Pervious-                                                                                                                                       | Area  | Soil  | Pervious/  | Area | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    | -                                         |
| No. | Land Use                                                                            | Land Use ness (%) (ac) Group Impervious (ac) (Area Fraction) AMC II S I <sub>a</sub> Single Family Residential Pervious 1.14 0.079 75 3.33 0.67 |       |       |            |      |                    |        |      |          |            |            |                |                           | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential                                                           | 20%                                                                                                                                             | 5.68  | D     | Pervious   | 1.14 | 0.079              | 75     | 3.33 | 0.67     | 0.39       | 0.031      | 0.20           | 0.20                      | 0.04                      | 0.016                                     |
| '   | (>10 dwellings/acre)                                                                | 20%                                                                                                                                             | 5.00  | D     | Impervious | 4.54 | 0.318              | 98     | 0.20 | 0.04     | 0.94       | 0.298      |                |                           |                           |                                           |
|     | (210 dWclilligs/2010)   Impervious   4.54   0.318   98   0.20   0.04   0.94   0.298 |                                                                                                                                                 |       |       |            |      |                    |        |      |          |            |            |                |                           |                           |                                           |
|     |                                                                                     | Pervious-                                                                                                                                       | Area  | Soil  | Pervious/  | Area | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                                                                            | ness<br>(%)                                                                                                                                     | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la       | Yj         | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Open Space / Habitat Area                                                           | 100%                                                                                                                                            | 8.61  | D     | Pervious   | 8.61 | 0.603              | 83     | 2.05 | 0.41     | 0.55       | 0.329      | 1.00           | 0.20                      | 0.20                      | 0.121                                     |
| '   | Open Space / Habitat Area                                                           | 100%                                                                                                                                            | 0.01  | J 0   | Impervious | 0.00 | 0.000              | 98     | 0.20 | 0.04     | 0.94       | 0.000      |                |                           |                           |                                           |
|     |                                                                                     | Total Area =                                                                                                                                    | 14.29 |       |            |      |                    |        |      |          | Y =        | 0.66       |                |                           | Total F <sub>m</sub> =    | 0.14                                      |

## PROPOSED NEWPORT BANNING RANCH PROJECT

10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA E

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2}}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

97.15

 $F_m = a_p F_p$ 

3.68 7.05

0.80

Total Area (ac) =

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y = 0.20 Average a<sub>p</sub> = 0.30

Total Fm (in/hr) = 0.06

|     |                           |              |              |       |            |              |                    |        |      |          |                |            |                |                           | 1 111 (117111) =          | 0.00                                      |
|-----|---------------------------|--------------|--------------|-------|------------|--------------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |              |       |            |              | Offsite Area       |        |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-    | ٨٠٥٥         | Soil  | Pervious/  | Araa         | A <sub>i</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | Area<br>(ac) | Group | Impervious | Area<br>(ac) | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 44.48        | D     | Pervious   | 8.90         | 0.092              | 75     | 3.33 | 0.67     | 0.39           | 0.036      | 0.20           | 0.20                      | 0.04                      | 0.018                                     |
| '   | (>10 dwellings/acre)      | 20%          | 44.40        | D     | Impervious | 35.58        | 0.366              | 98     | 0.20 | 0.04     | 0.94           | 0.343      |                |                           |                           |                                           |
| 2   | Commercial / Industrial   | 10%          | 36.05        | D     | Pervious   | 3.61         | 0.037              | 75     | 3.33 | 0.67     | 0.39           | 0.014      | 0.10           | 0.20                      | 0.02                      | 0.007                                     |
| 2   | Commercial / muustnai     | 1076         | 30.03        | D     | Impervious | 32.45        | 0.334              | 98     | 0.20 | 0.04     | 0.94           | 0.313      |                |                           |                           |                                           |
| 2   | Open Space / Habitat Area | 100%         | 16.62        | D     | Pervious   | 16.62        | 0.171              | 83     | 2.05 | 0.41     | 0.55           | 0.093      | 1.00           | 0.20                      | 0.20                      | 0.034                                     |
| 3   | Open Space / Habitat Area | 100%         | 10.02        | D     | Impervious | 0.00         | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000      |                |                           |                           |                                           |
|     |                           | Total Area = | 97.15        |       |            |              |                    |        |      |          | Y =            | 0.80       |                |                           | Total F <sub>m</sub> =    | 0.06                                      |

#### PROPOSED NEWPORT BANNING RANCH PROJECT

#### 10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2a}}$$

3.68

7.05

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 5.80 0.75

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.20

Total Fm (in/hr) = 0.08

|     |                           |              |      |       |            | C    | Offsite Area -     | ·F     |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | Yj         | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 5.80 | ۸     | Pervious   | 1.16 | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.001      | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
|     | (>10 dwellings/acre)      | 2076         | 5.60 | ζ     | Impervious | 4.64 | 0.800              | 98     | 0.20  | 0.04           | 0.94       | 0.749      |                |                           |                           |                                           |
|     |                           | Total Area = | 5.80 |       |            |      |                    |        | •     |                | Y =        | 0.75       |                |                           | Total F <sub>m</sub> =    | 0.08                                      |

5.80 Y = Ybar = 1 - Y = 0.25

|     |                           |              |              |       |            | 0    | ffsite Area -      | ·G     |       |          |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|--------------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Aron         | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | Area<br>(ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 1.75         | ۸     | Pervious   | 0.35 | 0.200              | 32     | 21.25 | 4.25     | 0.00       | 0.001      | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
| '   | (>10 dwellings/acre)      | 20%          | 1.73         | A     | Impervious | 1.40 | 0.800              | 98     | 0.20  | 0.04     | 0.94       | 0.749      |                |                           |                           |                                           |
|     |                           | Total Area = | 1.75         |       |            |      |                    |        |       |          | Y =        | 0.75       |                |                           | Total F <sub>m</sub> =    | 0.08                                      |

1.75 Ybar = 1 - Y = 0.25

|          |                           |             |      |       |            | 0    | ffsite Area -      | Н      |       |          |            |            |       |                           |                           |                                           |
|----------|---------------------------|-------------|------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|          |                           | Pervious-   | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss | Rate, Ybar |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No.      | Land Use                  | ness<br>(%) | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | la       | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1        | Single Family Residential | 20%         | 6.99 | ۸     | Pervious   | 1.40 | 0.200              | 32     | 21.25 | 4.25     | 0.00       | 0.001      | 0.20  | 0.40                      | 0.08                      | 0.080                                     |
| <u> </u> | (>10 dwellings/acre)      | 2076        | 0.99 | A     | Impervious | 5.59 | 0.800              | 98     | 0.20  | 0.04     | 0.94       | 0.749      |       |                           |                           |                                           |

Total F<sub>m</sub> = Total Area = 6.99 Y = **0.75** 0.08 Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**10-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

|     |                           |              |      |       |            | (    | Offsite Area       | -1     |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 1.06 | ۸     | Pervious   | 0.21 | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.001      | 0.20           | 0.40                      | 0.08                      | 0.080                                     |
| '   | (>10 dwellings/acre)      | 2076         | 1.00 | A     | Impervious | 0.85 | 0.800              | 98     | 0.20  | 0.04           | 0.94       | 0.749      |                |                           |                           |                                           |
| -   |                           | Total Area = | 1.06 |       |            |      |                    |        |       |                | Y =        | 0.75       |                |                           | Total F <sub>m</sub> =    | 0.08                                      |

Total Area = 1.06 Y = **0.75** 

Ybar = 1 - Y = **0.25** 

|    |                           |             |       |       |            | C    | Offsite Area       | -J     |       |          |            |            |       |                           |                           |                                           |
|----|---------------------------|-------------|-------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|    |                           | Pervious-   | Area  | Soil  | Pervious/  | Area | Aj                 | CN     |       | Low Loss | Rate, Ybar |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | la       | $Y_{j}$    | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Single Family Residential | 20%         | 11.00 | ۸     | Pervious   | 2.20 | 0.200              | 32     | 21.25 | 4.25     | 0.00       | 0.001      | 0.20  | 0.40                      | 0.08                      | 0.080                                     |
| '  | (>10 dwellings/acre)      | 2076        | 11.00 | ^     | Impervious | 8.80 | 0.800              | 98     | 0.20  | 0.04     | 0.94       | 0.749      |       |                           |                           |                                           |

Total Area = Total  $F_m = 0.08$ 11.00 Y = **0.75** 

Ybar = 1 - Y = **0.25** 

|    |                           |             |              |       |            | 0    | ffsite Area -      | K      |       |          |            |            |       |                           |                           |                                           |
|----|---------------------------|-------------|--------------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|    |                           | Pervious-   | Aron         | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss | Rate, Ybar |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No | Land Use                  | ness<br>(%) | Area<br>(ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | la       | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Single Family Residential | 20%         | 6.30         | ۸     | Pervious   | 1.26 | 0.200              | 32     | 21.25 | 4.25     | 0.00       | 0.001      | 0.20  | 0.40                      | 0.08                      | 0.080                                     |
| '  | (>10 dwellings/acre)      | 2076        | 0.30         | ^     | Impervious | 5.04 | 0.800              | 98     | 0.20  | 0.04     | 0.94       | 0.749      |       |                           |                           |                                           |

Total Area = 6.30 Y = **0.75** Total  $F_m = 0.08$ Ybar = 1 - Y = **0.25** 

ii. HC 100-Year Storm Event

# Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Problem Descriptions:

.....

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 349.60
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.150
LOW LOSS FRACTION = 0.110
TIME OF CONCENTRATION (MIN.) = 25.36
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 100
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE (INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE (INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE (INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE (INCHES) = 5.63

-----

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 131.68 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 32.34

| ******                                                                                                                                                                                                                            | ******                                                                                                                                                                                                                                                                                                                            | ******                                                                                                                                                                                               | ***** | ******* | ******* | ****** | *****  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------|--------|--------|
| TI ME<br>(HOURS)                                                                                                                                                                                                                  | VOLUME<br>(AF)                                                                                                                                                                                                                                                                                                                    | Q<br>(CFS)                                                                                                                                                                                           | 0.    | 177. 5  | 355. 0  | 532. 5 | 710. 0 |
| 0. 36<br>0. 78<br>1. 21<br>1. 63<br>2. 05<br>2. 47<br>2. 90<br>3. 32<br>3. 74<br>4. 17<br>4. 59<br>5. 01<br>5. 86<br>6. 28<br>6. 70<br>7. 12<br>7. 55<br>7. 97<br>8. 81<br>9. 24<br>9. 66<br>10. 93<br>11. 35<br>11. 37<br>12. 77 | 0. 3668<br>1. 2292<br>2. 1061<br>2. 9983<br>3. 9068<br>4. 8323<br>5. 7758<br>6. 7379<br>7. 7200<br>8. 7227<br>9. 7478<br>10. 7961<br>11. 8694<br>12. 9689<br>14. 0968<br>15. 2546<br>16. 4450<br>17. 6698<br>18. 9325<br>20. 2354<br>21. 5832<br>22. 9785<br>24. 4279<br>25. 9350<br>27. 5086<br>29. 1540<br>30. 8841<br>32. 7065 | 24. 57 24. 81 25. 39 25. 69 26. 33 326. 66 27. 36 27. 73 28. 50 28. 91 29. 78 30. 24 31. 22 31. 74 32. 85 33. 44 34. 72 35. 41 36. 89 37. 70 39. 46 40. 43 42. 56 43. 73 47. 84 51. 21 53. 11 53. 11 |       |         |         |        |        |
| 13. 04                                                                                                                                                                                                                            | 39. 8132                                                                                                                                                                                                                                                                                                                          | 82. 03                                                                                                                                                                                               | . (   |         |         | •      | •      |

Page 1

|        |           |         |     |     | X100_A |   |    |
|--------|-----------|---------|-----|-----|--------|---|----|
| 13. 46 | 42. 7499  | 86. 11  | . Q |     |        | • |    |
| 13. 89 | 45. 9372  | 96. 38  | . Q |     |        |   |    |
| 14. 31 | 49. 4211  | 103. 09 | . Q |     |        |   |    |
| 14. 73 | 53. 3554  | 122. 17 | . О |     |        |   |    |
| 15. 15 | 57. 8636  | 135. 95 | . О | •   |        |   |    |
| 15. 58 | 63. 3405  | 177. 63 | •   | Q   |        |   |    |
| 16. 00 | 70. 3328  | 222. 72 | •   | . Q |        |   |    |
| 16. 42 | 86. 6200  | 709. 81 | •   |     |        |   | Q. |
| 16. 85 | 101. 7331 | 155. 50 |     | ) . |        |   |    |
| 17. 27 | 106. 4012 | 111. 78 | . О |     |        |   |    |
| 17. 69 | 109. 9400 | 90. 83  | . Q |     |        |   |    |
| 18. 11 | 112. 8968 | 78. 47  | . Q |     |        |   |    |
| 18. 54 | 115. 2325 | 55. 26  | . Q |     |        |   |    |
| 18. 96 | 117. 0614 | 49. 45  | . Q |     |        |   |    |
| 19. 38 | 118. 7111 | 45. 00  | . Q |     |        |   |    |
| 19. 80 | 120. 2211 | 41. 46  | . Q |     |        |   |    |
| 20. 23 | 121. 6186 | 38. 56  | . Q |     |        |   |    |
| 20. 65 | 122. 9231 | 36. 13  | . Q |     |        |   |    |
| 21. 07 | 124. 1490 | 34. 06  | . Q |     |        |   |    |
| 21. 49 | 125. 3077 | 32. 28  | . Q |     |        |   |    |
| 21. 92 | 126. 4080 | 30. 72  | . Q |     |        |   |    |
| 22. 34 | 127. 4569 | 29. 34  | . Q |     |        |   |    |
| 22. 76 | 128. 4602 | 28. 11  | . Q |     |        |   |    |
| 23. 19 | 129. 4227 | 27. 00  | . Q |     |        |   |    |
| 23. 61 | 130. 3485 | 26.00   | . Q |     |        |   |    |
| 24. 03 | 131. 2411 | 25. 10  | . Q |     |        |   |    |
| 24. 45 | 131. 6794 | 0.00    | Q   |     |        |   | ·  |

# Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 135.10

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.070

LOW LOSS FRACTION = 0.050

TIME OF CONCENTRATION(MIN.) = 29.40

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 100

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52

30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45 3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43 6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36

24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 53.95 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 9.43

| *****           | * * * * * * * * * * * | *****      | **** | ***** | ***** | ***** | ***** |
|-----------------|-----------------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF)        | Q<br>(CFS) | 0.   | 65.0  | 130.0 | 195.0 | 260.0 |
| 0.32            | 0.0000                | 0.00       | Q    | •     |       |       |       |
| 0.81            | 0.2083                | 10.29      | .Q   |       |       |       |       |
| 1.30            | 0.6276                | 10.42      | . Q  |       |       |       |       |
| 1.79            | 1.0556                | 10.72      | .Q   |       |       |       |       |
| 2.28            | 1.4927                | 10.87      | .Q   |       |       |       |       |
| 2.77            | 1.9394                | 11.20      | .Q   | •     |       | •     | •     |
| 3.26            | 2.3963                | 11.37      | .Q   | •     |       | •     | •     |
| 3.75            | 2.8641                | 11.74      | .Q   | •     |       | •     | •     |
| 4.24            | 3.3433                | 11.93      | .Q   | •     |       | •     | •     |
| 4.73            | 3.8349                | 12.35      | .Q   | •     |       | •     | •     |
| 5.22            | 4.3394                | 12.57      | .Q   |       |       |       |       |
| 5.71            | 4.8583                | 13.05      | . Q  |       |       |       |       |
| 6.20            | 5.3921                | 13.31      | . Q  |       |       |       |       |
| 6.69            | 5.9424                | 13.87      | . Q  |       |       | •     |       |
| 7.18            | 6.5103                | 14.17      | . Q  |       |       |       |       |
| 7.67            | 7.0977                | 14.84      | . Q  |       |       |       |       |
| 8.16            | 7.7058                | 15.20      | . Q  | •     |       | •     |       |
| 8.65            | 8.3375                | 16.00      | . Q  | •     |       | •     |       |
| 9.14            | 8.9943                | 16.44      | . Q  | •     | •     | •     | •     |

| 9.63  | 9.6802  | 17.43  | . Q   |    |     |      |  |
|-------|---------|--------|-------|----|-----|------|--|
| 10.12 | 10.3973 | 17.99  | . Q   |    |     |      |  |
| 10.61 | 11.1513 | 19.25  | . Q   |    |     |      |  |
| 11.10 | 11.9456 | 19.98  | . ~Q  |    |     |      |  |
| 11.59 | 12.7887 | 21.66  | . Q   |    |     |      |  |
| 12.08 | 13.6862 | 22.66  | . Q   |    |     |      |  |
| 12.57 | 14.7783 | 31.28  | . Q   |    |     |      |  |
| 13.06 | 16.0763 | 32.83  | . ~ Ç |    |     |      |  |
| 13.55 | 17.4851 | 36.75  | . Ç   |    |     |      |  |
| 14.04 | 19.0246 | 39.28  |       | Q. |     |      |  |
| 14.53 | 20.7635 | 46.60  |       | Q. |     |      |  |
| 15.02 | 22.7570 | 51.85  |       | Q. | •   |      |  |
| 15.51 | 25.2380 | 70.68  |       | Q  | •   |      |  |
| 16.00 | 28.3734 | 84.17  |       |    | Q . |      |  |
| 16.49 | 35.3364 | 259.72 |       |    | •   | . Q. |  |
| 16.98 | 41.7960 | 59.31  |       | Q. | •   |      |  |
| 17.47 | 43.8560 | 42.43  |       | Q. |     |      |  |
| 17.96 | 45.4164 | 34.63  | . 0   |    | •   |      |  |
| 18.45 | 46.6297 | 25.29  | . Q   | •  |     |      |  |
| 18.94 | 47.5624 | 20.78  | . Q   |    | •   |      |  |
| 19.43 | 48.3595 | 18.59  | . Q   |    | •   |      |  |
| 19.92 | 49.0785 | 16.92  | . Q   | •  |     |      |  |
| 20.41 | 49.7366 | 15.59  | . Q   |    | •   |      |  |
| 20.90 | 50.3457 | 14.50  | . Q   |    | •   |      |  |
| 21.39 | 50.9142 | 13.58  | . Q   | •  |     |      |  |
| 21.88 | 51.4486 | 12.81  | .Q    |    | •   |      |  |
| 22.37 | 51.9536 | 12.13  | .Q    |    | •   |      |  |
| 22.86 | 52.4331 | 11.55  | .Q    | •  |     |      |  |
| 23.35 | 52.8902 | 11.03  | .Q    |    | •   |      |  |
| 23.84 | 53.3275 | 10.57  | .Q    |    | •   |      |  |
| 24.33 | 53.7471 | 10.15  | .Q    |    | •   |      |  |
| 24.82 | 53.9526 | 0.00   | Q     |    | •   |      |  |
|       |         |        |       |    |     | <br> |  |

# Drainage C

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 63.60
SOIL-LOSS RATE, Fm,(INCH/HR) = 0.200
LOW LOSS FRACTION = 0.110
TIME OF CONCENTRATION(MIN.) = 17.98
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 100
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 23.95 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 5.89

| *****           | *****              | *****                  | ***** | ***** | ****   | ****   |
|-----------------|--------------------|------------------------|-------|-------|--------|--------|
| TIME<br>(HOURS) | VOLUME<br>(AF)     | Q 0.<br>(CFS)          | 40. 0 | 80.0  | 120. 0 | 160. 0 |
| 0. 12           | 0. 0216            | 4. 45 . Q              |       |       |        |        |
| 0. 42           | 0. 1321            | 4. 47 . Q              |       |       |        |        |
| 0. 72           | 0. 2437            | 4.54 .Q                |       |       |        |        |
| 1. 02           | 0. 3567            | 4. 58 . Q              | •     | •     |        | •      |
| 1. 32           | 0. 4711            | 4.66 .0                |       |       |        |        |
| 1. 62           | 0. 5869            | 4. 70 . Q              |       |       |        |        |
| 1. 92           | 0. 7042            | 4. 78 . Q              | •     | •     | •      | •      |
| 2. 22           | 0. 8230            | 4.82 .0                | •     | •     | •      | •      |
| 2. 52           | 0. 9435            | 4. 91 . Q              | •     | •     | •      | •      |
| 2. 81<br>3. 11  | 1. 0656<br>1. 1895 | 4. 95 . Q<br>5. 05 . Q | •     | •     | •      | •      |
| 3. 41           | 1. 1693            | 5. 05 . Q<br>5. 10 . Q | •     | •     | •      | •      |
| 3. 71           | 1. 4426            | 5. 20 . Q              | •     | •     | •      | •      |
| 4. 01           | 1. 5720            | 5. 25 . Q              | •     | •     | •      | •      |
| 4. 31           | 1. 7035            | 5. 36 . 0              | •     | •     | •      | •      |
| 4. 61           | 1. 8370            | 5. 42 . 0              |       |       |        |        |
| 4. 91           | 1. 9727            | 5. 54 . Q              |       | _     |        |        |
| 5. 21           | 2. 1106            | 5. 60 . Q              |       |       |        |        |
| 5. 51           | 2. 2510            | 5. 73 . Q              |       |       |        |        |
| 5. 81           | 2. 3938            | 5. 80 . Q              | •     | •     |        | •      |
| 6. 11           | 2. 5392            | 5. 94 . Q              |       |       |        |        |
| 6. 41           | 2. 6873            | 6. 02 . 0              |       | •     |        |        |
| 6. 71           | 2. 8383            | 6. 18 . Q              | •     | •     | •      | •      |
| 7. 01           | 2. 9923            | 6. 26 . Q              |       | •     |        | •      |
| 7. 31           | 3. 1495            | 6. 43 . Q              | •     | •     | •      | •      |
| 7. 61           | 3. 3100            | 6. 53 . Q              | •     | •     | •      | •      |
| 7. 91<br>8. 21  | 3. 4741<br>3. 6418 | 6. 72 . Q<br>6. 83 . Q | •     | •     | •      | •      |
| 8. 21<br>8. 51  | 3. 8136            | 7. 05 . Q              | •     | •     |        | •      |
| 8. 81           | 3. 9896            | 7. 05 . Q<br>7. 16 . Q | •     | •     | •      | •      |
| 9. 11           | 3. 9696<br>4. 1701 | 7. 16 . Q<br>7. 42 . Q | •     | •     | •      | •      |
| 7. 11           | 4. 1701            | 7.42 . U               | •     |       | •      | •      |

Page 1

|                  |                      |                   |                |        | X100_C |   |        |
|------------------|----------------------|-------------------|----------------|--------|--------|---|--------|
| 9. 41<br>9. 71   | 4. 3555<br>4. 5460   | 7. 55<br>7. 84    | . Q<br>. Q     |        |        |   |        |
| 10. 01<br>10. 31 | 4. 7420<br>4. 9441   | 7. 99<br>8. 33    | . Q<br>.     Q |        |        |   |        |
| 10. 61<br>10. 91 | 5. 1527<br>5. 3684   | 8. 51<br>8. 91    | . Q<br>. Q     |        |        |   |        |
| 11. 21           | 5. 5917              | 9. 13             | . Q            |        |        |   | •      |
| 11. 51<br>11. 80 | 5. 8237<br>6. 0649   | 9. 61<br>9. 87    | . Q<br>. Q     |        |        |   |        |
| 12. 10<br>12. 40 | 6. 3175<br>6. 6154   | 10. 53<br>13. 53  | . Q<br>. Q     |        |        |   |        |
| 12. 70<br>13. 00 | 6. 9604<br>7. 3209   | 14. 33<br>14. 79  | . Q<br>. Q     |        |        |   |        |
| 13. 30<br>13. 60 | 7. 7002<br>8. 1001   | 15. 84<br>16. 45  | . Q<br>. Q     |        |        |   |        |
| 13. 90           | 8. 5258              | 17. 92            | . Q            |        |        |   |        |
| 14. 20<br>14. 50 | 8. 9807<br>9. 4757   | 18. 81<br>21. 16  | . Q<br>. Q     |        |        |   |        |
| 14. 80<br>15. 10 | 10. 0178<br>10. 6280 | 22. 61<br>26. 67  | . Q<br>. Q     |        |        |   | •      |
| 15. 40<br>15. 70 | 11. 3258<br>12. 1425 | 29. 68<br>36. 27  | . Q            | Q.     |        |   |        |
| 16. 00<br>16. 30 | 13. 2067<br>15. 7668 | 49. 67<br>157. 07 |                | . Q    |        |   | Q.     |
| 16. 60<br>16. 90 | 18. 1141<br>18. 8185 | 32. 49<br>24. 40  | . Q            |        |        |   |        |
| 17. 20           | 19. 3677             | 19. 95            | . Q            |        |        |   |        |
| 17. 50<br>17. 80 | 19. 8270<br>20. 2286 | 17. 14<br>15. 29  | . Q<br>. Q     |        |        |   |        |
| 18. 10<br>18. 40 | 20. 5902<br>20. 8882 | 13. 91<br>10. 16  | . Q<br>. Q     |        |        |   | •      |
| 18. 70<br>19. 00 | 21. 1299<br>21. 3536 | 9. 36<br>8. 70    | . Q<br>. Q     | :      |        |   |        |
| 19. 30<br>19. 60 | 21. 5624<br>21. 7586 | 8. 16<br>7. 69    | . Q<br>. Q     |        |        |   |        |
| 19. 90<br>20. 20 | 21. 9441<br>22. 1202 | 7. 29<br>6. 93    | . Q<br>. Q     |        |        |   |        |
| 20. 49           | 22. 2881             | 6. 62             | . Q            |        | •      | • | •      |
| 20. 79<br>21. 09 | 22. 4486<br>22. 6027 | 6. 35<br>6. 10    | . Q<br>. Q     |        |        | • | •      |
| 21. 39<br>21. 69 | 22. 7509<br>22. 8937 | 5. 87<br>5. 67    | . Q<br>. Q     |        |        |   |        |
| 21. 99<br>22. 29 | 23. 0317<br>23. 1653 | 5. 48<br>5. 31    | . Q<br>. Q     |        |        |   |        |
| 22. 59<br>22. 89 | 23. 2947<br>23. 4204 | 5. 15<br>5. 00    | . Q<br>. Q     | •      |        |   |        |
| 23. 19<br>23. 49 | 23. 5426<br>23. 6614 | 4. 86<br>4. 74    | . Q<br>. Q     |        |        |   | •      |
| 23. 79           | 23. 7773             | 4. 62             | . Q            |        |        |   |        |
| 24. 09<br>24. 39 | 23. 8902<br>23. 9460 | 4. 51<br>0. 00    | . Q<br>Q       | ·<br>· | ·<br>· |   | ·<br>· |

# Drainage D

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 14.29
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.140
LOW LOSS FRACTION = 0.070
TIME OF CONCENTRATION (MIN.) = 10.27
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 100
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE (INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE (INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE (INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE (INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 5. 60 1. 10

| *****           | ******             | *****          | ****   | ***** | *****  | ***** | ****** |
|-----------------|--------------------|----------------|--------|-------|--------|-------|--------|
| TIME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 15. 0 | 30.0   | 45. 0 | 60.0   |
| 0. 08           | 0. 0035            | 1. 05          | Q      |       |        |       |        |
| 0. 25           | 0. 0183            | 1. 05          | Q      |       |        |       |        |
| 0. 42           | 0. 0332            | 1. 06          | Q      |       |        |       |        |
| 0. 59           | 0. 0482            | 1. 06          | Q      |       | •      | •     | •      |
| 0. 77           | 0. 0633            | 1. 07          | Q      |       |        |       |        |
| 0. 94           | 0. 0785            | 1. 08          | Q      |       |        |       |        |
| 1. 11           | 0. 0938            | 1. 09          | Q      |       | •      |       |        |
| 1. 28           | 0. 1093            | 1. 09          | Q      |       |        | •     |        |
| 1. 45           | 0. 1248            | 1. 10          | Q      |       |        |       | •      |
| 1. 62           | 0. 1404            | 1. 11          | Q      |       |        |       | •      |
| 1. 79           | 0. 1562            | 1. 12          | Q      | •     | •      | •     | •      |
| 1. 96<br>2. 14  | 0. 1721<br>0. 1881 | 1. 13<br>1. 14 | Q<br>Q | •     |        | •     | •      |
| 2. 14           | 0. 1001            | 1. 14          | Q      | •     | •      | •     | •      |
| 2. 48           | 0. 2042            | 1. 14          | Q      | •     | •      | •     | •      |
| 2. 65           | 0. 2368            | 1. 16          | Q      | •     | •      | •     | •      |
| 2. 82           | 0. 2534            | 1. 17          | Q      | •     | •      | •     | •      |
| 2. 99           | 0. 2700            | 1. 18          | Q      | •     |        | •     | •      |
| 3. 16           | 0. 2868            | 1. 19          | Q      | •     |        | •     | •      |
| 3. 33           | 0. 3037            | 1. 20          | Q      |       |        |       |        |
| 3. 50           | 0. 3208            | 1. 21          | Q      |       |        |       |        |
| 3. 68           | 0. 3380            | 1. 22          | Q      |       |        |       |        |
| 3. 85           | 0. 3554            | 1. 23          | Q      |       |        |       |        |
| 4. 02           | 0. 3729            | 1. 24          | Q      |       |        |       |        |
| 4. 19           | 0. 3905            | 1. 26          | Q      |       |        |       |        |
| 4. 36           | 0. 4084            | 1. 26          | Q      |       |        |       |        |
| 4. 53           | 0. 4263            | 1. 28          | Q      |       |        |       |        |
| 4. 70           | 0. 4445            | 1. 29          | Q      |       |        |       |        |
| 4. 87           | 0. 4628            | 1. 30          | Q      |       |        |       |        |
|                 |                    |                |        |       | Dogo 1 |       |        |

Page 1

|                  |                    |                 |               |   | X100_D |     |   |
|------------------|--------------------|-----------------|---------------|---|--------|-----|---|
| 5. 05<br>5. 22   | 0. 4813<br>0. 5000 | 1. 31<br>1. 33  | Q<br>Q        |   |        |     |   |
| 5. 39            | 0. 5189            | 1. 34           | Q             |   |        |     |   |
| 5. 56<br>5. 73   | 0. 5380<br>0. 5572 | 1. 36<br>1. 37  | Q<br>Q        | • | •      | •   | • |
| 5. 90            | 0. 5767            | 1. 38           | Q             |   |        |     |   |
| 6. 07<br>6. 24   | 0. 5963<br>0. 6162 | 1. 39<br>1. 41  | Q<br>Q        |   |        |     |   |
| 6. 41            | 0. 6363            | 1. 43           | Q             |   |        |     |   |
| 6. 59<br>6. 76   | 0. 6566<br>0. 6771 | 1. 45<br>1. 46  | Q<br>Q        |   |        |     | : |
| 6. 93<br>7. 10   | 0. 6979<br>0. 7189 | 1. 48<br>1. 49  | Q<br>Q        |   |        |     |   |
| 7. 27            | 0.7402             | 1. 52           | . Q           |   |        |     |   |
| 7. 44<br>7. 61   | 0. 7617<br>0. 7835 | 1. 53<br>1. 55  | . Q<br>. Q    | • | •      | •   | • |
| 7. 78            | 0.8056             | 1. 57           | . Q           |   |        |     |   |
| 7. 96<br>8. 13   | 0. 8280<br>0. 8506 | 1. 59<br>1. 61  | . Q<br>. Q    |   |        |     | : |
| 8. 30<br>8. 47   | 0. 8736<br>0. 8968 | 1.64            | . Q           |   | •      | •   |   |
| 8. 64            | 0. 6906            | 1. 65<br>1. 68  | . Q<br>. Q    |   |        |     |   |
| 8. 81<br>8. 98   | 0. 9444<br>0. 9687 | 1. 70<br>1. 73  | . Q<br>. Q    |   |        |     |   |
| 9. 15            | 0. 9934            | 1. 75           | . Q           |   |        |     | : |
| 9. 32<br>9. 50   | 1. 0184<br>1. 0439 | 1. 79<br>1. 81  | . Q<br>. Q    |   |        |     | : |
| 9. 67            | 1. 0697            | 1. 85           | . Q           |   |        |     |   |
| 9. 84<br>10. 01  | 1. 0960<br>1. 1228 | 1. 87<br>1. 91  | . Q<br>. Q    |   |        |     | : |
| 10. 18<br>10. 35 | 1. 1500<br>1. 1777 | 1. 94<br>1. 98  | . Q<br>. Q    |   |        |     |   |
| 10. 52           | 1. 2059            | 2. 01           | . Q           |   |        |     |   |
| 10. 69<br>10. 86 | 1. 2347<br>1. 2641 | 2. 06<br>2. 09  | . Q<br>. Q    |   |        |     | • |
| 11. 04           | 1. 2940            | 2. 15           | . Q           |   |        |     |   |
| 11. 21<br>11. 38 | 1. 3246<br>1. 3559 | 2. 18<br>2. 24  | . Q<br>. Q    |   |        |     |   |
| 11. 55<br>11. 72 | 1. 3879<br>1. 4206 | 2. 28<br>2. 35  | . Q<br>. Q    |   |        |     |   |
| 11. 89           | 1. 4541            | 2. 39           | . Q           |   |        |     |   |
| 12. 06<br>12. 23 | 1. 4888<br>1. 5289 | 2. 51<br>3. 16  | . Q<br>.    Q |   |        |     | : |
| 12. 41           | 1. 5743            | 3. 26           | . Q           |   |        |     |   |
| 12. 58<br>12. 75 | 1. 6208<br>1. 6685 | 3. 31<br>3. 43  | . Q<br>. Q    |   | •      |     |   |
| 12. 92<br>13. 09 | 1. 7175<br>1. 7679 | 3. 50<br>3. 63  | . Q<br>. Q    |   |        |     |   |
| 13. 26           | 1. 8199            | 3. 71           | . Q           |   |        |     |   |
| 13. 43<br>13. 60 | 1. 8735<br>1. 9290 | 3. 87<br>3. 97  | . Q<br>. Q    | • | •      | •   | • |
| 13. 77           | 1. 9865            | 4. 17           | . Q           |   |        |     |   |
| 13. 95<br>14. 12 | 2. 0462<br>2. 1087 | 4. 28<br>4. 55  | . Q<br>. Q    |   |        |     | : |
| 14. 29<br>14. 46 | 2. 1741<br>2. 2430 | 4. 70<br>5. 04  | . Q<br>. Q    |   |        |     |   |
| 14. 63           | 2. 3156            | 5. 23           | . Q           |   |        |     |   |
| 14. 80<br>14. 97 | 2. 3928<br>2. 4754 | 5. 69<br>5. 98  | . Q<br>. Q    | • | •      | •   | • |
| 15. 14           | 2. 5649            | 6. 69           | . Q           |   |        |     |   |
| 15. 32<br>15. 49 | 2. 6627<br>2. 7668 | 7. 14<br>7. 57  | . Q<br>. Q    |   |        |     | : |
| 15. 66           | 2. 8793<br>3. 0223 | 8. 34<br>11. 87 | . Q<br>. Q    |   |        |     |   |
| 15. 83<br>16. 00 | 3. 0223            | 16. 22          | . U           | Q |        |     |   |
| 16. 17<br>16. 34 | 3. 6950<br>4. 1228 | 50. 80<br>9. 68 | . Q           |   |        | . Q |   |
| 16. 51           | 4. 2458            | 7. 71           | . Q           |   |        |     |   |
| 16. 68<br>16. 86 | 4. 3449<br>4. 4280 | 6. 30<br>5. 45  | . Q<br>. Q    |   | ·      |     |   |
| 17. 03           | 4. 5009            | 4. 86           | . Q           |   |        |     |   |
| 17. 20<br>17. 37 | 4. 5664<br>4. 6263 | 4. 40<br>4. 06  | . Q<br>. Q    |   |        |     | : |
| 17. 54<br>17. 71 | 4. 6818<br>4. 7338 | 3. 79<br>3. 56  | . Q<br>. Q    |   |        |     |   |
| 17. 88           | 4. 7829            | 3. 37           | . Q           |   |        |     | : |
| 18. 05<br>18. 23 | 4. 8294<br>4. 8693 | 3. 21<br>2. 43  | . Q<br>. Q    |   |        |     |   |
| 18. 40           | 4. 9029            | 2. 31           | . Q           |   |        |     |   |

Page 2

|                  |                    |                |                                       |   | X100_D |   |   |
|------------------|--------------------|----------------|---------------------------------------|---|--------|---|---|
| 18. 57           | 4. 9349            | 2. 21          | . Q                                   |   | •      | • | • |
| 18. 74           | 4. 9655            | 2. 12          | . Q                                   |   | •      |   |   |
| 18. 91           | 4. 9948            | 2. 03          | . Q                                   |   | •      |   |   |
| 19. 08           | 5. 0231            | 1. 96          | . Q                                   |   | •      |   |   |
| 19. 25           | 5. 0503            | 1.89           | . Q                                   | • | •      | • | • |
| 19. 42<br>19. 59 | 5. 0766<br>5. 1021 | 1. 83<br>1. 77 | . Q<br>. Q                            | • | •      | • | • |
| 19. 39           | 5. 1267            | 1. 77          | . Q<br>. Q                            | • | •      | • | • |
| 19. 77           | 5. 1507            | 1. 72          | . Q<br>. Q                            | • | •      | • | • |
| 20. 11           | 5. 1740            | 1. 62          | . Q                                   | • | •      | • | • |
| 20. 28           | 5. 1966            | 1. 58          | . Q                                   | • | •      | • | • |
| 20. 45           | 5. 2187            | 1. 54          | . Q                                   |   |        |   |   |
| 20. 62           | 5. 2402            | 1. 50          | . Q                                   |   |        |   |   |
| 20. 79           | 5. 2612            | 1. 47          | Q                                     |   | •      |   |   |
| 20. 96           | 5. 2818            | 1. 44          | Q                                     |   |        |   |   |
| 21. 14           | 5. 3019            | 1. 40          | Q                                     |   | •      |   |   |
| 21. 31           | 5. 3215            | 1. 38          | Q                                     | • | •      | • | • |
| 21. 48           | 5. 3408            | 1. 35          | Q                                     |   | •      |   |   |
| 21. 65<br>21. 82 | 5. 3597<br>5. 3782 | 1. 32<br>1. 30 | Q<br>Q                                | • | •      | • | • |
| 21. 62           | 5. 3963            | 1. 30          | Q                                     | • | •      | • | • |
| 22. 16           | 5. 4141            | 1. 27          | Q                                     | • | •      | • | • |
| 22. 33           | 5. 4317            | 1. 23          | Q                                     | • | •      | • | • |
| 22. 50           | 5. 4489            | 1. 21          | Q                                     | • | •      | • | • |
| 22. 68           | 5. 4658            | 1. 19          | Q                                     |   |        |   |   |
| 22. 85           | 5. 4824            | 1. 17          | Q                                     |   |        |   |   |
| 23. 02           | 5. 4988            | 1. 15          | Q                                     |   | •      |   |   |
| 23. 19           | 5. 5150            | 1. 13          | Q                                     |   | •      | • | • |
| 23. 36           | 5. 5308            | 1. 11          | Q                                     |   |        |   |   |
| 23. 53           | 5. 5465            | 1. 10          | Q                                     |   | •      |   |   |
| 23. 70           | 5. 5619            | 1. 08          | Q                                     | • | •      |   |   |
| 23. 87           | 5. 5771            | 1. 07          | Q                                     |   | •      |   |   |
| 24. 04<br>24. 22 | 5. 5921<br>5. 5996 | 1. 05<br>0. 00 | Q<br>Q                                |   | •      | • | • |
| 24. 22           | o. 0996            | 0.00           | · · · · · · · · · · · · · · · · · · · |   | ·      | · | · |

# Drainage E

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 97.20
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.040
TIME OF CONCENTRATION(MIN.) = 26.62
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 100

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 39.43 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 6.18

VOLUME (AF) ( Q 0. 50.0 100.0 150.0 200.0 TIME (CFS) (HOURS) 0.03 0.0000 0.00 Q 0. 1354 0. 4079 0. 6853 0. 9679 7. 39 7. 47 7. 66 7. 76 7. 96 8. 07 0.47 . Q .0.0 0.92 1.36 1.80 2. 25 2. 69 3. 13 3. 58 1. 2560 1.5498 8. 29 1.8497 2. 1559 2. 4689 2. 7890 8. 41 8. 66 8. 80 4.02 4. 46 9. 08 9. 23 4.91 3. 1168 5. 35 5. 80 6. 24 3. 4525 3. 7969 4. 1505 9.56 9. 73 6. 68 7. 13 . Q . Q . Q 4.5140 10.10 4.8880 10.30 7. 57 8. 01 5. 2736 5. 6714 10.73 . Q 10. 97 6. 0830 6. 5091 6. 9517 . Q 8. 46 11. 48 8. 90 9. 35 . Q 11. 76 . Õ 12. 38 7. 4119 7. 8924 8. 3949 8. 9231 . Q 9.79 12.72 13. 49 13. 92 . Õ 10. 23 . Õ 10. 68 . Q 14. 90 11. 12 . Q . Q . Q 15. 46 16. 76 19. 89 11.56 9.4796 12. 01 10. 0704 10. 7423 12. 45 12. 89 13. 34 11. 5464 12. 4473 23. 97 25. 17 Q

Page 1

|        |          |         |       | X100_E |   |    |
|--------|----------|---------|-------|--------|---|----|
| 13. 78 | 13. 4251 | 28. 17  | . Q . |        |   |    |
| 14. 23 | 14. 4936 | 30. 11  | . Q . |        |   |    |
| 14. 67 | 15. 7003 | 35. 71  | . Q . |        |   |    |
| 15. 11 | 17. 0835 | 39. 74  | . Q . |        |   |    |
| 15. 56 | 18. 7774 | 52. 66  | . Q   |        |   |    |
| 16. 00 | 20. 9327 | 64. 90  | Q     |        |   |    |
| 16. 44 | 25. 7767 | 199. 32 |       |        |   | Q. |
| 16. 89 | 30. 2641 | 45. 45  | . Q.  |        |   |    |
| 17. 33 | 31. 6957 | 32. 63  | . Q . |        |   |    |
| 17. 77 | 32. 7806 | 26. 55  | . Q . |        |   |    |
| 18. 22 | 33. 6877 | 22. 93  | . Q . | •      | • | •  |
| 18. 66 | 34. 4028 | 16. 08  | . Q . | •      | • | •  |
| 19. 11 | 34. 9613 | 14. 39  | . Q . |        |   |    |
| 19. 55 | 35. 4651 | 13. 09  | . Q . |        | • | •  |
| 19. 99 | 35. 9262 | 12. 06  | . Q . |        |   |    |
| 20. 44 | 36. 3529 | 11. 22  | . Q . |        |   |    |
| 20. 88 | 36. 7513 | 10. 51  | . Q . |        |   |    |
| 21. 32 | 37. 1256 | 9. 91   | . Q . |        | • |    |
| 21. 77 | 37. 4795 | 9. 39   | . Q . |        |   |    |
| 22. 21 | 37. 8154 | 8. 94   | . Q . |        |   |    |
| 22. 66 | 38. 1357 | 8. 53   | . Q . |        | • |    |
| 23. 10 | 38. 4421 | 8. 18   | . Q . |        |   |    |
| 23. 54 | 38. 7360 | 7. 86   | . Q . |        |   |    |
| 23. 99 | 39. 0188 | 7. 57   | . Q . | •      |   |    |
| 24. 43 | 39. 2920 | 7. 34   | . Q . | •      |   |    |
| 24. 87 | 39. 4266 | 0. 00   | Q .   |        | • | •  |
|        |          |         |       |        |   |    |

# Drainage F

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 5.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.160
TIME OF CONCENTRATION(MIN.) = 7.97
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 100
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 2.11 TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = 0.61

| *****            | ********           | *****          | ****   | ***** | ****** | ***** | ***** |
|------------------|--------------------|----------------|--------|-------|--------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 7. 5  | 15. 0  | 22. 5 | 30.0  |
| 0. 06            | 0. 0000            | 0. 00          | Q      |       |        |       |       |
| 0. 19            | 0. 0021            | 0. 38          | Q      |       |        |       |       |
| 0. 33            | 0. 0063            | 0. 39          | Q      | •     | •      | •     | •     |
| 0. 46            | 0. 0106            | 0. 39          | Q      |       |        |       |       |
| 0. 59            | 0. 0149            | 0. 39          | Q      |       |        |       |       |
| 0. 72            | 0. 0192            | 0. 39          | Q      |       |        |       |       |
| 0. 86            | 0. 0235            | 0. 39          | Q      |       |        | •     | •     |
| 0. 99            | 0. 0278            | 0. 40          | Q      |       | •      | •     |       |
| 1. 12            | 0. 0322            | 0. 40          | Q      |       |        |       | •     |
| 1. 26            | 0. 0366            | 0. 40          | Q      | •     | •      | •     | •     |
| 1. 39            | 0. 0410            | 0.40           | Q      | •     | •      | •     | •     |
| 1. 52<br>1. 65   | 0. 0454<br>0. 0499 | 0. 41<br>0. 41 | Q<br>Q | •     | •      | •     | •     |
| 1. 79            | 0. 0499            | 0. 41          | Q      | •     | •      | •     | •     |
| 1. 92            | 0. 0544            | 0.41           | Q      | •     | •      | •     | •     |
| 2. 05            | 0. 0635            | 0.41           | Q      | •     | •      | •     | •     |
| 2. 19            | 0. 0681            | 0. 42          | Q      | •     | •      | •     | •     |
| 2. 32            | 0. 0727            | 0. 42          | Q      | •     | •      | •     | •     |
| 2. 45            | 0.0773             | 0. 42          | Q      | •     | •      | •     | •     |
| 2. 58            | 0. 0819            | 0. 43          | ã      |       |        |       |       |
| 2. 72            | 0. 0866            | 0. 43          | Q      |       |        |       |       |
| 2. 85            | 0.0913             | 0. 43          | Q      |       |        |       |       |
| 2. 98            | 0. 0961            | 0. 43          | Q      |       |        |       |       |
| 3. 12            | 0. 1009            | 0.44           | Q      |       |        |       |       |
| 3. 25            | 0. 1057            | 0.44           | Q      |       |        |       |       |
| 3. 38            | 0. 1105            | 0.44           | Q      |       |        |       |       |
| 3. 51            | 0. 1154            | 0. 44          | Q      |       | •      |       | •     |
| 3. 65            | 0. 1203            | 0. 45          | Q      |       |        |       |       |
| 3. 78            | 0. 1252            | 0. 45          | Q      |       |        |       |       |
| 3. 91            | 0. 1302            | 0. 45          | Q      |       |        |       |       |
|                  |                    |                |        |       |        |       |       |

Page 1

|                  |                    |                |            |   | X100_F |   |   |
|------------------|--------------------|----------------|------------|---|--------|---|---|
| 4. 05            | 0. 1352            | 0. 46          | Q          |   |        |   |   |
| 4. 18            | 0. 1402            | 0. 46          | Q          | • |        | • |   |
| 4. 31            | 0. 1453            | 0.46           | Q          |   |        |   |   |
| 4. 44<br>4. 58   | 0. 1504<br>0. 1555 | 0. 47<br>0. 47 | Q<br>Q     | • | •      | • | • |
| 4. 71            | 0. 1607            | 0. 47          | Q          |   |        |   |   |
| 4. 84            | 0. 1659            | 0. 48          | Q          |   | · ·    |   |   |
| 4. 97            | 0. 1712            | 0.48           | Q          |   |        |   |   |
| 5. 11            | 0. 1765            | 0. 48          | Q          |   |        |   |   |
| 5. 24            | 0. 1818            | 0. 49          | Q          |   |        |   |   |
| 5. 37            | 0. 1872            | 0. 49          | Q          | • |        | • |   |
| 5. 51            | 0. 1926            | 0. 50<br>0. 50 | Q          | • | •      | • |   |
| 5. 64<br>5. 77   | 0. 1981<br>0. 2036 | 0. 50          | Q<br>Q     | • | •      | • | • |
| 5. 90            | 0. 2092            | 0. 50          | Q          | • | •      | • | • |
| 6. 04            | 0. 2148            | 0. 51          | Q          |   | ·      | • |   |
| 6. 17            | 0. 2204            | 0. 52          | Q          |   |        |   |   |
| 6. 30            | 0. 2261            | 0. 52          | Q          |   |        |   |   |
| 6. 44            | 0. 2318            | 0. 52          | Q          |   |        |   |   |
| 6. 57            | 0. 2376            | 0. 53          | Q          |   |        |   |   |
| 6. 70            | 0. 2435            | 0. 53          | Q          |   |        | • |   |
| 6. 83            | 0. 2494            | 0. 54          | Q          | • |        |   |   |
| 6. 97<br>7. 10   | 0. 2553            | 0. 54          | Q          | • |        | • |   |
| 7. 10<br>7. 23   | 0. 2613<br>0. 2674 | 0. 55<br>0. 55 | Q<br>Q     | • | •      | • | • |
| 7. 23            | 0. 2735            | 0. 56          | Q          | • |        | • | • |
| 7. 50            | 0. 2797            | 0. 56          | Q          |   | ·      | • |   |
| 7. 63            | 0. 2859            | 0. 57          | Q          |   |        |   |   |
| 7. 76            | 0. 2922            | 0. 58          | Q          |   |        |   |   |
| 7. 90            | 0. 2985            | 0. 58          | Q          |   |        |   |   |
| 8. 03            | 0. 3050            | 0. 59          | Q          |   |        | • |   |
| 8. 16            | 0. 3115            | 0.60           | Q          |   |        |   |   |
| 8. 30<br>8. 43   | 0. 3180<br>0. 3246 | 0. 60<br>0. 61 | Q<br>Q     | • | •      | • |   |
| 8. 56            | 0. 3240            | 0. 61          | Q          | • | •      | • | • |
| 8. 69            | 0. 3313            | 0. 62          | Q          | • | •      | • | • |
| 8. 83            | 0. 3450            | 0. 63          | Q          |   | ·      | • |   |
| 8. 96            | 0. 3519            | 0. 64          | Q          |   |        |   |   |
| 9. 09            | 0. 3589            | 0.64           | Q          |   |        |   |   |
| 9. 23            | 0. 3660            | 0. 65          | Q          |   |        |   |   |
| 9. 36            | 0. 3732            | 0. 66          | Q          |   |        |   |   |
| 9. 49            | 0. 3805            | 0.67           | Q          | • |        | • |   |
| 9. 62            | 0. 3878<br>0. 3953 | 0.67           | Q          | • | •      | • |   |
| 9. 76<br>9. 89   | 0. 3933            | 0. 69<br>0. 69 | Q<br>Q     | • | •      | • | • |
| 10. 02           | 0. 4105            | 0. 70          | Q          | • | •      | • | • |
| 10. 16           | 0. 4183            | 0. 71          | Q          |   | ·      |   |   |
| 10. 29           | 0. 4261            | 0. 72          | Q          |   |        |   |   |
| 10. 42           | 0. 4341            | 0. 73          | Q          |   |        |   |   |
| 10. 55           | 0. 4422            | 0. 75          | Q          |   |        |   |   |
| 10. 69           | 0. 4505            | 0. 75          | . Q        | • |        |   |   |
| 10. 82           | 0. 4588            | 0. 77          | . Q        | • | •      | • |   |
| 10. 95<br>11. 09 | 0. 4673<br>0. 4759 | 0. 78<br>0. 79 | . Q<br>. Q | • |        | • |   |
| 11. 07           | 0. 4757            | 0. 79          | . Q<br>. Q | • | •      | • |   |
| 11. 35           | 0. 4936            | 0. 82          | . Q        |   | · ·    |   |   |
| 11. 48           | 0. 5027            | 0. 83          | . Q        |   |        |   |   |
| 11. 62           | 0. 5119            | 0. 85          | . Q        |   |        |   |   |
| 11. 75           | 0. 5214            | 0. 86          | . Q        |   |        |   |   |
| 11. 88           | 0. 5310            | 0. 89          | . Q        |   |        | • |   |
| 12. 02           | 0. 5408            | 0. 90          | . Q        |   |        |   |   |
| 12. 15<br>12. 20 | 0. 5520            | 1. 16<br>1. 17 | . Q        | • |        | • |   |
| 12. 28<br>12. 41 | 0. 5648<br>0. 5778 | 1. 17          | . Q<br>. Q | • | •      | • | • |
| 12. 55           | 0. 5911            | 1. 22          | . Q        | • | •      | • | • |
| 12. 68           | 0. 6046            | 1. 25          | . Q        | • | •      | • | • |
| 12. 81           | 0. 6185            | 1. 27          | . Q        |   | · ·    |   |   |
| 12. 94           | 0. 6326            | 1. 31          | . Q        |   |        |   |   |
| 13. 08           | 0. 6470            | 1. 33          | . Q        |   |        |   |   |
| 13. 21           | 0. 6618            | 1. 37          | . Q        |   |        |   |   |
| 13. 34           | 0. 6769            | 1. 39          | . Q        |   | •      |   |   |
| 13. 48<br>13. 61 | 0. 6925<br>0. 7084 | 1. 44<br>1. 47 | . Q<br>. Q |   | •      | • | • |
| 13. 61<br>13. 74 | 0. 7084<br>0. 7249 | 1. 47<br>1. 52 | . Q<br>. Q | • | •      | • | • |
| 13. 74           | 0. 7418            | 1. 56          | . Q        |   | •      |   | • |
| 14. 01           | 0. 7592            | 1. 63          | . Q        |   |        |   |   |
| 14. 14           | 0. 7773            | 1. 67          | . Q        |   |        |   |   |
| 14. 27           | 0. 7961            | 1. 76          | . Q        |   | •      |   |   |
| 14. 41           | 0. 8157            | 1. 80          | . Q        |   |        |   |   |
|                  |                    |                |            |   | D 0    |   |   |

|                  |                    |                | •          | X1 | 00_F |        |   |
|------------------|--------------------|----------------|------------|----|------|--------|---|
| 14. 54<br>14. 67 | 0. 8361<br>0. 8574 | 1. 91<br>1. 97 | . Q<br>. Q |    |      | •      | • |
| 14. 80           | 0. 8798            | 2. 11          | . Q        |    | •    |        |   |
| 14. 94<br>15. 07 | 0. 9034<br>0. 9288 | 2. 19<br>2. 42 | . Q<br>. Q | •  | •    | •      | • |
| 15. 20           | 0. 9562            | 2. 57          | . Q        |    |      |        |   |
| 15. 34<br>15. 47 | 0. 9863            | 2. 92<br>2. 92 | . Q<br>. Q |    |      |        |   |
| 15. 60           | 1. 0183<br>1. 0526 | 3. 34          | . Q<br>. Q |    | •    |        |   |
| 15. 73           | 1. 0918            | 3. 81          | . Q        |    |      |        |   |
| 15. 87<br>16. 00 | 1. 1435<br>1. 2170 | 5. 60<br>7. 80 | . Q        | Q  |      |        |   |
| 16. 13           | 1. 3935            | 24. 36         |            |    |      | . Q    |   |
| 16. 27<br>16. 40 | 1. 5519<br>1. 5929 | 4. 50<br>2. 98 | . Q<br>. Q |    |      |        |   |
| 16. 53           | 1. 6243            | 2. 73          | . Q        |    | •    | •      |   |
| 16. 66<br>16. 80 | 1. 6519<br>1. 6757 | 2. 30<br>2. 04 | . Q<br>. Q | •  | •    | •      | • |
| 16. 93           | 1. 6971            | 1. 86          | . Q        |    | •    | •      |   |
| 17. 06<br>17. 20 | 1. 7167<br>1. 7348 | 1. 71<br>1. 59 | . Q<br>. Q | •  | •    | •      | • |
| 17. 33           | 1. 7517            | 1. 50          | . Q        |    | •    |        |   |
| 17. 46<br>17. 59 | 1. 7677<br>1. 7829 | 1. 41<br>1. 35 | . Q<br>. Q | •  | •    | •      | • |
| 17. 73           | 1. 7973            | 1. 29          | . Q        |    | •    |        |   |
| 17. 86<br>17. 99 | 1. 8111<br>1. 8244 | 1. 23<br>1. 19 | . Q<br>. Q | •  | •    |        |   |
| 18. 13           | 1. 8361            | 0. 95          | . Q<br>. Q |    | •    |        |   |
| 18. 26<br>18. 39 | 1. 8462<br>1. 8556 | 0. 87<br>0. 84 | . Q<br>. Q |    |      |        |   |
| 18. 52           | 1. 8647            | 0. 84          | . Q<br>. Q |    | •    | ·<br>· |   |
| 18. 66           | 1.8734             | 0. 79          | . Q        |    |      |        |   |
| 18. 79<br>18. 92 | 1. 8819<br>1. 8901 | 0. 76<br>0. 74 | . Q<br>Q   |    |      | ·      |   |
| 19. 06           | 1. 8981            | 0. 72          | Q          |    |      |        |   |
| 19. 19<br>19. 32 | 1. 9059<br>1. 9135 | 0. 70<br>0. 68 | Q<br>Q     |    |      |        |   |
| 19. 45           | 1. 9208            | 0. 66          | Q          |    | •    |        |   |
| 19. 59<br>19. 72 | 1. 9280<br>1. 9350 | 0. 65<br>0. 63 | Q<br>Q     |    |      |        |   |
| 19. 85           | 1. 9419            | 0. 62          | Q          | •  | •    | •      |   |
| 19. 98<br>20. 12 | 1. 9486<br>1. 9551 | 0. 60<br>0. 59 | Q<br>Q     |    |      |        | • |
| 20. 25           | 1. 9616            | 0. 58          | Q          |    | •    | •      |   |
| 20. 38<br>20. 52 | 1. 9679<br>1. 9740 | 0. 57<br>0. 56 | Q<br>Q     | •  | •    | •      | • |
| 20. 65           | 1. 9801            | 0. 55          | Q          |    |      |        |   |
| 20. 78<br>20. 91 | 1. 9860<br>1. 9919 | 0. 54<br>0. 53 | Q<br>Q     | •  | •    | •      |   |
| 21. 05           | 1. 9976            | 0. 52          | Q          |    |      |        |   |
| 21. 18<br>21. 31 | 2. 0033<br>2. 0088 | 0. 51<br>0. 50 | Q<br>Q     | •  | •    | •      | • |
| 21. 45           | 2. 0143            | 0. 49          | Q          |    | •    | •      |   |
| 21. 58<br>21. 71 | 2. 0197<br>2. 0250 | 0. 49<br>0. 48 | Q<br>Q     | •  | •    | •      |   |
| 21. 71           | 2. 0302            | 0. 47          | Q          |    | •    |        |   |
| 21. 98<br>22. 11 | 2. 0353            | 0. 47          | Q          |    | •    | •      |   |
| 22. 11           | 2. 0404<br>2. 0454 | 0. 46<br>0. 45 | Q<br>Q     |    |      | •      |   |
| 22. 38           | 2. 0503            | 0. 45          | Q          |    | •    |        |   |
| 22. 51<br>22. 64 | 2. 0552<br>2. 0600 | 0. 44<br>0. 44 | Q<br>Q     |    |      |        |   |
| 22. 77           | 2.0647             | 0. 43          | Q          |    |      |        |   |
| 22. 91<br>23. 04 | 2. 0694<br>2. 0741 | 0. 42<br>0. 42 | Q<br>Q     |    |      |        |   |
| 23. 17           | 2. 0786            | 0. 41          | Q          |    |      |        |   |
| 23. 31<br>23. 44 | 2. 0832<br>2. 0876 | 0. 41<br>0. 40 | Q<br>Q     |    |      | •      |   |
| 23. 57           | 2. 0920            | 0.40           | Q          |    | •    |        |   |
| 23. 70<br>23. 84 | 2. 0964<br>2. 1007 | 0. 40<br>0. 39 | Q<br>Q     | •  | •    | •      | • |
| 23. 97           | 2. 1050            | 0. 39          | Q          |    | •    | •      |   |
| 24. 10           | 2. 1092            | 0.38           | Q          |    |      |        |   |
| 24. 24           | 2. 1113            | 0. 00          | Q          |    |      |        | • |

# Drainage G

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

| *****                                                                                                                                                                               | *****                                                                                                                                                                                                                                                                                   | *****                                                                       | ***                                                | ******                                                                                                                  | *****                                     | ***** | ***** |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|-------|
| Problem [                                                                                                                                                                           | Descriptions                                                                                                                                                                                                                                                                            | s:                                                                          |                                                    |                                                                                                                         |                                           |       |       |
| TOTAL<br>SOIL-L<br>LOW LO<br>TIME O<br>SMALL<br>ORANGE                                                                                                                              | CATCHMENT A<br>LOSS RATE, I<br>DSS FRACTION<br>OF CONCENTRA<br>AREA PEAK (                                                                                                                                                                                                              | AREA(ACRE<br>Fm, (INCH/<br>N = O.16C<br>ATION(MIN<br>Q COMPUTE<br>ALLEY" RA | (S) =<br>(HR)<br>() =<br>(L) =<br>(D US)<br>(I NFA | = 0.080<br>= 8.11<br>BING PEAK FLOW<br>ALL VALUES ARE                                                                   | <i>I</i> RATE FORI                        | MULA  |       |
| 5-N<br>30-N<br>1-H<br>3-H<br>6-H<br>24-H                                                                                                                                            | MINUTE POINT MINUTE POINT HOUR POINT HOUR POINT HOUR POINT HOUR POINT                                                                                                                                                                                                                   | T RAINFAL T RAINFAL T RAINFAL T RAINFAL T RAINFAL T RAINFAL                 | L VA<br>L VA<br>L VA<br>L VA<br>L VA               | ALUE(INCHES) = ALUE(INCHES) = ALUE(INCHES) = ALUE(INCHES) = ALUE(INCHES) = ALUE(INCHES) = ALUE(INCHES) = ALUE(INCHES) = | 1. 09<br>1. 45<br>2. 43<br>3. 36<br>5. 63 | . 66  |       |
| **************************************                                                                                                                                              | *****                                                                                                                                                                                                                                                                                   | *******<br>Q                                                                |                                                    | ******                                                                                                                  | *****                                     |       |       |
| 0. 05 0. 19 0. 32 0. 46 0. 59 0. 73 0. 86 1. 00 1. 13 1. 27 1. 40 1. 54 1. 67 1. 81 1. 94 2. 08 2. 21 2. 35 2. 48 2. 62 2. 75 2. 89 3. 02 3. 16 3. 29 3. 16 3. 29 3. 70 3. 84 3. 97 | 0. 0000 0. 0007 0. 0020 0. 0033 0. 0047 0. 0061 0. 0074 0. 0088 0. 0102 0. 0116 0. 0129 0. 0144 0. 0158 0. 0172 0. 0186 0. 0201 0. 0215 0. 0230 0. 0244 0. 0259 0. 0244 0. 0259 0. 0274 0. 0289 0. 0304 0. 0319 0. 0349 0. 0349 0. 0349 0. 0349 0. 0349 0. 0365 0. 0380 0. 0396 0. 0412 |                                                                             | Q<br>Q                                             |                                                                                                                         |                                           |       |       |

|                  |                    |                |            |   | X100_G |   |   |
|------------------|--------------------|----------------|------------|---|--------|---|---|
| 4. 11            | 0. 0427            | 0. 14          | Q          | • |        |   | • |
| 4. 24<br>4. 38   | 0. 0443<br>0. 0459 | 0. 14<br>0. 14 | Q<br>Q     | • | •      | • | • |
| 4. 51            | 0. 0476            | 0. 15          | Q          |   | •      |   |   |
| 4. 65            | 0. 0492            | 0. 15          | Q          |   |        |   |   |
| 4. 78            | 0. 0508            | 0. 15          | Q          | • |        | • |   |
| 4. 92<br>5. 05   | 0. 0525<br>0. 0542 | 0. 15<br>0. 15 | Q<br>Q     | • | •      | • | ٠ |
| 5. 19            | 0. 0542            | 0. 15          | Q          |   |        | • |   |
| 5. 32            | 0. 0575            | 0. 15          | Q          |   |        |   |   |
| 5. 46            | 0. 0592            | 0. 15          | Q          |   |        |   |   |
| 5. 59<br>5. 73   | 0. 0610<br>0. 0627 | 0. 15<br>0. 16 | Q          |   |        | • |   |
| 5. 73<br>5. 86   | 0.0627             | 0. 16          | Q<br>Q     | • | •      | • | • |
| 6. 00            | 0. 0662            | 0. 16          | Q          |   | •      |   |   |
| 6. 13            | 0.0680             | 0. 16          | Q          |   |        | • |   |
| 6. 27            | 0.0698             | 0. 16          | Q          | • |        | • |   |
| 6. 40<br>6. 54   | 0. 0716<br>0. 0734 | 0. 16<br>0. 16 | Q<br>Q     | • |        | • | ٠ |
| 6. 67            | 0. 0753            | 0. 17          | Q          |   | ·      |   |   |
| 6. 81            | 0. 0771            | 0. 17          | Q          |   |        |   |   |
| 6. 94            | 0. 0790            | 0. 17          | Q          |   |        |   |   |
| 7. 08<br>7. 21   | 0. 0809<br>0. 0828 | 0. 17<br>0. 17 | Q<br>Q     | • | •      | • | ٠ |
| 7. 21<br>7. 35   | 0. 0828            | 0. 17          | Q          | • | •      | • | • |
| 7. 48            | 0. 0867            | 0. 18          | Q          |   |        | • |   |
| 7. 62            | 0. 0886            | 0. 18          | Q          |   |        |   |   |
| 7. 75            | 0. 0906            | 0. 18          | Q          | • |        | • |   |
| 7. 89<br>8. 03   | 0. 0926<br>0. 0946 | 0. 18<br>0. 18 | Q<br>Q     | • | •      | • | ٠ |
| 8. 16            | 0. 0967            | 0. 18          | Q          |   | ·      |   |   |
| 8. 30            | 0. 0988            | 0. 19          | Q          |   |        |   |   |
| 8. 43            | 0. 1009            | 0. 19          | Q          |   |        |   |   |
| 8. 57<br>8. 70   | 0. 1030<br>0. 1051 | 0. 19<br>0. 19 | Q<br>Q     |   | •      | • | ٠ |
| 8. 84            | 0. 1031            | 0. 19          | Q          | • | •      | • | • |
| 8. 97            | 0. 1095            | 0. 20          | Q          |   |        |   |   |
| 9. 11            | 0. 1117            | 0. 20          | Q          |   |        |   |   |
| 9. 24<br>9. 38   | 0. 1139<br>0. 1162 | 0. 20          | Q          |   |        |   |   |
| 9. 30<br>9. 51   | 0. 1185            | 0. 21<br>0. 21 | Q<br>Q     | • | •      | • | • |
| 9. 65            | 0. 1208            | 0. 21          | Q          |   |        |   |   |
| 9. 78            | 0. 1232            | 0. 21          | Q          |   |        |   |   |
| 9. 92            | 0. 1256            | 0. 22          | Q          |   |        |   |   |
| 10. 05<br>10. 19 | 0. 1280<br>0. 1305 | 0. 22<br>0. 22 | Q<br>Q     | • | •      | • | • |
| 10. 32           | 0. 1330            | 0. 22          | Q          |   | •      |   |   |
| 10. 46           | 0. 1355            | 0. 23          | Q          |   |        |   |   |
| 10. 59           | 0. 1381            | 0. 23          | Q          | • |        | • |   |
| 10. 73<br>10. 86 | 0. 1407<br>0. 1433 | 0. 24<br>0. 24 | Q<br>Q     | • |        | • | • |
| 11. 00           | 0. 1460            | 0. 24          | Q          |   | •      |   |   |
| 11. 13           | 0. 1488            | 0. 25          | Q          |   |        |   |   |
| 11. 27           | 0. 1515            | 0. 25          | . Q        |   |        | • |   |
| 11. 40<br>11. 54 | 0. 1544<br>0. 1573 | 0. 26<br>0. 26 | . Q<br>. Q | • |        | • | • |
| 11. 67           | 0. 1602            | 0. 26          | . Q        |   |        |   |   |
| 11. 81           | 0. 1632            | 0. 27          | . Q        |   |        |   |   |
| 11. 95           | 0. 1663            | 0. 28          | . Q        |   |        |   |   |
| 12. 08<br>12. 22 | 0. 1695            | 0. 31          | . Q<br>. Q | • |        | • | ٠ |
| 12. 22<br>12. 35 | 0. 1733<br>0. 1774 | 0. 36<br>0. 37 | . Q<br>. Q | • | •      | • | • |
| 12. 49           | 0. 1815            | 0. 37          | . Q        |   |        | • |   |
| 12. 62           | 0. 1858            | 0. 38          | . Q        |   |        | • |   |
| 12. 76           | 0. 1901            | 0. 39          | . Q        | • |        | • |   |
| 12. 89<br>13. 03 | 0. 1945<br>0. 1990 | 0. 40<br>0. 41 | . Q<br>. Q | • |        | • | ٠ |
| 13. 16           | 0. 1990            | 0. 41          | . Q        | • | •      | • | • |
| 13. 30           | 0. 2084            | 0. 43          | . Q        | • | •      |   |   |
| 13. 43           | 0. 2132            | 0.44           | . Q        |   |        |   |   |
| 13. 57<br>12. 70 | 0. 2182            | 0. 45          | . Q        |   | •      |   |   |
| 13. 70<br>13. 84 | 0. 2234<br>0. 2287 | 0. 47<br>0. 48 | . Q<br>. Q | • | •      | • | • |
| 13. 97           | 0. 2341            | 0. 50          | . Q        |   |        |   |   |
| 14. 11           | 0. 2398            | 0. 51          | . Q        |   |        |   |   |
| 14. 24<br>14. 20 | 0. 2457            | 0.54           | . Q        |   |        |   |   |
| 14. 38<br>14. 51 | 0. 2518<br>0. 2582 | 0. 55<br>0. 59 | . Q<br>. Q | • | •      | • | ٠ |
| 14. 51<br>14. 65 | 0. 2648            | 0. 59          | . Q        |   |        |   |   |
|                  |                    |                |            |   |        |   | • |

|                  |                    |                | •          |       | X100_G |    |   |
|------------------|--------------------|----------------|------------|-------|--------|----|---|
| 14. 78<br>14. 92 | 0. 2718<br>0. 2792 | 0. 65<br>0. 67 | . Q<br>. Q | •     | •      |    | • |
| 15. 05           | 0. 2872            | 0. 74          | . Q        |       |        |    |   |
| 15. 19           | 0. 2957            | 0. 79          | . Q        |       | •      |    |   |
| 15. 32<br>15. 46 | 0. 3051<br>0. 3152 | 0. 90<br>0. 91 | . Q<br>. Q |       |        | •  | • |
| 15. 59           | 0. 3260            | 1. 02          | . Q        |       |        |    |   |
| 15. 73           | 0. 3383            | 1. 17          | . 0        |       | •      |    |   |
| 15. 86<br>16. 00 | 0. 3544<br>0. 3774 | 1. 72<br>2. 39 | . Q        | Q.    | •      | •  | • |
| 16. 14           | 0. 4325            | 7. 48          |            |       |        | Q. |   |
| 16. 27<br>16. 41 | 0. 4820<br>0. 4948 | 1. 38<br>0. 92 | . Q<br>. Q |       | •      |    | • |
| 16. 54           | 0. 5046            | 0. 92          | . Q<br>. Q |       | •      |    |   |
| 16. 68           | 0. 5133            | 0. 71          | . Q        |       | •      |    |   |
| 16. 81<br>16. 95 | 0. 5207<br>0. 5274 | 0. 63<br>0. 57 | . Q<br>. Q | •     | •      | •  | • |
| 17. 08           | 0. 5274            | 0. 57          | . Q<br>. Q | •     |        |    |   |
| 17. 22           | 0. 5392            | 0. 49          | . Q        |       |        |    |   |
| 17. 35<br>17. 49 | 0. 5445<br>0. 5495 | 0. 46<br>0. 44 | . Q<br>. Q | •     | •      | •  | • |
| 17. 62           | 0. 5542            | 0. 44          | . Q<br>. Q |       |        |    |   |
| 17. 76           | 0. 5588            | 0.40           | . Q        |       |        |    |   |
| 17. 89<br>18. 03 | 0. 5631<br>0. 5672 | 0. 38<br>0. 36 | . Q<br>. Q | •     |        |    |   |
| 18. 16           | 0. 5708            | 0. 30          | . Q<br>. Q |       |        |    | • |
| 18. 30           | 0. 5739            | 0. 27          | . Q        |       |        |    |   |
| 18. 43<br>18. 57 | 0. 5768<br>0. 5797 | 0. 26<br>0. 25 | . Q<br>Q   | •     | •      | •  | • |
| 18. 70           | 0. 5824            | 0. 23          | Q          |       | •      |    |   |
| 18. 84           | 0. 5851            | 0. 23          | Q          |       |        |    |   |
| 18. 97<br>19. 11 | 0. 5876<br>0. 5901 | 0. 23<br>0. 22 | Q<br>Q     | •     | •      | •  | • |
| 19. 24           | 0. 5926            | 0. 21          | Q          |       | •      | •  | • |
| 19. 38           | 0. 5949            | 0. 21          | Q          |       |        |    |   |
| 19. 51<br>19. 65 | 0. 5972<br>0. 5995 | 0. 20<br>0. 20 | Q<br>Q     | •     | •      | •  | • |
| 19. 78           | 0. 6017            | 0. 19          | Q          |       |        | :  |   |
| 19. 92           | 0. 6038            | 0. 19          | Q          |       | •      |    |   |
| 20. 06<br>20. 19 | 0. 6059<br>0. 6079 | 0. 19<br>0. 18 | Q<br>Q     | •     | •      | •  | • |
| 20. 33           | 0.6099             | 0. 18          | Q          |       |        |    |   |
| 20. 46           | 0. 6119<br>0. 6138 | 0. 17          | Q          |       | •      |    |   |
| 20. 60<br>20. 73 | 0. 6157            | 0. 17<br>0. 17 | Q<br>Q     |       | •      |    | : |
| 20. 87           | 0. 6176            | 0. 16          | Q          |       | •      |    |   |
| 21. 00<br>21. 14 | 0. 6194<br>0. 6212 | 0. 16<br>0. 16 | Q<br>Q     |       | •      |    | • |
| 21. 14           | 0. 6230            | 0. 16          | Q          |       |        |    |   |
| 21. 41           | 0. 6247            | 0. 15          | Q          |       |        |    |   |
| 21. 54<br>21. 68 | 0. 6264<br>0. 6281 | 0. 15<br>0. 15 | Q<br>Q     | •     | •      | •  | • |
| 21. 81           | 0. 6297            | 0. 15          | Q          |       | •      | •  |   |
| 21. 95           | 0. 6314            | 0. 14          | Q          |       |        |    |   |
| 22. 08<br>22. 22 | 0. 6330<br>0. 6346 | 0. 14<br>0. 14 | Q<br>Q     |       | •      | •  | • |
| 22. 35           | 0. 6361            | 0. 14          | Q          |       | •      | •  |   |
| 22. 49           | 0. 6377            | 0. 14          | Q          |       |        |    |   |
| 22. 62<br>22. 76 | 0. 6392<br>0. 6407 | 0. 14<br>0. 13 | Q<br>Q     | •     | •      | •  |   |
| 22. 76           | 0. 6422            | 0. 13          | Q          |       |        |    |   |
| 23. 03           | 0. 6436            | 0. 13          | Q          |       |        |    |   |
| 23. 16<br>23. 30 | 0. 6451<br>0. 6465 | 0. 13<br>0. 13 | Q<br>Q     | •     | •      | •  | • |
| 23. 43           | 0. 6479            | 0. 13          | Q          |       |        |    |   |
| 23. 57           | 0. 6493            | 0. 12          | Q          |       |        |    |   |
| 23. 70<br>23. 84 | 0. 6507<br>0. 6521 | 0. 12<br>0. 12 | Q<br>Q     | •     | •      | •  |   |
| 23. 97           | 0. 6534            | 0. 12          | Q          |       |        |    |   |
| 24. 11           | 0. 6547            | 0. 12          | Q          |       |        |    |   |
| 24. 25           | 0. 6554            | 0. 00          | Q<br>      | ·<br> |        |    |   |

# Drainage H

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

| *****                                                                                                                                                                               | *****                                                                                                                                                                                                                                           | *****                                                                                                                                                             | ***                                                                                           | ******                                                | *****                                              | ***** | ***** |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------|-------|
| Problem I                                                                                                                                                                           | Descri pti on:                                                                                                                                                                                                                                  | s:                                                                                                                                                                |                                                                                               |                                                       |                                                    |       |       |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                               |                                                       |                                                    |       |       |
| TOTAL SOI L-I LOW LC TI ME ( SMALL ORANGI RETURI 5-1 30-1                                                                                                                           | CATCHMENT /<br>LOSS RATE, IO<br>OSS FRACTIOIO<br>OF CONCENTR/<br>AREA PEAK (<br>E COUNTY "V/<br>N FREQUENCY<br>MINUTE POINT<br>HOUR POINT                                                                                                       | AREA (ACRE FM, (INCH/ N = 0.160 ATION (MIN Q COMPUTE ALLEY" RA (YEARS) = T RAINFAL T RAINFAL T RAINFAL                                                            | S) =<br>(HR)<br>() =<br>(L) =<br>(D) US<br>(A) NF A<br>() = 100<br>(L) VA<br>() VA<br>() (HR) | = 0.080<br>: 8.07<br>BING PEAK FLOW<br>ALL VALUES ARE | / RATE FOR<br>: USED<br>: 0.52<br>: 1.09<br>: 1.45 | MULA  |       |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |                                                                                                                                                                   |                                                                                               | UME(ACRE-FEET<br>UME(ACRE-FEET                        |                                                    |       |       |
| TIME                                                                                                                                                                                |                                                                                                                                                                                                                                                 | Q                                                                                                                                                                 | 0.                                                                                            | 7. 5                                                  |                                                    |       |       |
| 0. 13 0. 26 0. 40 0. 53 0. 67 0. 80 0. 94 1. 07 1. 21 1. 34 1. 47 1. 61 1. 74 1. 88 2. 01 2. 15 2. 28 2. 42 2. 55 2. 68 2. 82 2. 95 3. 09 3. 22 3. 36 3. 49 3. 63 3. 76 3. 90 4. 03 | 0. 0026 0. 0077 0. 0129 0. 0181 0. 0234 0. 0286 0. 0339 0. 0393 0. 0446 0. 0500 0. 0554 0. 0609 0. 0663 0. 0719 0. 0774 0. 0830 0. 0886 0. 0942 0. 0999 0. 1056 0. 1114 0. 1172 0. 1230 0. 1289 0. 1348 0. 1407 0. 1467 0. 1527 0. 1588 0. 1649 | 0. 46 0. 47 0. 47 0. 47 0. 47 0. 48 0. 48 0. 48 0. 49 0. 49 0. 50 0. 50 0. 51 0. 51 0. 51 0. 52 0. 52 0. 52 0. 52 0. 53 0. 53 0. 53 0. 53 0. 54 0. 54 0. 55 0. 55 | Q<br>Q                                                                                        |                                                       |                                                    |       |       |

| 1 14             | 0 1710             | 0 55           | 0             |   | X10 | 00_H |   |   |
|------------------|--------------------|----------------|---------------|---|-----|------|---|---|
| 4. 16<br>4. 30   | 0. 1710<br>0. 1772 | 0. 55<br>0. 56 | Q<br>Q        | • | •   |      | • | • |
| 4. 43            | 0. 1835            | 0. 56          | Q             |   |     |      |   | Ċ |
| 4. 57            | 0. 1898            | 0. 57          | Q             |   |     |      |   |   |
| 4. 70<br>4. 84   | 0. 1961<br>0. 2025 | 0. 57<br>0. 58 | Q<br>Q        | • |     |      | • | ٠ |
| 4. 97            | 0. 2023            | 0. 58          | Q             | • | •   |      |   | • |
| 5. 11            | 0. 2154            | 0. 59          | Q             |   |     |      |   |   |
| 5. 24            | 0. 2219            | 0. 59          | Q             | • | •   |      |   |   |
| 5. 37<br>5. 51   | 0. 2285<br>0. 2351 | 0. 59<br>0. 60 | Q<br>Q        | • |     |      | • | ٠ |
| 5. 64            | 0. 2418            | 0.60           | Q             |   |     |      |   |   |
| 5. 78            | 0. 2485            | 0. 61          | Q             |   |     |      |   |   |
| 5. 91            | 0. 2553<br>0. 2621 | 0. 61          | Q             | • |     |      | • |   |
| 6. 05<br>6. 18   | 0. 2621            | 0. 62<br>0. 62 | Q<br>Q        | • | •   |      | • | • |
| 6. 32            | 0. 2760            | 0. 63          | Q             |   |     |      |   | Ċ |
| 6. 45            | 0. 2830            | 0. 64          | Q             |   |     |      |   |   |
| 6. 59<br>6. 72   | 0. 2901<br>0. 2972 | 0. 64<br>0. 65 | Q<br>Q        | • |     |      | • | ٠ |
| 6. 85            | 0. 3045            | 0. 65          | Q             | • | •   |      |   | • |
| 6. 99            | 0. 3117            | 0. 66          | Q             |   |     |      |   |   |
| 7. 12            | 0. 3191            | 0. 66          | Q             | • | •   |      |   |   |
| 7. 26<br>7. 39   | 0. 3265<br>0. 3340 | 0. 67<br>0. 68 | Q<br>Q        | • |     |      | • | ٠ |
| 7. 53            | 0. 3415            | 0. 68          | Q             |   |     |      |   |   |
| 7. 66            | 0. 3492            | 0. 69          | Q             |   |     |      |   |   |
| 7. 80            | 0. 3569            | 0.70           | Q             |   |     |      | • | ٠ |
| 7. 93<br>8. 06   | 0. 3647<br>0. 3725 | 0. 70<br>0. 71 | Q<br>Q        | • | •   |      | • | • |
| 8. 20            | 0. 3805            | 0. 72          | Q             |   |     |      |   |   |
| 8. 33            | 0. 3885            | 0. 73          | Q             |   |     |      |   |   |
| 8. 47<br>8. 60   | 0. 3966<br>0. 4049 | 0. 73<br>0. 74 | Q<br>Q        | • |     |      | • | ٠ |
| 8. 74            | 0. 4132            | 0. 75          | . Q           |   |     |      |   |   |
| 8. 87            | 0. 4216            | 0. 76          | . Q           |   |     |      |   |   |
| 9. 01<br>9. 14   | 0. 4301<br>0. 4387 | 0. 77<br>0. 78 | . Q<br>. Q    |   |     |      |   |   |
| 9. 14            | 0. 4367            | 0. 78          | . Q<br>. Q    | • | •   |      | • | • |
| 9. 41            | 0. 4562            | 0.80           | . Q           |   |     |      |   |   |
| 9. 54            | 0. 4651            | 0. 81          | . Q           | • |     |      |   |   |
| 9. 68<br>9. 81   | 0. 4742<br>0. 4833 | 0. 82<br>0. 83 | . Q<br>. Q    | • |     |      | • | ٠ |
| 9. 95            | 0. 4926            | 0. 84          | . Q           | • |     |      |   |   |
| 10. 08           | 0. 5020            | 0. 85          | . Q           |   |     |      |   |   |
| 10. 22<br>10. 35 | 0. 5116<br>0. 5213 | 0. 87<br>0. 88 | . Q<br>. Q    | • | •   |      |   | ٠ |
| 10. 33           | 0. 5311            | 0.89           | . Q<br>. Q    |   |     |      |   |   |
| 10. 62           | 0. 5411            | 0. 90          | . Q           | • |     |      |   |   |
| 10. 75           | 0. 5512<br>0. 5615 | 0. 92<br>0. 93 | . Q           |   |     |      | • | ٠ |
| 10. 89<br>11. 02 | 0. 5720            | 0. 93          | . Q<br>. Q    | • |     |      |   | • |
| 11. 16           | 0. 5826            | 0. 96          | . Q           |   |     |      |   |   |
| 11. 29           | 0. 5934            | 0. 98          | . Q           | • |     |      |   |   |
| 11. 43<br>11. 56 | 0. 6044<br>0. 6156 | 1. 00<br>1. 02 | . Q<br>. Q    | • |     |      |   | • |
| 11. 70           | 0. 6270            | 1. 03          | . Q           | • | :   |      |   |   |
| 11. 83           | 0. 6387            | 1.06           | . Q           |   |     |      |   |   |
| 11. 97<br>12. 10 | 0. 6506<br>0. 6636 | 1. 08<br>1. 28 | . Q<br>. Q    | • |     |      | • | ٠ |
| 12. 10           | 0. 6785            | 1. 40          | . Q<br>. Q    | • |     |      |   |   |
| 12. 37           | 0. 6943            | 1. 44          | . Q           |   |     |      |   |   |
| 12. 50           | 0. 7104            | 1. 46          | . Q           | • | •   |      |   |   |
| 12. 64<br>12. 77 | 0. 7269<br>0. 7437 | 1. 50<br>1. 52 | . Q<br>.    Q | • |     |      |   | ٠ |
| 12. 77           | 0. 7608            | 1. 56          | . Q           |   |     |      |   |   |
| 13. 04           | 0. 7783            | 1. 59          | . О           | • |     |      |   |   |
| 13. 18           | 0. 7963            | 1.64           | . Q           | • |     |      |   |   |
| 13. 31<br>13. 44 | 0. 8147<br>0. 8335 | 1. 67<br>1. 73 | . Q<br>. Q    | • | •   |      |   | ٠ |
| 13. 58           | 0. 8529            | 1. 76          | . Q           |   |     |      |   |   |
| 13. 71           | 0. 8728            | 1. 83          | . Q           |   |     |      |   |   |
| 13. 85<br>13. 98 | 0. 8934<br>0. 9146 | 1. 87<br>1. 95 | . Q<br>. Q    | • | •   |      |   | ٠ |
| 13. 98<br>14. 12 | 0. 9146<br>0. 9365 | 1. 95<br>2. 00 | . Q<br>. Q    | • | •   |      |   |   |
| 14. 25           | 0. 9593            | 2. 11          | . Q           |   | :   |      |   |   |
| 14. 39           | 0. 9831            | 2. 16          | . Q           | • |     |      |   |   |
| 14. 52<br>14. 65 | 1. 0078<br>1. 0337 | 2. 29<br>2. 36 | . Q<br>. Q    | • |     |      | • | ٠ |
| 1-T. UJ          | 1.0337             | 2. 50          | . u           | • |     |      | • | ٠ |

|                  |                    |                 |            | <b>X</b> 1 | 100_H |     |   |
|------------------|--------------------|-----------------|------------|------------|-------|-----|---|
| 14. 79<br>14. 92 | 1. 0609<br>1. 0896 | 2. 53<br>2. 63  | . Q .      |            |       |     |   |
| 15.06            | 1. 1203            | 2. 90           | . Q .      |            |       |     |   |
| 15. 19<br>15. 33 | 1. 1535<br>1. 1901 | 3. 07<br>3. 50  | . Q .      |            |       |     |   |
| 15. 46           | 1. 2292            | 3. 54           | . Q .      |            |       |     |   |
| 15. 60<br>15. 73 | 1. 2710<br>1. 3186 | 3. 99<br>4. 56  | . Q .      |            | •     |     |   |
| 15. 87           | 1. 3812            | 6. 70           | . Q.       |            |       | •   |   |
| 16. 00<br>16. 13 | 1. 4703<br>1. 6843 | 9. 34<br>29. 18 |            | Q          | •     | . Q |   |
| 16. 27           | 1. 8765            | 5. 39           | . Q .      |            |       |     |   |
| 16. 40<br>16. 54 | 1. 9262<br>1. 9642 | 3. 57<br>3. 27  | . Q .      |            | •     |     | • |
| 16. 67           | 1. 9977            | 2. 76           | . Q .      |            |       |     |   |
| 16. 81<br>16. 94 | 2. 0266<br>2. 0526 | 2. 44<br>2. 22  | . Q .      |            | •     |     | • |
| 17. 08           | 2. 0764            | 2.05            | . Q .      |            |       | •   |   |
| 17. 21<br>17. 34 | 2. 0984<br>2. 1189 | 1. 91<br>1. 79  | . Q .      |            |       |     |   |
| 17. 48           | 2. 1383            | 1. 70           | . Q .      |            |       |     |   |
| 17. 61<br>17. 75 | 2. 1567<br>2. 1743 | 1. 61<br>1. 54  | . Q .      |            |       |     |   |
| 17. 88           | 2. 1910            | 1. 48           | . Q .      |            |       |     |   |
| 18. 02<br>18. 15 | 2. 2072<br>2. 2211 | 1. 42<br>1. 09  | . Q .      |            |       |     |   |
| 18. 29           | 2. 2330            | 1. 05           | . Q .      |            |       |     |   |
| 18. 42<br>18. 56 | 2. 2444<br>2. 2554 | 1. 01<br>0. 97  | . Q .      |            |       |     |   |
| 18. 69           | 2. 2661            | 0. 94           | . Q .      |            |       |     |   |
| 18. 82<br>18. 96 | 2. 2764<br>2. 2863 | 0. 91<br>0. 88  | . Q .      |            |       |     |   |
| 19. 09<br>19. 23 | 2. 2960<br>2. 3054 | 0.86            | . Q .      |            |       |     |   |
| 19. 23           | 2. 3146            | 0. 84<br>0. 81  | . Q .      |            |       |     |   |
| 19. 50<br>19. 63 | 2. 3235<br>2. 3322 | 0. 79<br>0. 77  | . Q .      |            |       |     |   |
| 19. 77           | 2. 3407            | 0. 76           | . Q        |            |       |     |   |
| 19. 90<br>20. 03 | 2. 3491<br>2. 3572 | 0. 74<br>0. 72  | Q .        |            |       |     |   |
| 20. 17           | 2. 3651            | 0. 71           | Q .        |            |       |     |   |
| 20. 30<br>20. 44 | 2. 3729<br>2. 3806 | 0. 69<br>0. 68  | Q .        |            |       |     |   |
| 20. 57           | 2. 3880            | 0. 67           | Q .        |            |       |     |   |
| 20. 71<br>20. 84 | 2. 3954<br>2. 4026 | 0. 65<br>0. 64  | Q .        |            | •     |     |   |
| 20. 98           | 2. 4097            | 0.63            | Q .        |            |       | •   |   |
| 21. 11<br>21. 25 | 2. 4166<br>2. 4235 | 0. 62<br>0. 61  | Q .        |            | •     | •   |   |
| 21. 38           | 2. 4302            | 0.60            | Q .        |            |       |     |   |
| 21. 51<br>21. 65 | 2. 4368<br>2. 4434 | 0. 59<br>0. 58  | Q .        |            |       |     |   |
| 21. 78           | 2. 4498            | 0. 57           | Q .        |            |       |     |   |
| 21. 92<br>22. 05 | 2. 4561<br>2. 4624 | 0. 57<br>0. 56  | Q .        |            |       |     |   |
| 22. 19           | 2. 4685            | 0. 55           | Q .        |            |       |     |   |
| 22. 32<br>22. 46 | 2. 4746<br>2. 4806 | 0. 54<br>0. 53  | Q .        |            |       |     |   |
| 22. 59           | 2. 4865            | 0. 53           | Q .        |            |       |     |   |
| 22. 73<br>22. 86 | 2. 4923<br>2. 4980 | 0. 52<br>0. 51  | Q .        |            |       |     |   |
| 22. 99<br>23. 13 | 2. 5037            | 0. 51           | Q .        |            |       |     |   |
| 23. 13<br>23. 26 | 2. 5093<br>2. 5149 | 0. 50<br>0. 50  | Q .<br>Q . |            |       |     |   |
| 23. 40<br>23. 53 | 2. 5204            | 0.49            | Q .        |            | •     |     |   |
| 23. 53<br>23. 67 | 2. 5258<br>2. 5311 | 0. 48<br>0. 48  | Q .<br>Q . |            |       |     |   |
| 23.80            | 2. 5364<br>2. 5417 | 0. 47           | Q .        |            | •     |     |   |
| 23. 94<br>24. 07 | 2. 5417<br>2. 5469 | 0. 47<br>0. 46  | Q .<br>Q . |            |       |     |   |
| 24. 20           | 2. 5494            | 0.00            | Q .        |            |       |     |   |

# Drainage I

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 1.10
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.160
TIME OF CONCENTRATION(MIN.) = 9.54
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 100
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 0.40 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.12

|                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | WE (ACKE-FEE)     | -    | 12              |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|------|-----------------|-------|
| TI ME<br>(HOURS)                                                                                                                                                                                                                                                           | *********<br>VOLUME<br>(AF)                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ****<br>0. | *********<br>2. 5 | 5. 0 | *******<br>7. 5 | 10. 0 |
| 0. 10<br>0. 26<br>0. 42<br>0. 58<br>0. 74<br>0. 90<br>1. 05<br>1. 21<br>1. 37<br>1. 53<br>1. 69<br>1. 85<br>2. 01<br>2. 17<br>2. 33<br>2. 49<br>2. 49<br>2. 96<br>3. 12<br>3. 28<br>3. 44<br>3. 60<br>3. 76<br>3. 76<br>3. 92<br>4. 07<br>4. 23<br>4. 39<br>4. 55<br>4. 71 | 0. 0000<br>0. 0005<br>0. 0014<br>0. 0024<br>0. 0034<br>0. 0054<br>0. 0063<br>0. 0073<br>0. 0084<br>0. 0094<br>0. 0104<br>0. 0114<br>0. 0125<br>0. 0135<br>0. 0146<br>0. 0156<br>0. 0167<br>0. 0167<br>0. 0177<br>0. 0188<br>0. 0199<br>0. 0221<br>0. 0232<br>0. 0244<br>0. 0255<br>0. 0278<br>0. 0278<br>0. 0290<br>0. 0301 | 0. 00<br>0. 07<br>0. 07<br>0. 07<br>0. 07<br>0. 07<br>0. 08<br>0. 09<br>0. 09 |            |                   |      |                 |       |
| 4. 87                                                                                                                                                                                                                                                                      | 0. 0313                                                                                                                                                                                                                                                                                                                     | 0. 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q          | •                 |      | •               | •     |

Page 1

| 5. 03            | 0. 0325            | 0. 09          | Q          |   |     | X1       | 100_I |   |   |
|------------------|--------------------|----------------|------------|---|-----|----------|-------|---|---|
| 5. 19            | 0. 0323            | 0.09           | Q          |   |     |          |       |   |   |
| 5. 35            | 0. 0349            | 0.09           | Q          |   |     |          |       | • |   |
| 5. 51<br>5. 66   | 0. 0362<br>0. 0374 | 0. 09<br>0. 09 | Q<br>Q     |   | •   |          | •     | • | • |
| 5. 82            | 0. 0387            | 0. 10          | Q          |   |     |          |       |   |   |
| 5. 98            | 0. 0399            | 0. 10          | Q          |   |     |          |       | • |   |
| 6. 14<br>6. 30   | 0. 0412<br>0. 0425 | 0. 10<br>0. 10 | Q<br>Q     |   | •   |          |       | • | • |
| 6. 46            | 0. 0438            | 0. 10          | Q          |   | •   |          |       |   |   |
| 6. 62            | 0. 0451            | 0. 10          | Q          |   | •   |          |       | • |   |
| 6. 78<br>6. 94   | 0. 0464<br>0. 0478 | 0. 10<br>0. 10 | Q<br>Q     |   | •   |          | •     | • | • |
| 7. 10            | 0. 0491            | 0. 10          | Q          |   | •   |          |       |   |   |
| 7. 25<br>7. 41   | 0. 0505<br>0. 0519 | 0. 11<br>0. 11 | Q          |   |     |          |       | • |   |
| 7. 41<br>7. 57   | 0.0519             | 0. 11          | Q<br>Q     |   |     |          |       | • |   |
| 7. 73            | 0. 0547            | 0. 11          | Q          |   |     |          |       | • |   |
| 7. 89<br>8. 05   | 0. 0562<br>0. 0576 | 0. 11          | Q          |   |     |          | •     | • |   |
| 8. 21            | 0. 0576            | 0. 11<br>0. 11 | Q<br>Q     |   |     |          |       | • |   |
| 8. 37            | 0.0606             | 0. 11          | Q          |   |     |          |       | • |   |
| 8. 53<br>8. 69   | 0.0621             | 0. 12<br>0. 12 | Q          |   |     |          |       | • |   |
| 8. 85            | 0. 0636<br>0. 0652 | 0. 12          | Q<br>Q     |   |     |          |       | • |   |
| 9. 00            | 0. 0668            | 0. 12          | Q          |   |     |          |       | • |   |
| 9. 16            | 0.0684             | 0. 12          | Q          |   |     |          |       | • |   |
| 9. 32<br>9. 48   | 0. 0700<br>0. 0716 | 0. 12<br>0. 13 | Q<br>Q     |   |     |          |       | • |   |
| 9. 64            | 0. 0733            | 0. 13          | Q          |   |     |          |       | • |   |
| 9. 80<br>9. 96   | 0. 0750<br>0. 0767 | 0. 13<br>0. 13 | Q<br>Q     |   |     |          |       | • | ٠ |
| 10. 12           | 0. 0785            | 0. 13          | Q          |   |     |          |       |   |   |
| 10. 28           | 0. 0802            | 0. 14          | Q          |   |     |          |       |   |   |
| 10. 43<br>10. 59 | 0. 0821<br>0. 0839 | 0. 14<br>0. 14 | Q<br>Q     |   |     |          |       | • | ٠ |
| 10. 75           | 0. 0858            | 0. 14          | Q          |   |     |          |       |   |   |
| 10. 91           | 0. 0877            | 0. 15          | Q          |   |     |          |       |   |   |
| 11. 07<br>11. 23 | 0. 0896<br>0. 0916 | 0. 15<br>0. 15 | Q<br>Q     |   | •   |          |       | • | • |
| 11. 39           | 0. 0936            | 0. 16          | Q          |   |     |          |       |   |   |
| 11. 55           | 0. 0957            | 0. 16          | Q          |   |     |          |       |   |   |
| 11. 71<br>11. 87 | 0. 0978<br>0. 1000 | 0. 16<br>0. 17 | Q<br>Q     |   | •   |          | •     | • | • |
| 12. 02           | 0. 1022            | 0. 17          | Q          |   |     |          |       |   |   |
| 12. 18           | 0. 1047            | 0. 21          | Q          |   |     |          |       | • |   |
| 12. 34<br>12. 50 | 0. 1075<br>0. 1105 | 0. 22<br>0. 23 | Q<br>Q     |   | •   |          | •     | • | ٠ |
| 12. 66           | 0. 1136            | 0. 24          | Q          |   |     |          |       |   |   |
| 12. 82           | 0. 1167            | 0. 24          | Q          |   |     |          |       | • |   |
| 12. 98<br>13. 14 | 0. 1199<br>0. 1232 | 0. 25<br>0. 25 | Q<br>. Q   |   | •   |          | •     | • | • |
| 13. 30           | 0. 1266            | 0. 26          | . Q        |   | •   |          |       |   |   |
| 13. 46           | 0. 1301            | 0. 27          | . Q        |   |     |          |       | • |   |
| 13. 62<br>13. 77 | 0. 1337<br>0. 1374 | 0. 28<br>0. 29 | . Q<br>. Q |   |     |          |       |   |   |
| 13. 93           | 0. 1412            | 0.30           | . Q        |   |     |          |       | • |   |
| 14. 09<br>14. 25 | 0. 1453            | 0. 31          | . Q<br>. Q |   |     |          |       |   |   |
| 14. 41           | 0. 1495<br>0. 1539 | 0. 33<br>0. 34 | . Q        |   |     |          |       |   |   |
| 14. 57           | 0. 1585            | 0. 36          | . Q        |   |     |          |       |   |   |
| 14. 73<br>14. 89 | 0. 1634<br>0. 1685 | 0. 38<br>0. 41 | . Q<br>. Q |   | •   |          |       | • | • |
| 15. 05           | 0. 1741            | 0. 41          | . Q        |   |     |          |       |   |   |
| 15. 20           | 0. 1802            | 0.50           | . Q_       |   |     |          |       |   |   |
| 15. 36           | 0. 1870            | 0. 54          | . Q        |   |     |          |       |   |   |
| 15. 52<br>15. 68 | 0. 1942<br>0. 2021 | 0. 56<br>0. 64 | . Q<br>. Q |   |     |          |       | • |   |
| 15. 84           | 0. 2126            | 0. 95          | . Q        | _ |     |          |       |   |   |
| 16. 00<br>16. 16 | 0. 2275            | 1.32           |            | Q |     | <b>1</b> | •     |   |   |
| 16. 16<br>16. 32 | 0. 2634<br>0. 2957 | 4. 15<br>0. 76 | . Q        |   | . ( | 2        |       |   |   |
| 16. 48           | 0. 3043            | 0. 56          | . Q        |   |     |          |       |   |   |
| 16. 64<br>16. 80 | 0. 3110<br>0. 3167 | 0.46           | . Q        |   |     |          | •     |   |   |
| 16. 80<br>16. 95 | 0. 3167<br>0. 3216 | 0. 39<br>0. 35 | . Q<br>. Q |   |     |          |       |   |   |
| 17. 11           | 0. 3260            | 0. 32          | . Q        |   |     |          |       |   |   |
| 17. 27<br>17. 42 | 0. 3300            | 0. 29          | . Q        |   |     |          |       |   |   |
| 17. 43           | 0. 3337            | 0. 27          | . Q        |   | •   | _        |       | • | ٠ |

Page 2

|                  |                    |                |        |   | X100_I |   |   |
|------------------|--------------------|----------------|--------|---|--------|---|---|
| 17. 59           | 0. 3372            | 0. 26          | . Q    |   |        |   |   |
| 17. 75           | 0. 3405            |                | Q      |   | •      |   |   |
| 17. 91<br>18. 07 | 0. 3437<br>0. 3466 |                | Q<br>Q | • | •      | • | • |
| 18. 23           | 0. 3492            |                | Q      | • | •      | • | • |
| 18. 39           | 0. 3514            |                | Q      | • | •      | • | • |
| 18. 54           | 0. 3534            |                | Q      |   |        |   |   |
| 18. 70           | 0. 3554            |                | Q      |   |        |   |   |
| 18. 86           | 0. 3573            | 0. 14          | Q      |   |        |   |   |
| 19. 02           | 0. 3592            |                | Q      |   | •      |   |   |
| 19. 18           | 0. 3610            |                | Q      |   |        |   |   |
| 19. 34           | 0. 3627            |                | Q      |   |        | • | • |
| 19. 50           | 0. 3643            |                | Q      |   | •      | • | • |
| 19. 66<br>19. 82 | 0. 3660<br>0. 3675 |                | Q<br>Q | • | •      | • | • |
| 19. 62<br>19. 98 | 0. 3675            |                | Q      | • | •      | • | • |
| 20. 13           | 0. 3706            |                | Q      | • | •      | • | • |
| 20. 13           | 0. 3720            |                | Q      | • | •      | • |   |
| 20. 45           | 0. 3734            |                | Q      |   |        |   |   |
| 20. 61           | 0. 3748            | 0. 10          | Q      |   |        |   |   |
| 20. 77           | 0. 3762            |                | Q      |   |        |   |   |
| 20. 93           | 0. 3775            |                | Q      |   |        |   |   |
| 21. 09           | 0. 3788            |                | Q      | • | •      | • | • |
| 21. 25           | 0. 3801            |                | Q      |   | •      |   |   |
| 21. 41<br>21. 57 | 0. 3814<br>0. 3826 |                | Q<br>Q | • | •      | • | • |
| 21. 72           | 0. 3838            |                | Q      | • | •      | • | • |
| 21. 88           | 0. 3850            | 0. 09          | Q      | • | •      | • | • |
| 22. 04           | 0. 3861            |                | Q      | • | •      | • |   |
| 22. 20           | 0. 3873            |                | Q      |   |        |   |   |
| 22. 36           | 0. 3884            | 0.09           | Q      |   |        |   |   |
| 22. 52           | 0. 3895            |                | Q      |   |        |   |   |
| 22. 68           | 0. 3906            |                | Q      |   |        |   |   |
| 22. 84           | 0. 3917            | 0. 08          | Q      | • |        | • | • |
| 23. 00           | 0. 3927            |                | Q      |   |        | • | • |
| 23. 16<br>23. 31 | 0. 3938<br>0. 3948 | 0. 08<br>0. 08 | Q      | • | •      | • | • |
| 23. 31           | 0. 3946            |                | Q<br>Q | • | •      | • | • |
| 23. 63           | 0. 3968            |                | Q      | • | •      | • | • |
| 23. 79           | 0. 3978            |                | Q      | • | •      | • | • |
| 23. 95           | 0. 3988            |                | Q      |   | •      |   |   |
| 24. 11           | 0. 3997            |                | Q      |   |        |   |   |
| 24. 27           | 0. 4002            | 0.00           | Q      |   |        |   |   |
|                  |                    |                |        |   |        |   |   |

# Drainage J

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 11.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.160
TIME OF CONCENTRATION(MIN.) = 13.39
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 100
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 4.01 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1.16

| *****                                                                                                                                                                                                                                                                                                            | ******                                                                                                                                                                                                                                                         | ****                                                                                                                                                                                                                                                                                                                                                                                                               | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ******                                                                                                                             | ******              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| VOLUME<br>(AF)                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30. 0                                                                                                                              | 40. 0               |
| 0. 0047<br>0. 0181<br>0. 0317<br>0. 0454<br>0. 0592<br>0. 0731<br>0. 0872<br>0. 1014<br>0. 1157<br>0. 1302<br>0. 1448<br>0. 1596<br>0. 1745<br>0. 1896<br>0. 2049<br>0. 2203<br>0. 2359<br>0. 2516<br>0. 2676<br>0. 2837<br>0. 3000<br>0. 3165<br>0. 3333<br>0. 3502<br>0. 3674<br>0. 3848<br>0. 4202<br>0. 4384 | 0. 73 0. 74 0. 74 0. 75 0. 76 0. 77 0. 77 0. 78 0. 80 0. 80 0. 82 0. 82 0. 82 0. 82 0. 88 0. 89 0. 90 0. 91 0. 92 0. 94 0. 95 0. 96                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    |                     |
| 0. 4754                                                                                                                                                                                                                                                                                                          | 1. 02                                                                                                                                                                                                                                                          | . Q                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                  |                     |
|                                                                                                                                                                                                                                                                                                                  | VOLUME<br>(AF) 0. 0047 0. 0181 0. 0317 0. 0454 0. 0592 0. 0731 0. 0872 0. 1014 0. 1157 0. 1302 0. 1448 0. 1596 0. 1745 0. 1896 0. 2049 0. 2203 0. 2359 0. 2516 0. 2676 0. 2837 0. 3000 0. 3165 0. 3333 0. 3502 0. 3674 0. 3848 0. 4024 0. 4202 0. 4384 0. 4567 | VOLUME (AF) (CFS)  0.0047 0.73 0.0181 0.73 0.0317 0.74 0.0454 0.74 0.0592 0.75 0.0731 0.76 0.0872 0.77 0.1014 0.77 0.1157 0.78 0.1302 0.79 0.1448 0.80 0.1596 0.80 0.1745 0.82 0.1896 0.82 0.2049 0.83 0.2049 0.83 0.203 0.84 0.2359 0.85 0.2516 0.86 0.2676 0.87 0.2837 0.88 0.3000 0.89 0.3165 0.90 0.3333 0.91 0.3502 0.92 0.3674 0.94 0.3848 0.95 0.4024 0.96 0.4384 0.99 0.4384 0.99 0.4384 0.99 0.44867 1.00 | VOLUME (AF) (CFS)  0. 0047 0. 73 0 0. 0181 0. 73 0 0. 0317 0. 74 0 0. 0454 0. 74 0 0. 0592 0. 75 0 0. 0872 0. 77 0 0. 1014 0. 77 0 0. 1157 0. 78 0 0. 1302 0. 79 0 0. 1448 0. 80 0 0. 1596 0. 80 0 0. 1745 0. 82 0 0. 1745 0. 82 0 0. 1896 0. 82 0 0. 1896 0. 82 0 0. 2049 0. 83 0 0. 2049 0. 83 0 0. 2203 0. 84 0 0. 2203 0. 84 0 0. 2203 0. 84 0 0. 22676 0. 87 0 0. 2837 0. 88 0 0. 2837 0. 88 0 0. 3165 0. 90 0 0. 3165 0. 90 0 0. 3333 0. 91 0 0. 33502 0. 92 0 0. 3674 0. 94 0 0. 3848 0. 95 0 0. 44202 0. 97 0 0. 4384 0. 99 0 0. 44567 1. 00 . 0 | VOLUME (AF)         Q 0. (CFS)         10.0           0.0047         0.73 Q            0.0181         0.73 Q            0.0317         0.74 Q            0.0592         0.75 Q            0.0872         0.77 Q            0.1014         0.77 Q            0.1302         0.79 Q            0.1596         0.80 Q            0.1596         0.82 Q            0.1896         0.82 Q            0.2049         0.83 Q            0.2203         0.84 Q            0.2516         0.86 Q            0.2837         0.88 Q            0.3000         0.89 Q            0.3333         0.91 Q            0.3674         0.94 Q            0.4224         0.96 Q            0.4567         1.00 Q | VOLUME (AF)         Q O. (CFS)         10.0         20.0           0.0047         0.73 Q O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | (AF) (CFS)  0. 0047 |

Page 1

|                  |                    |                  |               | V1  | 00_J |     |       |
|------------------|--------------------|------------------|---------------|-----|------|-----|-------|
| 7. 07            | 0. 4943            | 1. 03            | . Q           |     |      |     |       |
| 7. 30<br>7. 52   | 0. 5135<br>0. 5331 | 1. 05<br>1. 06   | . Q<br>. Q    | •   |      |     | •     |
| 7.74             | 0. 5529            | 1. 09            | . Q           |     | •    | •   |       |
| 7. 97<br>8. 19   | 0. 5731<br>0. 5936 | 1. 10<br>1. 13   | . Q<br>. Q    |     |      | •   | •     |
| 8. 41            | 0. 6145            | 1. 14            | . Q<br>. Q    |     | •    | •   |       |
| 8. 64<br>8. 86   | 0. 6358<br>0. 6574 | 1. 17<br>1. 18   | . Q<br>. Q    |     | •    | •   | •     |
| 9. 08            | 0. 6795            | 1. 21            | . Q<br>. Q    |     | •    | •   |       |
| 9. 30<br>9. 53   | 0. 7021<br>0. 7251 | 1. 23<br>1. 26   | . Q<br>. Q    |     |      |     | •     |
| 9. 75            | 0. 7485            | 1. 28            | . Q<br>. Q    | •   | •    | •   |       |
| 9. 97<br>10. 20  | 0. 7725<br>0. 7971 | 1. 32<br>1. 34   | . Q<br>. Q    |     |      |     | •     |
| 10. 42           | 0. 8222            | 1. 38            | . Q           |     | •    | •   |       |
| 10. 64<br>10. 87 | 0. 8479<br>0. 8743 | 1. 41<br>1. 46   | . Q<br>. Q    |     |      |     | •     |
| 11. 09           | 0. 9015            | 1. 48            | . Q<br>. Q    | •   | •    | •   |       |
| 11. 31<br>11. 54 | 0. 9293<br>0. 9580 | 1. 54<br>1. 57   | . Q<br>. Q    |     |      |     | •     |
| 11. 76           | 0. 9876            | 1. 64            | . Q<br>. Q    | •   | •    | •   |       |
| 11. 98<br>12. 21 | 1. 0181<br>1. 0532 | 1. 67<br>2. 14   | . Q<br>.    Q |     |      |     | •     |
| 12. 43           | 1. 0937            | 2. 24            | . Q           | •   | •    | •   |       |
| 12. 65<br>12. 88 | 1. 1359<br>1. 1795 | 2. 34<br>2. 39   | . Q<br>. Q    |     |      |     | •     |
| 13. 10           | 1. 2248            | 2. 52            | . Q           | •   | •    | •   |       |
| 13. 32<br>13. 55 | 1. 2718<br>1. 3209 | 2. 58<br>2. 74   | . Q<br>. Q    | •   |      |     |       |
| 13. 77           | 1. 3722            | 2.82             | . Q<br>. Q    | •   | •    | •   |       |
| 13. 99<br>14. 21 | 1. 4261<br>1. 4831 | 3. 03<br>3. 15   | . Q<br>. Q    | •   | •    | •   | •     |
| 14. 44           | 1. 5438            | 3.44             | . Q           | •   | •    | •   |       |
| 14. 66<br>14. 88 | 1. 6088<br>1. 6794 | 3. 61<br>4. 04   | . Q<br>. Q    |     |      |     |       |
| 15. 11           | 1. 7567            | 4. 35            | . Q           |     | •    | •   |       |
| 15. 33<br>15. 55 | 1. 8453<br>1. 9450 | 5. 27<br>5. 55   | . Q<br>. Q    |     | •    |     |       |
| 15. 78           | 2. 0663            | 7. 60            | . Q           |     | •    | •   |       |
| 16. 00<br>16. 22 | 2. 2350<br>2. 6458 | 10. 70<br>33. 86 | •             | Q . |      | . Q |       |
| 16. 45<br>16. 67 | 3. 0140<br>3. 1138 | 6. 06<br>4. 75   | . Q<br>. Q    |     |      |     |       |
| 16. 89           | 3. 1927            | 3. 81            | . Q           | •   | •    |     |       |
| 17. 12<br>17. 34 | 3. 2581<br>3. 3154 | 3. 29<br>2. 92   | . Q<br>. Q    | •   |      |     | •     |
| 17. 56           | 3. 3668            | 2.66             | . Q           | •   | •    | •   |       |
| 17. 79<br>18. 01 | 3. 4139<br>3. 4577 | 2. 45<br>2. 29   | . Q<br>. Q    |     | •    |     | •     |
| 18. 23           | 3. 4945            | 1. 71            | . Q           |     |      | •   |       |
| 18. 45<br>18. 68 | 3. 5251<br>3. 5538 | 1. 60<br>1. 51   | . Q<br>. Q    |     | •    | •   |       |
| 18. 90           | 3. 5809            | 1.43             | . Q           |     |      | •   |       |
| 19. 12<br>19. 35 | 3. 6067<br>3. 6312 | 1. 36<br>1. 30   | . Q<br>. Q    |     | •    |     |       |
| 19. 57           | 3. 6547            | 1. 25            | . Q           |     |      |     |       |
| 19. 79<br>20. 02 | 3. 6772<br>3. 6989 | 1. 20<br>1. 15   | . Q<br>. Q    | •   | •    | •   |       |
| 20. 24           | 3. 7198            | 1. 11            | . Q           |     |      |     |       |
| 20. 46<br>20. 69 | 3. 7400<br>3. 7595 | 1. 08<br>1. 04   | . Q<br>. Q    |     |      |     |       |
| 20. 91           | 3. 7785            | 1. 01            | . Q           |     |      | •   |       |
| 21. 13<br>21. 36 | 3. 7968<br>3. 8147 | 0. 98<br>0. 96   | Q<br>Q        |     | •    |     | •     |
| 21. 58           | 3. 8321            | 0. 93            | Q             | •   | •    | •   |       |
| 21. 80<br>22. 03 | 3. 8490<br>3. 8656 | 0. 91<br>0. 89   | Q<br>Q        |     |      |     |       |
| 22. 25           | 3. 8817            | 0.86             | Q             |     |      |     |       |
| 22. 47<br>22. 69 | 3. 8975<br>3. 9129 | 0. 85<br>0. 83   | Q<br>Q        | •   |      |     |       |
| 22. 92<br>23. 14 | 3. 9280<br>3. 9427 | 0. 81<br>0. 79   | Q<br>Q        | •   |      |     |       |
| 23. 36           | 3. 9572            | 0. 78            | Q             | •   | •    | •   |       |
| 23. 59<br>23. 81 | 3. 9714<br>3. 9854 | 0. 76<br>0. 75   | Q<br>Q        |     | •    | •   |       |
| 24. 03           | 3. 9991            | 0. 74            | Q             | •   | •    | •   |       |
| 24. 26<br>       | 4. 0058<br>        | 0. 00            | Q<br>         |     |      |     | ·<br> |

# Drainage K

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

| *****                                                                                                                                                                         | *****                                                                                                                                                                                                                                                                                                                                  | *****                                                                                                                                                                                              | ****                                                                              | ******                                                | ·*****                                             | ***** | ***** |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------|-------|
| Problem [                                                                                                                                                                     | Descriptions                                                                                                                                                                                                                                                                                                                           | s:                                                                                                                                                                                                 |                                                                                   |                                                       |                                                    |       |       |
| TOTAL SOI L-I LOW LC TI ME ( SMALL ORANGI RETURI 5-N 30-N                                                                                                                     | CATCHMENT /<br>LOSS RATE, I<br>DSS FRACTION<br>DF CONCENTR/<br>AREA PEAK (<br>E COUNTY "V/<br>N FREQUENCY<br>MINUTE POINT<br>HOUR POINT                                                                                                                                                                                                | AREA (ACRE FM, (INCH/ N = 0.160 ATION (MIN Q COMPUTE ALLEY" RA (YEARS) = T RAINFAL T RAINFAL                                                                                                       | (S) = (HR)<br>(HR)<br>(I.) = (ED US)<br>(AI NFA)<br>(I. VA)<br>(I. VA)<br>(H. VA) | = 0.080<br>: 11.17<br>BING PEAK FLOW<br>LL VALUES ARE | V RATE FOR<br>E USED<br>= 0.52<br>= 1.09<br>= 1.45 | MULA  |       |
| TOTAL                                                                                                                                                                         | CATCHMENT S                                                                                                                                                                                                                                                                                                                            | SOI L-LOSS                                                                                                                                                                                         | S VOL                                                                             | .UME(ACRE-FEET<br>.UME(ACRE-FEET                      | ) = 0                                              | . 66  |       |
| TIME                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        | Q                                                                                                                                                                                                  | 0.                                                                                | 7. 5                                                  |                                                    |       |       |
| 0. 18 0. 36 0. 55 0. 73 0. 92 1. 11 1. 29 1. 48 1. 67 1. 85 2. 04 2. 22 2. 41 2. 60 2. 78 2. 97 3. 15 3. 34 3. 53 3. 71 3. 90 4. 09 4. 27 4. 46 4. 64 4. 83 5. 02 5. 39 5. 57 | 0. 0030<br>0. 0095<br>0. 0159<br>0. 0225<br>0. 0290<br>0. 0357<br>0. 0423<br>0. 0491<br>0. 0559<br>0. 0627<br>0. 0696<br>0. 0765<br>0. 0836<br>0. 0906<br>0. 1050<br>0. 1122<br>0. 1195<br>0. 1269<br>0. 1344<br>0. 1419<br>0. 1449<br>0. 1449<br>0. 1450<br>0. 1572<br>0. 1650<br>0. 1728<br>0. 1887<br>0. 1968<br>0. 2049<br>0. 2132 | 0. 42<br>0. 42<br>0. 43<br>0. 43<br>0. 44<br>0. 45<br>0. 45<br>0. 45<br>0. 46<br>0. 47<br>0. 47<br>0. 47<br>0. 47<br>0. 47<br>0. 47<br>0. 52<br>0. 50<br>0. 51<br>0. 52<br>0. 53<br>0. 53<br>0. 54 | Q                                                                                 |                                                       |                                                    |       |       |

|                                                  |            |    | V100 K |        |   |
|--------------------------------------------------|------------|----|--------|--------|---|
| 5. 76 0. 2215 0. 55 (                            | Q          |    | X100_K |        |   |
|                                                  | Q<br>Q     |    |        | •      |   |
| 6. 32 0. 2471 0. 56                              | Q          |    |        | ·<br>· |   |
|                                                  | Q<br>Q     | •  | •      | •      | ٠ |
| 6. 88 0. 2737 0. 59 (                            | Q          |    |        |        |   |
|                                                  | Q<br>Q     |    |        |        |   |
| 7. 44 0. 3012 0. 61 (                            | Q          |    |        |        |   |
| 7. 81 0. 3202 0. 62 (                            | Q<br>Q     |    |        |        |   |
|                                                  | Q<br>Q     | •  |        |        |   |
| 8. 37 0. 3498 0. 66                              | Q          |    |        |        |   |
|                                                  | Q<br>Q     |    |        |        |   |
| 8. 93 0. 3806 0. 68 0                            | Q          |    |        |        |   |
|                                                  | Q<br>Q     |    |        |        |   |
|                                                  | Q<br>Q     |    |        |        |   |
| 9. 86 0. 4356 0. 75 (                            | ٥          |    |        |        |   |
|                                                  | . Q<br>. Q |    |        |        |   |
| 10. 41 0. 4711 0. 79                             | . Q        |    |        |        |   |
| 10. 79 0. 4960 0. 82 .                           | . Q<br>. Q |    |        | •      |   |
|                                                  | . Q<br>. Q |    |        |        |   |
| 11. 35 0. 5354 0. 89 .                           | . Q        |    |        |        |   |
|                                                  | . Q<br>. Q |    |        |        |   |
|                                                  | . Q<br>. Q |    | •      |        |   |
| 12. 28 0. 6110 1. 26 .                           | . Q        |    | •      |        |   |
|                                                  | . Q<br>. Q | •  | •      | •      |   |
| 12. 84 0. 6719 1. 38                             | . Q        |    |        |        |   |
| 13. 21 0. 7157 1. 48                             | . Q<br>. Q |    |        |        |   |
| 10 50 0 7/04 1 50                                | . Q<br>. Q |    |        |        |   |
| 13. 77 0. 7872 1. 63 .                           | . Q        |    |        |        |   |
| 13. 95 0. 8130 1. 73 .<br>14. 14 0. 8400 1. 78 . | . Q<br>. Q |    |        | ·      |   |
| 14. 32                                           | . Q<br>. Q |    |        |        |   |
| 14. 70 0. 9305 2. 17                             | . Q        |    |        |        |   |
| 14. 88 0. 9647 2. 28 .<br>15. 07 1. 0021 2. 58 . | . Q<br>. Q | •  | •      | •      |   |
| 15. 26 1. 0433 2. 79 .                           | . Q        |    |        |        |   |
| 15. 44                                           | . Q<br>. Q |    |        |        |   |
| 15. 81 1. 2024 4. 90 1. 1. 2929 6. 86 1. 2929    | . 0        | ). |        |        |   |
| 16. 19 1. 5121 21. 62                            |            |    |        | Q .    |   |
| 16. 37                                           | . Q<br>. Q |    |        |        |   |
| 16. 74 1. 8039 2. 40 .                           | . Q        |    |        |        |   |
| 16. 93                                           | . Q<br>. Q |    |        |        |   |
| 17. 30                                           | . Q<br>. Q | •  |        |        |   |
| 17. 68 1. 9435 1. 44                             | . Q        |    |        |        |   |
|                                                  | . Q<br>. Q |    |        |        |   |
| 18. 23 2. 0027 0. 97                             | . Q        |    |        |        |   |
| 18. 61 2. 0310 0. 87                             | . Q<br>. Q |    | •      |        |   |
|                                                  | . Q<br>. Q |    |        |        |   |
| 19. 16 2. 0688 0. 77                             | . Q        |    |        |        |   |
|                                                  | Q<br>Q     |    |        |        |   |
| 19. 72 2. 1024 0. 69 (                           | Q          |    |        |        |   |
| 20. 10 2. 1230 0. 65                             | Q<br>Q     |    |        | ·<br>· |   |
|                                                  | 0          |    |        |        |   |

Page 2

|        |         |       |       |   | X100 K |   |   |
|--------|---------|-------|-------|---|--------|---|---|
| 20. 47 | 2. 1424 | 0. 61 | Q     |   | . –    |   |   |
| 20. 65 | 2. 1517 | 0. 60 | Q     |   |        |   |   |
| 20. 84 | 2. 1607 | 0. 58 | Q     |   |        |   |   |
| 21. 03 | 2. 1696 | 0. 57 | Q     | • | •      | • | • |
| 21. 21 | 2. 1782 | 0. 55 | Q     |   |        |   |   |
| 21. 40 | 2. 1867 | 0. 54 | Q     |   |        |   |   |
| 21. 58 | 2. 1949 | 0. 53 | Q     |   |        |   |   |
| 21. 77 | 2. 2030 | 0. 52 | Q     |   | •      | • | • |
| 21. 96 | 2. 2109 | 0. 51 | Q     | • | •      | • | • |
| 22. 14 | 2. 2187 | 0. 50 | Q     | • | •      | • | • |
| 22. 33 | 2. 2263 | 0. 49 | Q     | • | •      | • | • |
| 22. 52 | 2. 2337 | 0. 48 | Q     |   |        | • | • |
| 22. 70 | 2. 2411 | 0. 47 | Q     | • |        | • | • |
| 22. 89 | 2. 2483 | 0. 46 | Q     |   |        | • | • |
| 23. 07 | 2. 2553 | 0. 46 | Q     | • |        | • | • |
| 23. 26 | 2. 2623 | 0. 45 | Q     | • |        | • | • |
| 23. 45 | 2. 2691 | 0. 44 | Q     | • |        | • | • |
| 23. 63 | 2. 2758 | 0. 43 | Q     | • |        | • | • |
| 23. 82 | 2. 2825 | 0. 43 | Q     | • | •      | • | • |
| 24. 01 | 2. 2890 | 0. 42 | Q     | • | •      | • | • |
| 24. 19 | 2. 2922 | 0.00  | Q<br> |   |        |   |   |

iii. HC 25-Year Storm Event

# Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 349.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.150

LOW LOSS FRACTION = 0.310

TIME OF CONCENTRATION(MIN.) = 26.85

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 86.12 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 44.68

| *****   | *****   | *****     | **** | ****** | ***** | ***** | ***** |
|---------|---------|-----------|------|--------|-------|-------|-------|
| TIME    | VOLUME  | Q         | 0.   | 135.0  | 270.0 | 405.0 | 540.0 |
| (HOURS) | (AF)    | (CFS)     |      |        |       |       |       |
| 0.34    | 0.2071  | <br>14.85 | .Q   |        |       |       |       |
| 0.78    | 0.7590  | 14.99     | . Q  |        |       | •     |       |
| 1.23    | 1.3205  | 15.37     | . Q  |        |       |       |       |
| 1.68    | 1.8925  | 15.57     | .Q   | •      |       | •     | •     |
| 2.13    | 2.4759  | 15.98     | .Q   | •      |       | •     | •     |
| 2.57    | 3.0709  | 16.20     | .Q   | •      |       | •     |       |
| 3.02    | 3.6784  | 16.66     | .Q   | •      |       | •     |       |
| 3.47    | 4.2990  | 16.90     | .Q   | •      |       | •     | •     |
| 3.92    | 4.9335  | 17.41     | .Q   | •      | •     | •     |       |
| 4.36    | 5.5825  | 17.69     | .Q   | •      | •     | •     |       |
| 4.81    | 6.2472  | 18.26     | .Q   | •      | •     | •     |       |
| 5.26    | 6.9284  | 18.57     | .Q   | •      | •     | •     |       |
| 5.71    | 7.6274  | 19.23     | .Q   | •      | •     | •     |       |
| 6.15    | 8.3452  | 19.58     | .Q   | •      | •     | •     | •     |
| 6.60    | 9.0834  | 20.34     | .Q   | •      | •     | •     | •     |
| 7.05    | 9.8433  | 20.75     | .Q   | •      | •     | •     | •     |
| 7.50    | 10.6270 | 21.63     | .Q   | •      | •     | •     | •     |
| 7.94    | 11.4359 | 22.11     | .Q   | •      | •     | •     | •     |
| 8.39    | 12.2731 | 23.16     | .Q   | •      |       | •     |       |

| 14.66       32.3547       74.21       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .   | 8.84<br>9.29<br>9.73<br>10.18<br>10.63<br>11.08<br>11.52<br>11.97<br>12.42<br>12.87<br>13.32<br>13.76<br>14.21 | 13.1403<br>14.0414<br>14.9789<br>15.9584<br>16.9831<br>18.0612<br>19.1977<br>20.4050<br>21.7786<br>23.4708<br>25.4105<br>27.5108<br>29.8004 | 23.73<br>25.00<br>25.70<br>27.27<br>28.15<br>30.15<br>31.30<br>33.99<br>40.30<br>51.21<br>53.68<br>59.90<br>63.92 |       |     |   | · · · · · · · · · · · · · · · · · · · |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|-----|---|---------------------------------------|----|
| 15.55       38.8080       109.80       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                                                                                                                             |                                                                                                                   |       | •   | • | •                                     | •  |
| 16.00       43.4845       143.09       .       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  |                                                                                                                |                                                                                                                                             |                                                                                                                   | . ,   |     | • | •                                     | •  |
| 16.45       56.0379       535.78       .       .       .       Q.         16.90       67.6872       94.20       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |                                                                                                                |                                                                                                                                             |                                                                                                                   | •     |     | • | •                                     | •  |
| 16.90       67.6872       94.20       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .   |                                                                                                                |                                                                                                                                             |                                                                                                                   | •     | Q   | • | •                                     |    |
| 17.34       70.6907       68.23       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |                                                                                                                                             |                                                                                                                   |       |     | • | •                                     | Q. |
| 17.79       72.9980       56.54       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .   |                                                                                                                |                                                                                                                                             |                                                                                                                   |       | ٠ . | • | •                                     | •  |
| 18.24       74.9505       49.05       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .   |                                                                                                                |                                                                                                                                             |                                                                                                                   |       | •   | • | •                                     | •  |
| 18.68       76.4597       32.57       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .   |                                                                                                                |                                                                                                                                             |                                                                                                                   |       |     | • |                                       | •  |
| 19.13       77.6003       29.11       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  |                                                                                                                |                                                                                                                                             |                                                                                                                   |       |     | • |                                       | •  |
| 19.58       78.6278       26.45       .Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                                                                                                                                             |                                                                                                                   |       |     |   |                                       |    |
| 20.03       79.5671       24.35       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  | 19.58                                                                                                          |                                                                                                                                             |                                                                                                                   |       |     | • |                                       | •  |
| 20.48       80.4356       22.62       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  |                                                                                                                |                                                                                                                                             |                                                                                                                   |       |     |   | •                                     | •  |
| 21.37       82.0062       19.95       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  | 20.48                                                                                                          | 80.4356                                                                                                                                     | 22.62                                                                                                             |       |     | • |                                       |    |
| 21.82       82.7245       18.89       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  | 20.92                                                                                                          | 81.2456                                                                                                                                     | 21.18                                                                                                             | .Q    | •   | • |                                       | •  |
| 22.27       83.4062       17.97       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  | 21.37                                                                                                          | 82.0062                                                                                                                                     | 19.95                                                                                                             | .Q    | •   | • |                                       | •  |
| 22.71       84.0556       17.15       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  |                                                                                                                | 82.7245                                                                                                                                     | 18.89                                                                                                             | .Q    | •   | • | •                                     | •  |
| 23.16       84.6764       16.42       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .  |                                                                                                                |                                                                                                                                             |                                                                                                                   |       | •   | • | •                                     | •  |
| 23.61 85.2717 15.77 .Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | 84.0556                                                                                                                                     | 17.15                                                                                                             | . Q   | •   | • | •                                     |    |
| 24.06 85.8440 15.18 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                             |                                                                                                                   | . Q   | •   | • | •                                     |    |
| ·-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                                             |                                                                                                                   |       | •   | • | •                                     | •  |
| 24.50 86.1247 0.00 Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                                             |                                                                                                                   |       | •   | • | •                                     | •  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.50<br>                                                                                                      | 86.1247                                                                                                                                     | 0.00                                                                                                              | Q<br> | ·   | · | ·                                     |    |

-----

# Drainage B

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 135.10

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.070

LOW LOSS FRACTION = 0.170

TIME OF CONCENTRATION(MIN.) = 30.94

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 38.91 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 11.64

| ****            | *****          | *****      | **** | ***** | ****  | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 50.0  | 100.0 | 150.0 | 200.0 |
| 0.01            | 0.0000         | 0.00       | Q    |       |       |       |       |
| 0.53            | 0.1471         | 6.90       | .Q   | •     |       |       |       |
| 1.05            | 0.4449         | 7.08       | .Q   | •     | •     | •     | •     |
| 1.56            | 0.7487         | 7.18       | .Q   | •     | •     | •     | •     |
| 2.08            | 1.0592         | 7.40       | .Q   | •     | •     | •     | •     |
| 2.59            | 1.3769         | 7.51       | .Q   |       |       |       | •     |
| 3.11            | 1.7023         | 7.76       | .Q   |       |       |       | •     |
| 3.62            | 2.0357         | 7.89       | .Q   |       |       |       | •     |
| 4.14            | 2.3779         | 8.17       | .Q   |       |       |       | •     |
| 4.66            | 2.7292         | 8.32       | .Q   |       |       |       | •     |
| 5.17            | 3.0906         | 8.64       | .Q   |       |       |       |       |
| 5.69            | 3.4625         | 8.81       | .Q   |       |       |       | •     |
| 6.20            | 3.8461         | 9.19       | .Q   |       |       |       | •     |
| 6.72            | 4.2421         | 9.39       | .Q   |       |       |       |       |
| 7.23            | 4.6519         | 9.84       | .Q   |       |       |       | •     |
| 7.75            | 5.0763         | 10.08      | . Q  |       |       |       | •     |
| 8.27            | 5.5174         | 10.62      | . Q  |       |       |       |       |
| 8.78            | 5.9763         | 10.92      | . Q  |       |       |       | •     |
| 9.30            | 6.4558         | 11.58      | . Q  | •     | •     | •     | •     |

| 9.81  | 6.9573  | 11.96  | . Q |     |   | • |    |
|-------|---------|--------|-----|-----|---|---|----|
| 10.33 | 7.4851  | 12.81  | . Q |     |   |   |    |
| 10.84 | 8.0414  | 13.30  | . Q |     |   |   | •  |
| 11.36 | 8.6323  | 14.44  | . Q | •   | • |   | •  |
| 11.87 | 9.2619  | 15.11  | . Q |     |   |   | •  |
| 12.39 | 10.0135 | 20.16  | . Q | •   | • |   | •  |
| 12.91 | 10.9372 | 23.19  | . Q | •   | • |   | •  |
| 13.42 | 11.9827 | 25.87  | . Q |     |   |   | •  |
| 13.94 | 13.1223 | 27.61  | . Q | •   |   | • | •  |
| 14.45 | 14.3947 | 32.10  | . ( | Q . | • |   | •  |
| 14.97 | 15.8372 | 35.60  |     | Q.  |   |   | •  |
| 15.48 | 17.6626 | 50.07  |     | Q   | • |   | •  |
| 16.00 | 19.9858 | 58.96  |     | .Q  |   |   | •  |
| 16.52 | 25.4866 | 199.19 |     | •   |   |   | Q. |
| 17.03 | 30.5973 | 40.65  |     | Q.  | • |   | •  |
| 17.55 | 32.0972 | 29.74  | . Q | •   | • | • | •  |
| 18.06 | 33.2513 | 24.42  | . Q | •   | • | • | •  |
| 18.58 | 34.1098 | 15.87  | . Q | •   | • | • | •  |
| 19.09 | 34.7427 | 13.84  | . Q | •   | • |   | •  |
| 19.61 | 35.3010 | 12.36  | . Q | •   | • |   | •  |
| 20.13 | 35.8039 | 11.24  | . Q | •   | • |   | •  |
| 20.64 | 36.2637 | 10.34  | . Q | •   | • | • | •  |
| 21.16 | 36.6889 | 9.61   | .Q  | •   | • | • | •  |
| 21.67 | 37.0853 | 9.00   | .Q  | •   | • | • | •  |
| 22.19 | 37.4576 | 8.48   | .Q  | •   | • |   | •  |
| 22.70 | 37.8092 | 8.03   | .Q  | •   | • | • | •  |
| 23.22 | 38.1429 | 7.63   | .Q  | •   | • | • | •  |
| 23.73 | 38.4608 | 7.29   | .Q  | •   |   |   | •  |
| 24.25 | 38.7647 | 6.98   | .Q  | •   | • | • | •  |
| 24.77 | 38.9133 | 0.00   | Q   | •   | • | • | •  |

\_\_\_\_\_\_

# Drainage C

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 63.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.200

LOW LOSS FRACTION = 0.340

TIME OF CONCENTRATION(MIN.) = 18.31

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 14.98 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 8.82

| *****           | *****          | *****      | *** | ***** | ***** | ***** | ****** |
|-----------------|----------------|------------|-----|-------|-------|-------|--------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.  | 32.5  | 65.0  | 97.5  | 130.0  |
| 0.13            | 0.0000         | 0.00       | Q   |       |       |       |        |
| 0.44            | 0.0328         | 2.60       | Q   | •     | •     | •     | •      |
| 0.74            | 0.0986         | 2.62       | Q   | •     |       | •     |        |
| 1.05            | 0.1652         | 2.66       | Q   | •     |       | •     |        |
| 1.35            | 0.2327         | 2.69       | Q   | •     |       | •     |        |
| 1.66            | 0.3011         | 2.73       | Q   | •     |       | •     |        |
| 1.96            | 0.3703         | 2.76       | Q   | •     |       | •     |        |
| 2.27            | 0.4406         | 2.81       | Q   | •     |       | •     |        |
| 2.57            | 0.5118         | 2.84       | Q   |       | •     |       |        |
| 2.88            | 0.5840         | 2.89       | Q   | •     |       | •     |        |
| 3.18            | 0.6573         | 2.92       | Q   |       | •     |       |        |
| 3.49            | 0.7317         | 2.98       | Q   | •     |       | •     |        |
| 3.79            | 0.8072         | 3.01       | Q   | •     |       | •     |        |
| 4.10            | 0.8839         | 3.07       | Q   |       | •     |       |        |
| 4.40            | 0.9619         | 3.11       | Q   | •     |       | •     |        |
| 4.71            | 1.0411         | 3.18       | Q   | •     |       | •     |        |
| 5.01            | 1.1217         | 3.21       | Q   | •     |       | •     |        |
| 5.32            | 1.2037         | 3.29       | .Q  | •     | •     | •     |        |
| 5.62            | 1.2871         | 3.33       | .Q  |       | •     |       |        |

| 5.93                                                                                                              | 1.3721                                                                                                                                                 | 3.41                                                                                         | .Q                                                     |             |                       |   |                                     |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|-----------------------|---|-------------------------------------|
| 6.23                                                                                                              | 1.4587                                                                                                                                                 | 3.46                                                                                         | . Q                                                    | •           | •                     | • | ·                                   |
|                                                                                                                   |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
| 6.54                                                                                                              | 1.5470                                                                                                                                                 | 3.55                                                                                         | · Q                                                    | •           | •                     | • | •                                   |
| 6.85                                                                                                              | 1.6371                                                                                                                                                 | 3.60                                                                                         | .Q                                                     | •           | •                     | • | •                                   |
| 7.15                                                                                                              | 1.7290                                                                                                                                                 | 3.70                                                                                         | .Q                                                     | •           |                       |   | •                                   |
| 7.46                                                                                                              | 1.8230                                                                                                                                                 | 3.75                                                                                         | .Q                                                     |             |                       |   |                                     |
| 7.76                                                                                                              | 1.9190                                                                                                                                                 | 3.87                                                                                         | . Q                                                    |             |                       |   |                                     |
| 8.07                                                                                                              |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
|                                                                                                                   | 2.0172                                                                                                                                                 | 3.93                                                                                         | . Q                                                    | •           | •                     | • | •                                   |
| 8.37                                                                                                              | 2.1179                                                                                                                                                 | 4.05                                                                                         | .Q                                                     | •           | •                     | • | •                                   |
| 8.68                                                                                                              | 2.2210                                                                                                                                                 | 4.12                                                                                         | .Q                                                     | •           |                       |   | •                                   |
| 8.98                                                                                                              | 2.3268                                                                                                                                                 | 4.27                                                                                         | .Q                                                     |             |                       |   |                                     |
| 9.29                                                                                                              | 2.4354                                                                                                                                                 | 4.35                                                                                         | . Q                                                    |             |                       |   |                                     |
| 9.59                                                                                                              | 2.5472                                                                                                                                                 | 4.52                                                                                         | . Q                                                    | •           | ·                     | • | ·                                   |
|                                                                                                                   |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
| 9.90                                                                                                              | 2.6622                                                                                                                                                 | 4.61                                                                                         | · Q                                                    | •           | •                     | • | •                                   |
| 10.20                                                                                                             | 2.7808                                                                                                                                                 | 4.80                                                                                         | .Q                                                     | •           | •                     | • | •                                   |
| 10.51                                                                                                             | 2.9033                                                                                                                                                 | 4.91                                                                                         | .Q                                                     | •           |                       |   |                                     |
| 10.81                                                                                                             | 3.0300                                                                                                                                                 | 5.14                                                                                         | .Q                                                     | •           |                       |   |                                     |
| 11.12                                                                                                             | 3.1612                                                                                                                                                 | 5.27                                                                                         | . Q                                                    |             |                       |   |                                     |
| 11.42                                                                                                             | 3.2976                                                                                                                                                 | 5.55                                                                                         | . Q                                                    | •           | •                     | • | •                                   |
|                                                                                                                   |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
| 11.73                                                                                                             | 3.4395                                                                                                                                                 | 5.70                                                                                         | . Q                                                    | •           | •                     | • | •                                   |
| 12.03                                                                                                             | 3.5878                                                                                                                                                 | 6.05                                                                                         | .Q                                                     | •           | •                     | • | •                                   |
| 12.34                                                                                                             | 3.7597                                                                                                                                                 | 7.58                                                                                         | . Q                                                    | •           |                       |   |                                     |
| 12.64                                                                                                             | 3.9656                                                                                                                                                 | 8.74                                                                                         | . Q                                                    |             |                       |   |                                     |
| 12.95                                                                                                             | 4.1895                                                                                                                                                 | 9.01                                                                                         | . Q                                                    |             |                       |   |                                     |
| 13.25                                                                                                             | 4.4246                                                                                                                                                 | 9.64                                                                                         | _                                                      | •           | •                     | • | •                                   |
|                                                                                                                   |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
| 13.56                                                                                                             | 4.6722                                                                                                                                                 | 10.00                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 13.86                                                                                                             | 4.9353                                                                                                                                                 | 10.86                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 14.17                                                                                                             | 5.2159                                                                                                                                                 | 11.39                                                                                        | . Q                                                    | •           |                       |   |                                     |
| 14.47                                                                                                             | 5.5178                                                                                                                                                 | 12.56                                                                                        | . Q                                                    |             |                       |   |                                     |
| 14.78                                                                                                             | 5.8452                                                                                                                                                 | 13.41                                                                                        | . ~Q                                                   |             |                       |   |                                     |
| 15.08                                                                                                             | 6.2133                                                                                                                                                 | 15.78                                                                                        |                                                        | •           | •                     | • | •                                   |
|                                                                                                                   |                                                                                                                                                        |                                                                                              | . Q                                                    | •           | •                     | • | •                                   |
| 15.39                                                                                                             | 6.6336                                                                                                                                                 | 17.54                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 15.69                                                                                                             | 7.1157                                                                                                                                                 | 20.69                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 16.00                                                                                                             | 7.8009                                                                                                                                                 | 33.64                                                                                        |                                                        | Q           |                       |   |                                     |
| 16.31                                                                                                             | 9.7419                                                                                                                                                 | 120.28                                                                                       |                                                        | •           |                       |   | Q.                                  |
| 16.61                                                                                                             | 11.5001                                                                                                                                                | 19.14                                                                                        | . Q                                                    |             |                       |   |                                     |
| 16.92                                                                                                             | 11.9238                                                                                                                                                | 14.45                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 17.22                                                                                                             |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
|                                                                                                                   | 12.2558                                                                                                                                                | 11.87                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 17.53                                                                                                             | 12.5367                                                                                                                                                | 10.41                                                                                        | . Q                                                    | •           | •                     | • | •                                   |
| 17.83                                                                                                             | 12.7852                                                                                                                                                | 9.31                                                                                         | . Q                                                    | •           | •                     | • | •                                   |
| 18.14                                                                                                             | 13.0097                                                                                                                                                | 8.49                                                                                         | . Q                                                    | •           |                       |   |                                     |
| 18.44                                                                                                             | 13.1909                                                                                                                                                | 5.87                                                                                         | .Q                                                     | •           |                       |   |                                     |
| 18.75                                                                                                             | 13.3331                                                                                                                                                | 5.40                                                                                         | . Q                                                    |             |                       |   |                                     |
| 19.05                                                                                                             | 13.4645                                                                                                                                                | 5.02                                                                                         | . Q                                                    | •           | •                     | • | •                                   |
|                                                                                                                   |                                                                                                                                                        |                                                                                              |                                                        | •           | •                     | • | •                                   |
| 19.36                                                                                                             | 13.5871                                                                                                                                                | 4.70                                                                                         | . Q                                                    | •           | •                     | • | •                                   |
| 19.66                                                                                                             | 13.7022                                                                                                                                                | 4.43                                                                                         | .Q                                                     | •           | •                     | • | •                                   |
| 19.97                                                                                                             |                                                                                                                                                        |                                                                                              |                                                        |             |                       | _ | •                                   |
| 20.27                                                                                                             | 13.8110                                                                                                                                                | 4.19                                                                                         | .Q                                                     | •           | •                     | • |                                     |
| 20.27                                                                                                             |                                                                                                                                                        | 4.19<br>3.99                                                                                 |                                                        |             |                       | • | •                                   |
|                                                                                                                   | 13.9141                                                                                                                                                | 3.99                                                                                         | .Q                                                     | •           | •                     |   | •                                   |
| 20.58                                                                                                             | 13.9141<br>14.0124                                                                                                                                     | 3.99<br>3.81                                                                                 | . Q<br>. Q                                             | ·<br>·      | •                     | • | •                                   |
| 20.58                                                                                                             | 13.9141<br>14.0124<br>14.1064                                                                                                                          | 3.99<br>3.81<br>3.65                                                                         | .Q<br>.Q<br>.Q                                         | ·<br>·<br>· | · · · ·               | • |                                     |
| 20.58<br>20.88<br>21.19                                                                                           | 13.9141<br>14.0124<br>14.1064<br>14.1965                                                                                                               | 3.99<br>3.81<br>3.65<br>3.50                                                                 | .Q<br>.Q<br>.Q                                         | :<br>:<br>: |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49                                                                                  | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832                                                                                                    | 3.99<br>3.81<br>3.65<br>3.50<br>3.37                                                         | . Q<br>. Q<br>. Q<br>. Q                               |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19                                                                                           | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666                                                                                         | 3.99<br>3.81<br>3.65<br>3.50                                                                 | .Q<br>.Q<br>.Q                                         |             | · · · · · · · · · · · |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49                                                                                  | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832                                                                                                    | 3.99<br>3.81<br>3.65<br>3.50<br>3.37                                                         | . Q<br>. Q<br>. Q<br>. Q                               |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10                                                                | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472                                                                              | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14                                         | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q                 |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41                                                       | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252                                                                   | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04                                 | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q<br>Q            |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71                                              | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007                                                        | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04<br>2.95                         | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q              |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02                                     | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740                                             | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04<br>2.95<br>2.86                 | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q              |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02<br>23.32                            | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740<br>14.7453                                  | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04<br>2.95<br>2.86<br>2.78         | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q<br>Q         |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02<br>23.32<br>23.63                   | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740<br>14.7453<br>14.8146                       | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04<br>2.95<br>2.86<br>2.78<br>2.71 | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q<br>Q<br>Q    |             |                       |   | · · · · · · · · · · · · · · · · · · |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02<br>23.32                            | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740<br>14.7453                                  | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04<br>2.95<br>2.86<br>2.78         | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q<br>Q         |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02<br>23.32<br>23.63                   | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740<br>14.7453<br>14.8146                       | 3.99<br>3.81<br>3.65<br>3.50<br>3.37<br>3.25<br>3.14<br>3.04<br>2.95<br>2.86<br>2.78<br>2.71 | . Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q<br>Q<br>Q<br>Q      |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02<br>23.32<br>23.63<br>23.93<br>24.24 | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740<br>14.7453<br>14.8146<br>14.8821<br>14.9479 | 3.99 3.81 3.65 3.50 3.37 3.25 3.14 3.04 2.95 2.86 2.78 2.71 2.64 2.58                        | . Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q<br>Q<br>Q<br>Q<br>Q |             |                       |   |                                     |
| 20.58<br>20.88<br>21.19<br>21.49<br>21.80<br>22.10<br>22.41<br>22.71<br>23.02<br>23.32<br>23.63<br>23.93          | 13.9141<br>14.0124<br>14.1064<br>14.1965<br>14.2832<br>14.3666<br>14.4472<br>14.5252<br>14.6007<br>14.6740<br>14.7453<br>14.8146<br>14.8821            | 3.99 3.81 3.65 3.50 3.37 3.25 3.14 3.04 2.95 2.86 2.78 2.71 2.64                             | . Q<br>. Q<br>. Q<br>. Q<br>Q<br>Q<br>Q<br>Q<br>Q      |             |                       |   |                                     |

# Drainage D

# \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)
AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

| *****                                                                                                                                                             | *****                                                                                                                                                                                                                                                   | *****                                                                                                                                                                                                                                            | *****                                                                                                                                    | *****                                                                  | *****        | ***** |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|-------|
| Problem I                                                                                                                                                         | Descriptions                                                                                                                                                                                                                                            | S:                                                                                                                                                                                                                                               |                                                                                                                                          |                                                                        |              |       |
| TOTAL<br>SOI L-I<br>LOW LOW<br>TIME (<br>SMALL<br>ORANG<br>RETURI<br>5-I<br>30-I<br>1-I<br>3-I                                                                    | CATCHMENT // LOSS RATE, I DSS FRACTIOI OF CONCENTR, AREA PEAK ( E COUNTY "V, N FREQUENCY MI NUTE POI N' MI NUTE POI N' HOUR POI N' HOUR POI N'                                                                                                          | CALIBRATION CO<br>AREA(ACRES) =<br>Fm, (INCH/HR) =<br>N = 0.300<br>ATION(MIN.) =<br>Q COMPUTED USI<br>ALLEY" RAINFAL<br>(YEARS) = 25<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL | 14.29<br>= 0.140<br>10.60<br>NG PEAK FLO<br>LL VALUES AR<br>LUE(I NCHES)<br>LUE(I NCHES)<br>LUE(I NCHES)<br>LUE(I NCHES)<br>LUE(I NCHES) | W RATE FOR<br>E USED<br>= 0.40<br>= 0.87<br>= 1.15<br>= 1.94<br>= 2.71 | <br>MULA     |       |
| TOTAL                                                                                                                                                             |                                                                                                                                                                                                                                                         | SOIL-LOSS VOLU                                                                                                                                                                                                                                   | JME(ACRE-FEE                                                                                                                             | T) = 1                                                                 | . 56<br>. 78 |       |
| *********<br>TI ME<br>(HOURS)                                                                                                                                     | VOLUME                                                                                                                                                                                                                                                  | ************<br>Q 0.<br>(CFS)                                                                                                                                                                                                                    | 10. 0                                                                                                                                    |                                                                        |              | 40. 0 |
| 0. 10 0. 28 0. 45 0. 63 0. 81 0. 98 1. 16 1. 34 1. 51 1. 69 1. 87 2. 04 2. 57 2. 75 2. 75 2. 73 3. 10 3. 28 3. 46 3. 81 3. 99 4. 16 4. 34 4. 52 4. 69 4. 87 5. 02 | 0. 0000 0. 0045 0. 0135 0. 0135 0. 0226 0. 0318 0. 0410 0. 0503 0. 0597 0. 0692 0. 0787 0. 0883 0. 0979 0. 1077 0. 1175 0. 1274 0. 1374 0. 1475 0. 1576 0. 1678 0. 1782 0. 1886 0. 1991 0. 2097 0. 2205 0. 2313 0. 2422 0. 2532 0. 2643 0. 2756 0. 2869 | 0. 00                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                        |              |       |

Page 1

|                  |                    |                 |            |     | V005 D |     |     |
|------------------|--------------------|-----------------|------------|-----|--------|-----|-----|
| 5. 40            | 0. 2984            | 0. 79           | Q          |     | X025_D |     |     |
| 5. 58            | 0. 3100            | 0.80            | Q          |     |        | · · |     |
| 5. 75<br>5. 93   | 0. 3217<br>0. 3336 | 0. 81<br>0. 82  | Q<br>Q     |     | •      |     |     |
| 6. 11            | 0. 3456            | 0. 82           | Q          |     |        |     |     |
| 6. 28            | 0. 3577            | 0.84            | Q          |     |        |     |     |
| 6. 46<br>6. 64   | 0. 3699<br>0. 3823 | 0. 84<br>0. 86  | Q<br>Q     | •   | •      | •   |     |
| 6. 81            | 0. 3949            | 0. 86           | Q          |     |        | ·   |     |
| 6. 99<br>7. 17   | 0. 4076<br>0. 4204 | 0. 88<br>0. 88  | Q<br>Q     | •   | •      | •   |     |
| 7. 34            | 0. 4334            | 0. 90           | Q          |     |        |     |     |
| 7. 52            | 0. 4466            | 0. 91           | Q          | •   |        | •   |     |
| 7. 70<br>7. 87   | 0. 4599<br>0. 4735 | 0. 92<br>0. 93  | Q<br>Q     |     |        |     |     |
| 8. 05            | 0. 4872            | 0. 95           | Q          |     |        |     |     |
| 8. 23<br>8. 40   | 0. 5011<br>0. 5152 | 0. 96<br>0. 98  | Q<br>Q     |     | •      | •   |     |
| 8. 58            | 0. 5295            | 0. 99           | Q          |     |        | •   |     |
| 8. 76<br>8. 93   | 0. 5440<br>0. 5588 | 1. 00<br>1. 02  | . Q<br>. Q |     |        |     |     |
| o. 93<br>9. 11   | 0. 5738            | 1. 02           | . Q<br>. Q |     |        | •   |     |
| 9. 29            | 0. 5890            | 1.05            | . Q        |     |        |     |     |
| 9. 46<br>9. 64   | 0. 6045<br>0. 6202 | 1. 07<br>1. 08  | . Q<br>. Q | •   | •      | •   |     |
| 9. 82            | 0. 6362            | 1. 11           | . Q        |     |        | · · |     |
| 9. 99<br>10. 17  | 0. 6525<br>0. 6691 | 1. 12<br>1. 15  | . Q<br>. Q |     |        |     |     |
| 10. 17           | 0. 6860            | 1. 13           | . Q<br>. Q |     | •      | :   |     |
| 10. 52           | 0. 7033<br>0. 7209 | 1. 20<br>1. 21  | . Q        | •   |        | •   |     |
| 10. 70<br>10. 88 | 0. 7209            | 1. 21           | . Q<br>. Q |     |        |     |     |
| 11. 05           | 0. 7572            | 1. 27           | . Q        |     |        |     |     |
| 11. 23<br>11. 41 | 0. 7759<br>0. 7951 | 1. 30<br>1. 32  | . Q<br>. Q | •   | •      | •   | •   |
| 11. 58           | 0. 8147            | 1. 37           | . Q        |     |        | · · |     |
| 11. 76<br>11. 94 | 0. 8349<br>0. 8555 | 1. 39<br>1. 44  | . Q<br>. Q |     | •      | •   |     |
| 12. 11           | 0. 8768            | 1. 47           | . Q        |     |        |     |     |
| 12. 29<br>12. 47 | 0. 9021<br>0. 9316 | 2. 01<br>2. 04  | . Q<br>. Q |     |        |     |     |
| 12. 64           | 0. 9619            | 2. 11           | . Q        |     |        |     |     |
| 12.82            | 0. 9930<br>1. 0249 | 2. 15<br>2. 23  | . Q        |     | •      |     |     |
| 13. 00<br>13. 17 | 1. 0249            | 2. 23<br>2. 27  | . Q<br>. Q |     |        |     |     |
| 13. 35           | 1. 0918            | 2. 37           | . Q        |     |        |     |     |
| 13. 53<br>13. 70 | 1. 1268<br>1. 1631 | 2. 43<br>2. 55  | . Q<br>. Q | •   | •      | •   |     |
| 13.88            | 1. 2008            | 2. 61           | . Q        |     |        |     |     |
| 14. 06<br>14. 23 | 1. 2400<br>1. 2808 | 2. 76<br>2. 81  | . Q<br>. Q | •   | •      | •   |     |
| 14.41            | 1. 3233            | 3. 01           | . Q        |     |        | •   |     |
| 14. 59           | 1. 3681<br>1. 4157 | 3. 13           | . Q<br>. Q |     | •      |     |     |
| 14. 76<br>14. 94 | 1. 4666            | 3. 40<br>3. 57  | . Q<br>. Q |     |        |     |     |
| 15. 12           | 1. 5217            | 3. 98           | . Q        |     |        | •   |     |
| 15. 29<br>15. 47 | 1. 5820<br>1. 6471 | 4. 28<br>4. 63  | . Q<br>. Q |     |        |     |     |
| 15. 65           | 1. 7177            | 5.04            | . Q        |     |        |     |     |
| 15. 82<br>16. 00 | 1. 8169<br>1. 9695 | 8. 56<br>12. 34 | . О        | . Q | •      | •   |     |
| 16. 18           | 2. 3409            | 38. 54          |            | . u |        |     | Q . |
| 16. 35           | 2. 6672            | 6. 16           | . Q        | •   |        | •   |     |
| 16. 53<br>16. 71 | 2. 7469<br>2. 8090 | 4. 75<br>3. 76  | . Q<br>. Q |     |        |     |     |
| 16. 88           | 2. 8602            | 3. 25           | . Q        | •   |        | •   |     |
| 17. 06<br>17. 24 | 2. 9052<br>2. 9460 | 2. 91<br>2. 69  | . Q<br>. Q | •   | ·      | •   |     |
| 17. 41           | 2. 9838            | 2. 48           | . Q        |     |        |     |     |
| 17. 59           | 3. 0189            | 2. 32           | . Q        |     | •      |     |     |
| 17. 77<br>17. 94 | 3. 0518<br>3. 0829 | 2. 19<br>2. 07  | . Q<br>. Q |     |        |     |     |
| 18. 12           | 3. 1123            | 1. 96           | . Q        |     |        |     |     |
| 18. 30<br>18. 47 | 3. 1369<br>3. 1571 | 1. 41<br>1. 35  | . Q<br>. Q | •   | •      | •   |     |
| 18. 65           | 3. 1763            | 1. 28           | . Q        |     | •      |     |     |
| 18. 83<br>19. 00 | 3. 1946<br>3. 2122 | 1. 23<br>1. 18  | . Q<br>. Q |     |        |     |     |
| 19. 00           | 3. 2122<br>3. 2292 | 1. 18           | . Q<br>. Q |     |        |     |     |
|                  |                    |                 |            |     |        |     |     |

Page 2

|        |         |       |     | X025_D |   |   |
|--------|---------|-------|-----|--------|---|---|
| 19. 36 | 3. 2455 | 1. 10 | . Q | . –    |   |   |
| 19. 53 | 3. 2612 | 1. 06 | . Q |        |   |   |
| 19. 71 | 3. 2764 | 1. 03 | . Q |        |   |   |
| 19. 89 | 3. 2912 | 0. 99 | Q   |        |   |   |
| 20.06  | 3. 3055 | 0. 97 | Q   |        |   |   |
| 20. 24 | 3. 3194 | 0. 94 | Q   |        |   |   |
| 20. 42 | 3. 3329 | 0. 91 | Q   |        |   |   |
| 20. 59 | 3. 3461 | 0.89  | Q   |        |   |   |
| 20.77  | 3. 3590 | 0. 87 | Q   |        |   |   |
| 20. 95 | 3. 3715 | 0. 85 | Q   |        |   |   |
| 21. 12 | 3. 3838 | 0.83  | Q   |        |   |   |
| 21. 30 | 3. 3957 | 0. 81 | Q   |        |   |   |
| 21. 48 | 3. 4075 | 0. 79 | Q   |        |   |   |
| 21. 65 | 3. 4189 | 0. 78 | Q   |        |   |   |
| 21. 83 | 3. 4302 | 0. 76 | Q   |        |   |   |
| 22. 01 | 3. 4412 | 0. 75 | Q   |        |   |   |
| 22. 18 | 3. 4520 | 0. 73 | Q   |        |   |   |
| 22. 36 | 3. 4626 | 0. 72 | Q   |        |   |   |
| 22. 54 | 3. 4731 | 0. 71 | Q   |        |   |   |
| 22. 71 | 3. 4833 | 0. 70 | Q   | •      | • | • |
| 22. 89 | 3. 4934 | 0. 68 | Q   |        |   |   |
| 23. 07 | 3. 5033 | 0. 67 | Q   |        |   |   |
| 23. 24 | 3. 5130 | 0. 66 | Q   |        |   |   |
| 23. 42 | 3. 5226 | 0. 65 | Q   |        |   |   |
| 23. 60 | 3. 5321 | 0. 64 | Q   |        |   |   |
| 23. 77 | 3. 5414 | 0. 63 | Q   |        |   |   |
| 23. 95 | 3. 5505 | 0. 62 | Q   |        |   |   |
| 24. 13 | 3. 5596 | 0. 61 | Q   |        |   |   |
| 24. 30 | 3. 5641 | 0. 00 | Q   |        |   |   |
|        |         |       |     | <br>   |   |   |

### Drainage E

## NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 97.20
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.170
TIME OF CONCENTRATION (MIN.) = 27.94
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

\_\_\_\_\_\_

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 28.13 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 8.23

| *****                                                                                                                                 | *****                                                                                                                                                   | *****                                                                                                                                                                     | ****** | **** | *****  | *****  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|--------|--------|
| TIME<br>(HOURS)                                                                                                                       | VOLUME<br>(AF)                                                                                                                                          | Q 0.<br>(CFS)                                                                                                                                                             | 40. 0  | 80.0 | 120. 0 | 160. 0 |
| (HOURS) 0. 17 0. 63 1. 10 1. 56 2. 03 2. 50 2. 96 3. 43 3. 89 4. 36 4. 82 5. 29 5. 76 6. 22 6. 69 7. 15 7. 62 8. 08 8. 55 9. 01 9. 48 | (AF) 0.0000 0.0964 0.2906 0.4885 0.6904 0.8966 1.1071 1.3224 1.5427 1.7682 1.9994 2.2366 2.4801 2.7306 2.9885 3.2544 3.5289 3.8130 4.1072 4.4130 4.7311 | (CFS)  0. 00 Q 5. 01 . 5. 08 . 5. 21 . 5. 28 . 5. 43 . 5. 51 . 5. 68 . 5. 77 . 5. 96 . 6. 06 . 6. 27 . 6. 39 . 6. 63 . 6. 7. 05 . 7. 21 . 7. 55 . 7. 74 . 8. 15 . 8. 38 . |        | 80.0 | 120. 0 | 160.0  |
| 9. 95<br>10. 41<br>10. 88<br>11. 34<br>11. 81<br>12. 27<br>12. 74<br>13. 21<br>13. 67                                                 | 5. 0635<br>5. 4112<br>5. 7770<br>6. 1627<br>6. 5724<br>7. 0088<br>7. 5548<br>8. 2161<br>8. 9322                                                         | 8. 89                                                                                                                                                                     | Q      |      |        |        |

Page 1

| 14. 14<br>14. 60<br>15. 07<br>15. 53<br>16. 00<br>16. 47<br>16. 93<br>17. 40                                                             | 9. 7127<br>10. 5834<br>11. 5765<br>12. 8353<br>14. 4581<br>18. 2959<br>21. 8586<br>22. 9044                                                                          | 20. 94<br>24. 31<br>27. 30<br>38. 12<br>46. 22<br>153. 22<br>31. 92<br>22. 43                                               | . Q<br>. Q<br>. Q<br>                                              | Q.<br>. Q | X025_E | Q . |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|--------|-----|--|
| 18. 79<br>19. 26<br>19. 73<br>20. 19<br>20. 66<br>21. 12<br>21. 59<br>22. 55<br>22. 52<br>22. 98<br>23. 45<br>23. 92<br>24. 38<br>24. 85 | 24. 8545<br>25. 2415<br>25. 5901<br>25. 9089<br>26. 2036<br>26. 4784<br>26. 7365<br>26. 9802<br>27. 2115<br>27. 4319<br>27. 6426<br>27. 8446<br>28. 0390<br>28. 1346 | 10. 62<br>9. 49<br>8. 63<br>7. 94<br>7. 38<br>6. 91<br>6. 51<br>6. 16<br>5. 86<br>5. 59<br>5. 36<br>5. 14<br>4. 96<br>0. 00 | . Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q<br>. Q |           |        |     |  |

### Drainage F

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 5.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 7.97
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1.57 0.60

| TOTAL          | CATCHWENT          | 301 L-L033     | VOLU   | JWE (ACKE-FEE | 1) = 0 | . 60  |      |
|----------------|--------------------|----------------|--------|---------------|--------|-------|------|
| *****          | *****              | *****          | ****   | *****         | *****  | ***** | **** |
| TIME           | VOLUME             |                | 0.     | 5.0           | 10.0   | 15.0  | 20.0 |
| (HOURS)        | (AF)               | (CFS)          |        |               |        |       |      |
|                |                    |                |        |               |        |       |      |
| 0.06           | 0.0000             | 0.00           | Q      | •             | •      | •     | •    |
| 0. 19<br>0. 33 | 0. 0015<br>0. 0045 | 0. 27<br>0. 27 | Q      | •             | •      | •     | •    |
| 0. 33          | 0.0045             | 0. 27          | Q<br>Q | •             | •      | •     | •    |
| 0. 46<br>0. 59 | 0. 0075            | 0. 27          | Q      | •             | •      | •     | •    |
| 0. 39          | 0. 0105            | 0. 28          | Q      | •             | •      | •     | •    |
| 0. 72          | 0. 0133            | 0. 28          | Q      | •             | •      | •     | •    |
| 0. 88          | 0. 0100            | 0. 28          | Q      | •             | •      | •     | •    |
| 1. 12          | 0. 0190            | 0. 28          | Q      | •             | •      | •     | •    |
| 1. 12          | 0. 0227            | 0. 28          | Q      | •             | •      | •     | •    |
| 1. 39          | 0. 0230            | 0. 28          | Q      | •             | •      | •     | •    |
| 1. 52          | 0. 02 70           | 0. 20          | Q      | •             | •      | •     | •    |
| 1. 65          | 0. 0352            | 0. 29          | Q      | •             | •      | •     | •    |
| 1. 79          | 0. 0384            | 0. 29          | Q      | •             | •      | •     | •    |
| 1. 92          | 0. 0416            | 0. 29          | Q      | •             | •      | •     | •    |
| 2. 05          | 0. 0448            | 0. 29          | Q      | •             | •      | •     | •    |
| 2. 19          | 0. 0481            | 0. 29          | Q      | •             | •      | •     | •    |
| 2. 32          | 0. 0513            | 0. 30          | Q      | •             |        | •     |      |
| 2. 45          | 0. 0546            | 0. 30          | Q      |               |        |       |      |
| 2. 58          | 0. 0579            | 0. 30          | Q      |               |        |       |      |
| 2. 72          | 0.0612             | 0. 30          | Q      |               |        |       |      |
| 2. 85          | 0.0645             | 0. 30          | Q      |               |        |       |      |
| 2. 98          | 0.0679             | 0. 31          | Q      |               |        |       |      |
| 3. 12          | 0.0712             | 0. 31          | Q      |               |        |       |      |
| 3. 25          | 0. 0746            | 0. 31          | Q      |               |        |       |      |
| 3. 38          | 0. 0781            | 0. 31          | Q      |               |        |       |      |
| 3. 51          | 0. 0815            | 0. 31          | Q      |               |        |       |      |
| 3. 65          | 0.0850             | 0. 32          | Q      |               |        |       |      |
| 3. 78          | 0. 0885            | 0. 32          | Q      |               | •      |       |      |
| 3. 91          | 0.0920             | 0. 32          | Q      | •             | •      | •     |      |
|                |                    |                |        |               |        |       |      |

Page 1

| 4 OF             | 0.0055             | 0 22           | 0          |   | X025_F |   |   |   |
|------------------|--------------------|----------------|------------|---|--------|---|---|---|
| 4. 05<br>4. 18   | 0. 0955<br>0. 0991 | 0. 32<br>0. 33 | Q<br>Q     |   | •      |   | • |   |
| 4. 31            | 0. 1027            | 0. 33          | Q          |   | :      |   |   |   |
| 4.44             | 0. 1063            | 0. 33          | Q          | • |        |   | • |   |
| 4. 58            | 0. 1099<br>0. 1136 | 0. 33          | Q          |   | •      |   |   |   |
| 4. 71<br>4. 84   | 0. 1136            | 0. 34<br>0. 34 | Q<br>Q     | • | •      |   | • | • |
| 4. 97            | 0. 1173            | 0. 34          | Q          |   |        |   |   |   |
| 5. 11            | 0. 1248            | 0.34           | Q          |   |        |   |   |   |
| 5. 24            | 0. 1285            | 0. 35          | Q          | • |        |   | • |   |
| 5. 37<br>5. 51   | 0. 1324<br>0. 1362 | 0. 35<br>0. 35 | Q<br>Q     | • | •      |   | • |   |
| 5. 64            | 0. 1401            | 0. 35          | Q          |   |        |   |   |   |
| 5. 77            | 0. 1440            | 0. 36          | Q          |   |        |   |   |   |
| 5. 90<br>6. 04   | 0. 1479<br>0. 1519 | 0. 36<br>0. 36 | Q<br>Q     | • | •      |   | • |   |
| 6. 17            | 0. 1519            | 0. 37          | Q          | • |        |   | • |   |
| 6. 30            | 0. 1599            | 0. 37          | Q          |   |        |   | • |   |
| 6. 44            | 0. 1640            | 0. 37          | Q          | • | •      |   | • |   |
| 6. 57<br>6. 70   | 0. 1681<br>0. 1722 | 0. 38<br>0. 38 | Q<br>Q     | • | •      |   | • | • |
| 6. 83            | 0. 1764            | 0. 38          | Q          |   |        |   |   |   |
| 6. 97            | 0. 1806            | 0. 39          | Q          | • |        |   |   |   |
| 7. 10<br>7. 23   | 0. 1849            | 0.39           | Q          | • |        |   |   |   |
| 7. 23<br>7. 37   | 0. 1892<br>0. 1935 | 0. 39<br>0. 40 | Q<br>Q     | • | •      |   | • |   |
| 7. 50            | 0. 1979            | 0. 40          | Q          |   |        |   |   |   |
| 7. 63            | 0. 2023            | 0. 41          | Q          |   |        |   |   |   |
| 7. 76<br>7. 90   | 0. 2068<br>0. 2113 | 0. 41<br>0. 41 | Q<br>Q     | • |        |   | • |   |
| 8. 03            | 0. 2113            | 0. 41          | Q          |   |        |   |   |   |
| 8. 16            | 0. 2204            | 0.42           | Q          |   |        |   | • |   |
| 8. 30            | 0. 2251            | 0. 43          | Q          | • |        |   | • |   |
| 8. 43<br>8. 56   | 0. 2298<br>0. 2345 | 0. 43<br>0. 43 | Q<br>Q     | • |        |   | • | • |
| 8. 69            | 0. 2394            | 0. 44          | Q          |   |        |   |   |   |
| 8. 83            | 0. 2442            | 0.44           | Q          | • |        |   | • |   |
| 8. 96<br>9. 09   | 0. 2491<br>0. 2541 | 0. 45<br>0. 46 | Q<br>Q     | • | •      |   | • |   |
| 9. 23            | 0. 2592            | 0.46           | Q          |   |        |   |   |   |
| 9. 36            | 0. 2643            | 0. 47          | Q          |   |        |   |   |   |
| 9. 49            | 0. 2694            | 0. 47          | Q          | • |        |   | • |   |
| 9. 62<br>9. 76   | 0. 2747<br>0. 2800 | 0. 48<br>0. 49 | Q<br>Q     | • | •      |   | • |   |
| 9. 89            | 0. 2854            | 0. 49          | Q          |   |        |   | • |   |
| 10. 02           | 0. 2908            | 0. 50          | . Q        | • | •      |   | • |   |
| 10. 16<br>10. 29 | 0. 2963<br>0. 3019 | 0. 51<br>0. 52 | . Q<br>. Q | • | •      |   | • | • |
| 10. 42           | 0. 3076            | 0. 52          | . Q        |   | · ·    |   | • |   |
| 10. 55           | 0. 3134            | 0. 53          | . Q        |   |        |   |   |   |
| 10. 69<br>10. 82 | 0. 3192<br>0. 3252 | 0. 54<br>0. 55 | . Q<br>. Q | • |        |   | • |   |
| 10. 95           | 0. 3232            | 0. 55          | . Q        | • |        |   | • |   |
| 11. 09           | 0. 3374            | 0. 57          | . Q        |   |        |   | • |   |
| 11. 22<br>11. 35 | 0. 3436            | 0. 57<br>0. 59 | . Q        | • |        |   |   |   |
| 11. 48           | 0. 3500<br>0. 3565 | 0. 59          | . Q<br>. Q | • | •      |   | • |   |
| 11. 62           | 0. 3631            | 0. 61          | . Q        |   |        | , |   |   |
| 11. 75           | 0. 3698            | 0. 62          | . Q        | • | •      |   | • |   |
| 11. 88<br>12. 02 | 0. 3766<br>0. 3836 | 0. 63<br>0. 64 | . Q<br>. Q | • | •      |   | • |   |
| 12. 15           | 0. 3919            | 0.87           | . Q        |   |        |   |   |   |
| 12. 28           | 0. 4015            | 0.88           | . Q        | • |        |   |   |   |
| 12. 41           | 0. 4113            | 0. 90          | . Q        | • |        |   |   |   |
| 12. 55<br>12. 68 | 0. 4213<br>0. 4315 | 0. 91<br>0. 94 | . Q<br>. Q | • | •      |   | • |   |
| 12. 81           | 0. 4418            | 0. 95          | . Q        |   | · ·    |   | • |   |
| 12. 94           | 0. 4524            | 0. 98          | . Q        | • |        |   |   |   |
| 13. 08<br>13. 21 | 0. 4633<br>0. 4743 | 0. 99<br>1. 02 | . Q<br>. Q | • | •      |   |   |   |
| 13. 34           | 0. 4743            | 1. 04          | . Q        |   | •      |   | • |   |
| 13. 48           | 0. 4973            | 1. 08          | . Q        |   |        |   | • |   |
| 13. 61           | 0. 5092            | 1. 10          | . Q        | • |        |   |   |   |
| 13. 74<br>13. 87 | 0. 5215<br>0. 5341 | 1. 14<br>1. 16 | . Q<br>. Q | • |        |   | • |   |
| 14. 01           | 0. 5472            | 1. 21          | . Q        | • |        |   |   |   |
| 14. 14           | 0. 5606            | 1. 23          | . Q        |   |        |   |   |   |
| 14. 27<br>14. 41 | 0. 5744            | 1. 28          | . Q        |   |        |   |   |   |
| 14. 41           | 0. 5887            | 1. 32          | . Q        | • |        |   | • |   |

| 44.54            | 0 (007             | 4 40            | 0          |    | XO  | 25_F |   |   |
|------------------|--------------------|-----------------|------------|----|-----|------|---|---|
| 14. 54<br>14. 67 | 0. 6037<br>0. 6196 | 1. 42<br>1. 48  | . Q<br>. Q | :  |     |      |   |   |
| 14. 80           | 0. 6365            | 1. 61           | . Q        |    |     |      |   |   |
| 14. 94<br>15. 07 | 0. 6546<br>0. 6742 | 1. 69<br>1. 87  | . Q<br>. Q |    |     |      |   |   |
| 15. 20           | 0. 6953            | 1. 98           | . Q        |    |     |      |   |   |
| 15. 34<br>15. 47 | 0. 7186<br>0. 7432 | 2. 26<br>2. 21  | . Q<br>. Q |    |     |      |   | • |
| 15. 60           | 0. 7691            | 2. 50           | . Q        |    |     |      |   |   |
| 15. 73<br>15. 87 | 0. 7986<br>0. 8395 | 2. 88<br>4. 58  | . Q        | Q. |     |      |   | • |
| 16. 00           | 0. 8994            | 6. 33           |            |    | Q . |      |   |   |
| 16. 13<br>16. 27 | 1. 0375<br>1. 1607 | 18. 82<br>3. 63 | . Q        |    |     |      | Q | • |
| 16. 40           | 1. 1929            | 2. 22           | . Q        |    |     |      |   |   |
| 16. 53<br>16. 66 | 1. 2167<br>1. 2380 | 2. 11<br>1. 77  | . Q<br>. Q |    |     |      |   |   |
| 16. 80           | 1. 2562            | 1. 54           | . Q        |    |     |      |   |   |
| 16. 93<br>17. 06 | 1. 2721<br>1. 2865 | 1. 37<br>1. 25  | . Q<br>. Q |    |     |      |   |   |
| 17. 20           | 1. 2999            | 1. 19           | . Q        |    |     |      |   |   |
| 17. 33<br>17. 46 | 1. 3126<br>1. 3245 | 1. 12<br>1. 06  | . Q<br>. Q |    |     |      |   |   |
| 17. 59           | 1. 3245            | 1. 00           | . Q        | :  |     |      |   |   |
| 17. 73<br>17. 86 | 1. 3467<br>1. 3571 | 0. 96           | . Q        |    |     |      |   |   |
| 17. 99           | 1. 3670            | 0. 93<br>0. 89  | . Q<br>. Q |    |     |      |   |   |
| 18. 13<br>18. 26 | 1. 3757<br>1. 3829 | 0. 69<br>0. 62  | . Q<br>. Q |    |     |      |   |   |
| 18. 39           | 1. 3896            | 0.60            | . Q<br>. Q |    |     |      |   |   |
| 18. 52<br>18. 66 | 1. 3961<br>1. 4023 | 0. 58<br>0. 56  | . Q<br>. Q |    |     |      |   |   |
| 18. 79           | 1. 4023            | 0. 54           | . Q<br>. Q |    |     |      |   |   |
| 18. 92<br>19. 06 | 1. 4142<br>1. 4199 | 0. 53<br>0. 51  | . Q<br>. Q |    |     |      |   |   |
| 19. 19           | 1. 4255            | 0. 50           | Q          |    |     |      |   |   |
| 19. 32<br>19. 45 | 1. 4308<br>1. 4361 | 0. 48<br>0. 47  | Q<br>Q     |    |     |      |   | • |
| 19. 59           | 1. 4412            | 0.46            | Q          |    |     |      |   |   |
| 19. 72<br>19. 85 | 1. 4461<br>1. 4510 | 0. 45<br>0. 44  | Q<br>Q     |    |     |      |   | • |
| 19. 98           | 1. 4558            | 0. 43           | Q          |    |     |      |   |   |
| 20. 12<br>20. 25 | 1. 4604<br>1. 4650 | 0. 42<br>0. 41  | Q<br>Q     |    |     |      |   |   |
| 20. 38           | 1. 4695            | 0.40            | Q          |    |     |      |   |   |
| 20. 52<br>20. 65 | 1. 4738<br>1. 4781 | 0. 39<br>0. 39  | Q<br>Q     |    |     |      |   |   |
| 20. 78           | 1. 4823            | 0. 38           | Q          |    |     |      |   |   |
| 20. 91<br>21. 05 | 1. 4865<br>1. 4906 | 0. 37<br>0. 37  | Q<br>Q     |    |     |      |   |   |
| 21. 18           | 1. 4946            | 0. 36           | Q          |    |     |      |   |   |
| 21. 31<br>21. 45 | 1. 4985<br>1. 5024 | 0. 36<br>0. 35  | Q<br>Q     | •  |     |      |   | • |
| 21. 58           | 1. 5062            | 0. 34           | Q          |    |     |      |   |   |
| 21. 71<br>21. 84 | 1. 5099<br>1. 5136 | 0. 34<br>0. 33  | Q<br>Q     |    |     |      |   |   |
| 21. 98           | 1. 5173            | 0. 33           | Q          |    |     |      |   |   |
| 22. 11<br>22. 24 | 1. 5208<br>1. 5244 | 0. 32<br>0. 32  | Q<br>Q     | •  |     |      |   | • |
| 22. 38           | 1. 5279            | 0. 32           | Q          |    |     |      |   |   |
| 22. 51<br>22. 64 | 1. 5313<br>1. 5347 | 0. 31<br>0. 31  | Q<br>Q     | •  |     |      |   |   |
| 22. 77           | 1. 5381            | 0. 30           | Q          |    |     |      |   |   |
| 22. 91<br>23. 04 | 1. 5414<br>1. 5447 | 0. 30<br>0. 30  | Q<br>Q     |    |     |      |   |   |
| 23. 17           | 1. 5479            | 0. 29           | Q          |    |     |      |   |   |
| 23. 31<br>23. 44 | 1. 5511<br>1. 5542 | 0. 29<br>0. 29  | Q<br>Q     | •  |     |      |   |   |
| 23. 57           | 1. 5574            | 0. 28           | Q          |    |     |      |   |   |
| 23. 70<br>23. 84 | 1. 5604<br>1. 5635 | 0. 28<br>0. 28  | Q<br>Q     |    |     |      |   |   |
| 23. 97           | 1. 5665            | 0. 27           | Q          |    |     |      |   |   |
| 24. 10<br>24. 24 | 1. 5695<br>1. 5710 | 0. 27<br>0. 00  | Q<br>Q     | •  |     |      |   |   |
|                  |                    |                 |            |    |     |      |   |   |

### Drainage G

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 1.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 8.11
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.49 0.19

| ******           | ******         | ****** | **** | ***** | ***** | ******* | ***** |
|------------------|----------------|--------|------|-------|-------|---------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF) |        | 0.   | 2. 5  | 5. 0  | 7. 5    | 10. 0 |
| 0. 05            | 0. 0000        | 0. 00  | Q    |       |       |         |       |
| 0. 19            | 0. 0005        | 0. 08  | Q    | i.    |       |         | i.    |
| 0. 32            | 0.0014         | 0. 08  | Q    |       |       |         |       |
| 0. 46            | 0.0024         | 0. 09  | Q    |       |       |         |       |
| 0. 59            | 0.0033         | 0.09   | Q    |       |       |         |       |
| 0. 73            | 0.0043         | 0. 09  | Q    |       |       |         |       |
| 0. 86            | 0. 0052        | 0. 09  | Q    |       |       |         |       |
| 1. 00            | 0.0062         | 0. 09  | Q    |       |       |         |       |
| 1. 13            | 0. 0072        | 0. 09  | Q    |       |       |         |       |
| 1. 27            | 0. 0082        | 0. 09  | Q    |       | •     | •       |       |
| 1. 40            | 0. 0091        | 0. 09  | Q    |       |       |         |       |
| 1. 54            | 0. 0101        | 0. 09  | Q    |       | •     | •       |       |
| 1. 67            | 0. 0111        | 0. 09  | Q    |       |       |         |       |
| 1. 81            | 0. 0121        | 0. 09  | Q    |       |       |         |       |
| 1. 94            | 0. 0131        | 0. 09  | Q    |       |       |         |       |
| 2. 08            | 0. 0142        | 0. 09  | Q    |       |       |         |       |
| 2. 21            | 0. 0152        | 0. 09  | Q    |       |       |         |       |
| 2. 35            | 0. 0162        | 0. 09  | Q    |       |       |         |       |
| 2. 48            | 0. 0172        | 0. 09  | Q    |       |       |         |       |
| 2. 62            | 0. 0183        | 0. 09  | Q    |       |       |         |       |
| 2. 75            | 0. 0193        | 0. 09  | Q    |       | •     | •       |       |
| 2. 89            | 0. 0204        | 0. 09  | Q    |       | •     | •       |       |
| 3. 02            | 0. 0214        | 0. 10  | Q    |       | •     | •       |       |
| 3. 16            | 0. 0225        | 0. 10  | Q    |       |       |         |       |
| 3. 29            | 0. 0236        | 0. 10  | Q    |       |       |         |       |
| 3. 43            | 0. 0247        | 0. 10  | Q    | •     |       | •       | •     |
| 3. 56            | 0. 0258        | 0. 10  | Q    |       |       | •       |       |
| 3. 70            | 0. 0269        | 0. 10  | Q    |       | •     | •       | •     |
| 3. 84            | 0. 0280        | 0. 10  | Q    |       |       |         |       |
| 3. 97            | 0. 0291        | 0. 10  | Q    |       |       |         |       |

Page 1

|                  |                    |                |            |   | V005 0 |   |   |
|------------------|--------------------|----------------|------------|---|--------|---|---|
| 4. 11            | 0. 0302            | 0. 10          | Q          |   | X025_G |   |   |
| 4. 24            | 0. 0313            | 0. 10          | Q          |   |        |   |   |
| 4. 38<br>4. 51   | 0. 0325<br>0. 0336 | 0. 10<br>0. 10 | Q<br>Q     |   |        | • |   |
| 4. 65            | 0. 0336            | 0. 10          | Q          |   |        |   |   |
| 4. 78            | 0. 0359            | 0. 10          | Q          |   |        | • |   |
| 4. 92<br>5. 05   | 0. 0371<br>0. 0383 | 0. 11<br>0. 11 | Q          |   |        | • | ٠ |
| 5. 05<br>5. 19   | 0. 0395            | 0. 11          | Q<br>Q     |   | •      |   | : |
| 5. 32            | 0. 0407            | 0. 11          | Q          |   |        | • |   |
| 5. 46<br>5. 59   | 0. 0419<br>0. 0431 | 0. 11<br>0. 11 | Q<br>Q     |   |        | • | ٠ |
| 5. 73            | 0. 0443            | 0. 11          | Q          |   |        |   |   |
| 5. 86            | 0. 0456            | 0. 11          | Q          |   |        | • |   |
| 6. 00<br>6. 13   | 0. 0468<br>0. 0481 | 0. 11<br>0. 11 | Q<br>Q     |   |        |   |   |
| 6. 27            | 0. 0493            | 0. 11          | Q          |   | •      |   |   |
| 6. 40            | 0. 0506            | 0. 12          | Q          |   |        |   |   |
| 6. 54<br>6. 67   | 0. 0519<br>0. 0532 | 0. 12<br>0. 12 | Q<br>Q     | • | •      | • | ٠ |
| 6. 81            | 0. 0545            | 0. 12          | Q          |   | •      |   |   |
| 6. 94            | 0. 0559            | 0. 12          | Q          |   |        |   |   |
| 7. 08<br>7. 21   | 0. 0572<br>0. 0586 | 0. 12<br>0. 12 | Q<br>Q     | • | •      | • | ٠ |
| 7. 35            | 0. 0599            | 0. 12          | Q          |   | •      |   | : |
| 7. 48            | 0. 0613            | 0. 12          | Q          |   |        |   |   |
| 7. 62<br>7. 75   | 0. 0627<br>0. 0641 | 0. 13<br>0. 13 | Q<br>Q     | • | •      | • | ٠ |
| 7. 73<br>7. 89   | 0. 0655            | 0. 13          | Q          |   |        |   |   |
| 8. 03            | 0.0670             | 0. 13          | Q          |   | •      | • |   |
| 8. 16<br>8. 30   | 0. 0684<br>0. 0699 | 0. 13<br>0. 13 | Q<br>Q     | • | •      | • | • |
| 8. 43            | 0. 0714            | 0. 13          | Q          |   |        |   |   |
| 8. 57            | 0. 0729            | 0. 14          | Q          | • | •      | • |   |
| 8. 70<br>8. 84   | 0. 0744<br>0. 0759 | 0. 14<br>0. 14 | Q<br>Q     | • | •      | • | • |
| 8. 97            | 0. 0775            | 0. 14          | Q          |   |        |   |   |
| 9. 11            | 0. 0791            | 0.14           | Q          |   |        | • |   |
| 9. 24<br>9. 38   | 0. 0807<br>0. 0823 | 0. 14<br>0. 15 | Q<br>Q     |   |        | • | • |
| 9. 51            | 0. 0839            | 0. 15          | Q          |   | •      | • |   |
| 9. 65<br>9. 78   | 0. 0856<br>0. 0873 | 0. 15<br>0. 15 | Q<br>Q     |   |        | • | ٠ |
| 9. 76<br>9. 92   | 0. 0873            | 0. 15          | Q          |   |        |   |   |
| 10. 05           | 0. 0907            | 0. 16          | Q          |   |        |   |   |
| 10. 19<br>10. 32 | 0. 0924<br>0. 0942 | 0. 16<br>0. 16 | Q<br>Q     | • | •      | • | • |
| 10. 46           | 0. 0960            | 0. 16          | Q          |   | •      |   | : |
| 10. 59           | 0. 0978            | 0. 16          | Q          |   |        |   |   |
| 10. 73<br>10. 86 | 0. 0997<br>0. 1016 | 0. 17<br>0. 17 | Q<br>Q     | • | •      | • | • |
| 11.00            | 0. 1035            | 0. 17          | Q          |   |        |   |   |
| 11. 13           | 0. 1055            | 0. 18          | Q          |   | •      | • |   |
| 11. 27<br>11. 40 | 0. 1074<br>0. 1095 | 0. 18<br>0. 18 | Q<br>Q     | • | •      | • | • |
| 11. 54           | 0. 1115            | 0. 19          | Q          |   |        |   |   |
| 11. 67           | 0. 1136            | 0. 19          | Q          |   |        | • |   |
| 11. 81<br>11. 95 | 0. 1158<br>0. 1179 | 0. 19<br>0. 20 | Q<br>Q     |   | •      |   | : |
| 12.08            | 0. 1203            | 0. 23          | Q          |   |        | • |   |
| 12. 22           | 0. 1231<br>0. 1262 | 0. 27          | . Q        |   |        | • |   |
| 12. 35<br>12. 49 | 0. 1202            | 0. 28<br>0. 28 | . Q<br>. Q |   | •      |   | : |
| 12. 62           | 0. 1325            | 0. 29          | . Q        |   | •      |   |   |
| 12. 76<br>12. 89 | 0. 1357            | 0. 29          | . Q        |   |        | • |   |
| 13. 03           | 0. 1390<br>0. 1424 | 0. 30<br>0. 31 | . Q<br>. Q | • | •      | • | • |
| 13. 16           | 0. 1459            | 0.32           | . Q        |   |        |   |   |
| 13. 30           | 0. 1494<br>0. 1531 | 0. 32          | . Q        |   |        | • | ٠ |
| 13. 43<br>13. 57 | 0. 1531<br>0. 1568 | 0. 33<br>0. 34 | . Q<br>. Q |   |        |   |   |
| 13. 70           | 0. 1607            | 0. 35          | . Q        |   | •      | • |   |
| 13. 84           | 0. 1646            | 0.36           | . Q        |   |        | • |   |
| 13. 97<br>14. 11 | 0. 1687<br>0. 1729 | 0. 37<br>0. 38 | . Q<br>. Q |   |        |   |   |
| 14. 24           | 0. 1772            | 0.40           | . Q        |   | •      | • |   |
| 14. 38           | 0. 1817            | 0.41           | . Q        |   |        | • |   |
| 14. 51<br>14. 65 | 0. 1864<br>0. 1914 | 0. 44<br>0. 45 | . Q<br>. Q |   |        |   | • |
|                  |                    |                |            |   |        |   | • |

|                  |                    |                |               | XC | )25_G |       |   |
|------------------|--------------------|----------------|---------------|----|-------|-------|---|
| 14. 78<br>14. 92 | 0. 1966<br>0. 2023 | 0. 49<br>0. 52 | . Q<br>.    Q |    |       | •     | • |
| 15. 05           | 0. 2084            | 0. 57          | . Q           |    |       |       |   |
| 15. 19           | 0. 2150            | 0. 61          | . Q           |    |       |       |   |
| 15. 32<br>15. 46 | 0. 2223<br>0. 2301 | 0. 70<br>0. 70 | . Q<br>. Q    | •  |       | •     | • |
| 15. 59           | 0. 2382            | 0. 77          | . Q           |    |       |       |   |
| 15. 73           | 0. 2474            | 0.88           | . Q           |    |       | •     |   |
| 15. 86<br>16. 00 | 0. 2602<br>0. 2789 | 1. 41<br>1. 94 | . Q<br>. Q    |    |       | •     | • |
| 16. 14           | 0. 3221            | 5. 78          |               |    | . Q   |       |   |
| 16. 27           | 0. 3606            | 1. 11          | . Q           |    |       |       |   |
| 16. 41<br>16. 54 | 0. 3706<br>0. 3780 | 0. 68<br>0. 65 | . Q<br>. Q    |    | •     | •     | • |
| 16. 68           | 0. 3847            | 0. 54          | . Q           |    |       |       |   |
| 16. 81           | 0. 3903            | 0. 47          | . Q           |    |       | •     |   |
| 16. 95<br>17. 08 | 0. 3953<br>0. 3998 | 0. 42<br>0. 39 | . Q<br>. Q    |    | •     | •     | • |
| 17. 22           | 0. 4040            | 0. 36          | . Q           |    |       |       |   |
| 17. 35           | 0. 4080            | 0. 34          | . Q           |    |       | •     |   |
| 17. 49<br>17. 62 | 0. 4117<br>0. 4153 | 0. 33<br>0. 31 | . Q<br>. Q    |    |       | •     |   |
| 17. 76           | 0. 4186            | 0.30           | . Q           |    |       |       |   |
| 17. 89<br>18. 03 | 0. 4219            | 0. 28          | . Q           |    |       | •     |   |
| 18. 16           | 0. 4250<br>0. 4277 | 0. 27<br>0. 20 | . Q<br>Q      |    |       |       |   |
| 18. 30           | 0. 4298            | 0. 19          | Q             |    |       |       |   |
| 18. 43<br>18. 57 | 0. 4319<br>0. 4340 | 0. 18<br>0. 18 | Q<br>Q        |    |       | •     |   |
| 18. 70           | 0. 4359            | 0. 17          | Q             |    |       |       |   |
| 18. 84           | 0. 4378            | 0. 17          | Q             |    |       | •     |   |
| 18. 97<br>19. 11 | 0. 4396<br>0. 4414 | 0. 16<br>0. 16 | Q<br>Q        | •  |       | •     | • |
| 19. 24           | 0. 4431            | 0. 15          | Q             |    |       |       |   |
| 19. 38           | 0. 4448            | 0. 15          | Q             |    |       | •     |   |
| 19. 51<br>19. 65 | 0. 4465<br>0. 4480 | 0. 14<br>0. 14 | Q<br>Q        |    |       | •     | • |
| 19. 78           | 0. 4496            | 0. 14          | Q             |    |       |       |   |
| 19. 92<br>20. 06 | 0. 4511<br>0. 4526 | 0. 13<br>0. 13 | Q<br>Q        |    | •     | •     | • |
| 20. 19           | 0. 4541            | 0. 13          | Q             |    |       |       |   |
| 20. 33           | 0. 4555            | 0. 13          | Q             |    |       | •     |   |
| 20. 46<br>20. 60 | 0. 4569<br>0. 4583 | 0. 12<br>0. 12 | Q<br>Q        |    |       |       |   |
| 20. 73           | 0. 4596            | 0. 12          | Q             |    |       |       |   |
| 20. 87<br>21. 00 | 0. 4609<br>0. 4622 | 0. 12<br>0. 11 | Q<br>Q        | •  |       | •     | • |
| 21. 14           | 0. 4635            | 0. 11          | Q             |    |       |       |   |
| 21. 27<br>21. 41 | 0. 4647<br>0. 4660 | 0. 11<br>0. 11 | Q<br>Q        |    |       | •     |   |
| 21. 54           | 0. 4672            | 0. 11          | Q             |    |       |       |   |
| 21. 68           | 0. 4684            | 0. 11          | Q             |    |       |       |   |
| 21. 81<br>21. 95 | 0. 4695<br>0. 4707 | 0. 10<br>0. 10 | Q<br>Q        |    |       | •     | • |
| 22.08            | 0. 4718            | 0. 10          | Q             |    |       |       |   |
| 22. 22<br>22. 35 | 0. 4729<br>0. 4740 | 0. 10<br>0. 10 | Q<br>Q        | •  | •     | •     | • |
| 22. 49           | 0. 4751            | 0. 10          | Q             |    |       |       |   |
| 22. 62           | 0. 4762            | 0. 10          | Q             |    |       | •     |   |
| 22. 76<br>22. 89 | 0. 4773<br>0. 4783 | 0. 09<br>0. 09 | Q<br>Q        |    |       |       |   |
| 23. 03           | 0. 4793            | 0.09           | Q             |    |       |       |   |
| 23. 16<br>23. 30 | 0. 4804            | 0.09           | Q             |    |       |       |   |
| 23. 30<br>23. 43 | 0. 4814<br>0. 4824 | 0. 09<br>0. 09 | Q<br>Q        |    |       |       |   |
| 23. 57           | 0. 4834            | 0.09           | Q             |    |       |       |   |
| 23. 70<br>23. 84 | 0. 4843<br>0. 4853 | 0. 09<br>0. 09 | Q<br>Q        |    |       | •     | • |
| 23. 97           | 0. 4863            | 0. 08          | Q             |    |       | •     |   |
| 24. 11           | 0. 4872            | 0.08           | Q             |    |       |       |   |
| 24. 25           | 0. 4877            | 0. 00<br>      | Q<br>         |    |       | ·<br> |   |

### Drainage H

### NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 7.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 8.31
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1. 90 0.72

| *****          | *****                                                                                                                                                                                                                                                       | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ******                                                                                                                                                                                                                                                                        | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *****               |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| VOLUME<br>(AF) | Q<br>(CFS)                                                                                                                                                                                                                                                  | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15. 0                                                                                                                                                                                                                                                                         | 22. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30. 0               |
| 0. 0010        | 0. 33                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 0047        | 0. 33                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0.0085         | 0. 33                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 0123        | 0. 33                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 0161        | 0. 33                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 0199        |                                                                                                                                                                                                                                                             | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
|                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                   |
| 0. 0928        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                 |
| 0. 0971        |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 1015        | 0. 38                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 1058        | 0. 38                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 1102        | 0. 39                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 1146        | 0. 39                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 0. 1191        | 0. 39                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                | VOLUME (AF) 0. 0010 0. 0047 0. 0085 0. 0123 0. 0161 0. 0199 0. 0237 0. 0276 0. 0315 0. 0354 0. 0393 0. 0433 0. 0473 0. 0513 0. 0553 0. 0594 0. 0635 0. 0676 0. 0717 0. 0759 0. 0801 0. 0843 0. 0843 0. 0885 0. 0928 0. 0971 0. 1015 0. 1058 0. 1102 0. 1146 | VOLUME<br>(AF)         Q<br>(CFS)           0. 0010         0. 33           0. 0047         0. 33           0. 00485         0. 33           0. 0123         0. 33           0. 0161         0. 33           0. 0199         0. 34           0. 0237         0. 34           0. 0315         0. 34           0. 0354         0. 34           0. 0393         0. 35           0. 0473         0. 35           0. 0513         0. 35           0. 0513         0. 35           0. 0553         0. 35           0. 0553         0. 36           0. 0635         0. 36           0. 0717         0. 36           0. 0759         0. 36           0. 0801         0. 37           0. 0843         0. 37           0. 0885         0. 37           0. 0928         0. 37           0. 0928         0. 37           0. 1015         0. 38           0. 1102         0. 39           0. 1104         0. 39 | VOLUME<br>(AF)         Q<br>(CFS)           0. 0010         0. 33         Q<br>0. 0047           0. 33         Q<br>0. 0085         0. 33         Q<br>0. 0123           0. 0123         0. 33         Q<br>0. 0199         0. 33         Q<br>0. 0237           0. 0237         0. 34         Q<br>0. 0315         0. 34         Q<br>0. 0354         0. 34         Q<br>0. 0354         0. 34         Q<br>0. 0354         0. 34         Q<br>0. 0353         0. 35         Q<br>0. 0473         0. 35         Q<br>0. 05513         0. 35         Q<br>0. 0553         0. 35         Q<br>0. 0635         0. 36         Q<br>0. 0635         0. 36         Q<br>0. 0717         0. 36         Q<br>0. 07759         0. 36         Q<br>0. 0801         0. 37         Q<br>0. 0843         0. 37         Q<br>0. 0928         0. 37         Q<br>0. 0928         0. 37         Q<br>0. 0971         0. 38         Q<br>0. 1015         0. 38         Q<br>0. 1102         0. 39         Q<br>0. 1146         0. 39         Q | VOLUME (AF)         Q O. (CFS)         7. 5           0. 0010         0. 33 Q O. 0. 0047         0. 33 Q O. 0. 0085         0. 33 Q O. 0. 0. 0085         0. 33 Q O. 0. 0. 0. 0085         0. 33 Q O. 0. 0. 0. 0085         0. 33 Q O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | VOLUME (AF)         Q (CFS)         7. 5         15. 0           0. 0010         0. 33 Q             0. 0047         0. 33 Q             0. 0085         0. 33 Q             0. 0123         0. 33 Q             0. 0161         0. 33 Q             0. 0199         0. 33 Q             0. 0237         0. 34 Q             0. 0276         0. 34 Q             0. 0354         0. 34 Q             0. 0354         0. 34 Q             0. 0433         0. 35 Q             0. 0473         0. 35 Q             0. 0513         0. 35 Q             0. 0553         0. 35 Q             0. 0594         0. 36 Q             0. 0717         0. 36 Q             0. 0843         0. 37 Q             0. 0885 | (AF) (CFS)  0. 0010 |

Page 1

|                  |                    |                |            |   | X025_H |   |   |
|------------------|--------------------|----------------|------------|---|--------|---|---|
| 4. 23            | 0. 1236            | 0.39           | Q          |   |        |   |   |
| 4. 37<br>4. 50   | 0. 1281<br>0. 1327 | 0. 40<br>0. 40 | Q<br>Q     |   | ·<br>· |   |   |
| 4. 64<br>4. 78   | 0. 1373<br>0. 1419 | 0. 40<br>0. 41 | Q<br>Q     |   |        |   |   |
| 4. 92            | 0. 1466            | 0. 41          | Q          |   | ·      |   |   |
| 5. 06<br>5. 20   | 0. 1513<br>0. 1560 | 0. 41<br>0. 42 | Q<br>Q     | • |        | • | • |
| 5. 34            | 0. 1608            | 0. 42          | Q          |   |        |   |   |
| 5. 47<br>5. 61   | 0. 1656<br>0. 1705 | 0. 42<br>0. 43 | Q<br>Q     |   |        |   |   |
| 5. 75            | 0. 1754            | 0.43           | Q          |   |        |   |   |
| 5. 89<br>6. 03   | 0. 1803<br>0. 1853 | 0. 43<br>0. 44 | Q<br>Q     |   | •      |   |   |
| 6. 17<br>6. 30   | 0. 1904            | 0.44           | Q          |   |        |   |   |
| 6. 44            | 0. 1954<br>0. 2005 | 0. 44<br>0. 45 | Q<br>Q     |   | •      |   |   |
| 6. 58<br>6. 72   | 0. 2057<br>0. 2109 | 0. 45<br>0. 46 | Q<br>Q     |   |        | • |   |
| 6. 86            | 0. 2162            | 0. 46          | Q          |   |        |   |   |
| 7. 00<br>7. 14   | 0. 2215<br>0. 2269 | 0. 47<br>0. 47 | Q<br>Q     |   |        |   |   |
| 7. 27            | 0. 2323            | 0. 48          | Q          |   | · ·    |   |   |
| 7. 41<br>7. 55   | 0. 2378<br>0. 2433 | 0. 48<br>0. 49 | Q<br>Q     |   |        | • |   |
| 7. 69            | 0. 2489            | 0. 49          | Q          |   | ·      |   |   |
| 7. 83<br>7. 97   | 0. 2545<br>0. 2602 | 0. 50<br>0. 50 | Q<br>Q     | • |        |   |   |
| 8. 11            | 0. 2660            | 0. 51          | Q          |   |        | • |   |
| 8. 24<br>8. 38   | 0. 2718<br>0. 2777 | 0. 51<br>0. 52 | Q<br>Q     |   |        |   |   |
| 8. 52            | 0. 2837            | 0. 52<br>0. 53 | Q          |   |        |   |   |
| 8. 66<br>8. 80   | 0. 2897<br>0. 2958 | 0. 53          | Q<br>Q     |   | ·<br>· |   |   |
| 8. 94<br>9. 07   | 0. 3020<br>0. 3082 | 0. 54<br>0. 55 | Q<br>Q     |   |        |   |   |
| 9. 21            | 0. 3146            | 0. 56          | Q          |   | ·      |   |   |
| 9. 35<br>9. 49   | 0. 3210<br>0. 3275 | 0. 56<br>0. 57 | Q<br>Q     | • | •      | • | • |
| 9. 63            | 0. 3341            | 0. 58          | Q          | • | ·<br>· |   |   |
| 9. 77<br>9. 91   | 0. 3408<br>0. 3475 | 0. 59<br>0. 59 | Q<br>Q     |   |        |   |   |
| 10. 04<br>10. 18 | 0. 3544<br>0. 3614 | 0. 61<br>0. 61 | Q          |   |        |   |   |
| 10. 16           | 0. 3684            | 0. 62          | Q<br>Q     |   |        |   |   |
| 10. 46<br>10. 60 | 0. 3756<br>0. 3829 | 0. 63<br>0. 64 | Q<br>Q     |   |        |   |   |
| 10. 74           | 0. 3903            | 0. 65          | Q          |   | ·      |   |   |
| 10. 88<br>11. 01 | 0. 3978<br>0. 4055 | 0. 67<br>0. 67 | Q<br>Q     | • |        | • | • |
| 11. 15           | 0. 4133            | 0. 69          | Q          |   |        | • |   |
| 11. 29<br>11. 43 | 0. 4212<br>0. 4293 | 0. 70<br>0. 71 | Q<br>Q     |   |        |   |   |
| 11. 57           | 0. 4375            | 0. 72          | Q          |   |        |   |   |
| 11. 71<br>11. 85 | 0. 4459<br>0. 4545 | 0. 74<br>0. 75 | Q<br>. Q   |   | ·<br>· |   |   |
| 11. 98<br>12. 12 | 0. 4632<br>0. 4726 | 0. 77<br>0. 87 | . Q<br>. Q |   |        |   |   |
| 12. 26           | 0. 4837            | 1. 07          | . Q<br>. Q |   |        |   |   |
| 12. 40<br>12. 54 | 0. 4960<br>0. 5085 | 1. 08<br>1. 11 | . Q<br>. Q |   | •      |   | • |
| 12. 68           | 0. 5213            | 1. 12          | . Q        |   |        |   |   |
| 12. 81<br>12. 95 | 0. 5343<br>0. 5477 | 1. 16<br>1. 17 | . Q<br>. Q | • | ·      | • |   |
| 13. 09           | 0. 5613            | 1. 21          | . Q        | • | ·<br>· |   |   |
| 13. 23<br>13. 37 | 0. 5753<br>0. 5896 | 1. 23<br>1. 27 | . Q<br>. Q |   |        |   |   |
| 13. 51           | 0. 6043            | 1. 30          | . Q        |   |        |   |   |
| 13. 65<br>13. 78 | 0. 6194<br>0. 6349 | 1. 35<br>1. 37 | . Q<br>. Q |   |        |   |   |
| 13. 92           | 0. 6510            | 1. 43          | . Q        |   |        | • |   |
| 14. 06<br>14. 20 | 0. 6676<br>0. 6846 | 1. 46<br>1. 52 | . Q<br>. Q |   |        |   |   |
| 14. 34<br>14. 48 | 0. 7022<br>0. 7207 | 1. 56<br>1. 66 | . Q<br>. Q |   |        |   |   |
| 14. 62           | 0. 7401            | 1. 73          | . Q        |   |        |   |   |
| 14. 75<br>14. 89 | 0. 7608<br>0. 7830 | 1. 89<br>1. 98 | . Q<br>. Q |   |        |   |   |
| 15. 03           | 0. 8069            | 2. 20          | . Q        |   |        |   |   |
|                  |                    |                |            |   | Page 2 |   |   |

|                  |                    |                |            |     | X025_H |    |   |
|------------------|--------------------|----------------|------------|-----|--------|----|---|
| 15. 17<br>15. 31 | 0. 8328<br>0. 8614 | 2. 33<br>2. 66 | . Q<br>. Q | •   | •      | •  | • |
| 15. 45           | 0. 8925            | 2. 76          | . Q        |     |        |    |   |
| 15. 58           | 0. 9250            | 2. 93          | . 0        | •   | •      | •  |   |
| 15. 72<br>15. 86 | 0. 9611<br>1. 0112 | 3. 37<br>5. 38 | . Q        | Q . | •      | •  | • |
| 16.00            | 1. 0847            | 7. 45          |            | Q.  | •      |    | • |
| 16. 14<br>16. 28 | 1. 2542            | 22. 18         |            |     | •      | Q. |   |
| 16. 42           | 1. 4053<br>1. 4443 | 4. 22<br>2. 60 | . Q        |     |        |    |   |
| 16. 55           | 1. 4734            | 2. 48          | . Q        |     |        |    |   |
| 16. 69<br>16. 83 | 1. 4996<br>1. 5218 | 2. 08<br>1. 81 | . Q<br>. Q |     | •      | •  | • |
| 16. 97           | 1. 5414            | 1. 60          | . Q        |     | •      | •  | • |
| 17. 11           | 1. 5590            | 1. 49          | . Q        |     | •      | •  | • |
| 17. 25<br>17. 39 | 1. 5756<br>1. 5911 | 1. 40<br>1. 32 | . Q<br>. Q | •   | •      | •  | • |
| 17. 52           | 1. 6058            | 1. 25          | . Q        |     |        |    |   |
| 17. 66<br>17. 80 | 1. 6198<br>1. 6331 | 1. 19<br>1. 14 | . Q<br>. Q |     |        |    |   |
| 17. 80           | 1. 6459            | 1. 14          | . Q<br>. Q |     |        |    |   |
| 18. 08           | 1. 6582            | 1. 05          | . Q        |     |        |    |   |
| 18. 22<br>18. 35 | 1. 6686<br>1. 6772 | 0. 76<br>0. 73 | . Q<br>Q   | •   | •      | •  | • |
| 18. 49           | 1. 6854            | 0. 73          | Q          | •   | •      | •  | • |
| 18. 63           | 1. 6934            | 0.68           | Q          |     | •      |    | • |
| 18. 77<br>18. 91 | 1. 7010<br>1. 7084 | 0. 66<br>0. 64 | Q<br>Q     | •   | •      | •  | • |
| 19. 05           | 1. 7156            | 0. 62          | Q          | •   |        |    |   |
| 19. 19<br>19. 32 | 1. 7226            | 0.60           | Q          |     | •      |    |   |
| 19. 32<br>19. 46 | 1. 7293<br>1. 7359 | 0. 58<br>0. 57 | Q<br>Q     |     |        | •  | • |
| 19. 60           | 1. 7423            | 0. 55          | Q          |     |        |    |   |
| 19. 74<br>19. 88 | 1. 7486<br>1. 7547 | 0. 54<br>0. 53 | Q<br>Q     | •   | •      | •  | • |
| 20. 02           | 1. 7607            | 0. 53          | Q          | •   | •      | •  | • |
| 20. 16           | 1. 7665            | 0.50           | Q          |     |        |    |   |
| 20. 29<br>20. 43 | 1. 7722<br>1. 7778 | 0. 49<br>0. 48 | Q<br>Q     | •   | •      | •  | • |
| 20. 57           | 1. 7833            | 0. 47          | Q          |     |        |    |   |
| 20. 71           | 1. 7886            | 0.46           | Q          | •   | •      | •  |   |
| 20. 85<br>20. 99 | 1. 7939<br>1. 7991 | 0. 46<br>0. 45 | Q<br>Q     | •   |        |    |   |
| 21. 12           | 1. 8041            | 0.44           | Q          |     | •      | •  | • |
| 21. 26<br>21. 40 | 1. 8091<br>1. 8140 | 0. 43<br>0. 42 | Q          | •   |        |    |   |
| 21. 40           | 1. 8188            | 0. 42          | Q<br>Q     |     | •      |    | • |
| 21. 68           | 1. 8236            | 0. 41          | Q          |     |        |    |   |
| 21. 82<br>21. 96 | 1. 8283<br>1. 8328 | 0. 40<br>0. 40 | Q<br>Q     | •   | •      | •  | • |
| 22.09            | 1. 8374            | 0. 39          | Q          |     |        |    |   |
| 22. 23           | 1. 8418            | 0. 39          | Q          |     | •      | •  | • |
| 22. 37<br>22. 51 | 1. 8462<br>1. 8506 | 0. 38<br>0. 38 | Q<br>Q     | •   | •      | •  | • |
| 22. 65           | 1. 8548            | 0. 37          | Q          | •   |        |    |   |
| 22. 79           | 1. 8591            | 0. 37          | Q          | •   | •      | •  |   |
| 22. 92<br>23. 06 | 1. 8632<br>1. 8673 | 0. 36<br>0. 36 | Q<br>Q     | •   |        |    |   |
| 23. 20           | 1. 8714            | 0. 35          | Q          |     | •      | •  | • |
| 23. 34<br>23. 48 | 1. 8754<br>1. 8704 | 0. 35<br>0. 34 | Q          |     | •      |    |   |
| 23. 48           | 1. 8794<br>1. 8833 | 0. 34          | Q<br>Q     |     | •      | •  | • |
| 23. 76           | 1. 8872            | 0. 34          | Q          |     |        |    |   |
| 23. 89<br>24. 03 | 1. 8910<br>1. 8948 | 0. 33<br>0. 33 | Q<br>Q     | •   | •      |    | • |
| 24. 03           | 1. 8966            | 0. 33          | Q          |     |        | •  |   |
|                  |                    |                |            |     |        |    |   |

### Drainage I

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 1.10
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION(MIN.) = 9.62
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.30 0.11

| *****            | *****              | ****           | ***    | *****  | *****  | ***** | ***** |
|------------------|--------------------|----------------|--------|--------|--------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 2. 5   | 5.0    | 7. 5  | 10. 0 |
| 0. 13<br>0. 29   | 0. 0003<br>0. 0010 | 0. 05<br>0. 05 | Q<br>Q | ·<br>· |        |       |       |
| 0. 45            | 0. 0016            | 0. 05          | Q      |        |        |       |       |
| 0. 61<br>0. 77   | 0. 0023<br>0. 0030 | 0. 05<br>0. 05 | Q<br>Q | •      | •      | •     | •     |
| 0. 93            | 0. 0037            | 0. 05          | Q      |        |        |       |       |
| 1. 09            | 0. 0044            | 0.05           | Q      |        |        |       | •     |
| 1. 25<br>1. 41   | 0. 0051<br>0. 0058 | 0. 05<br>0. 05 | Q<br>Q | •      | •      | •     | •     |
| 1. 57            | 0. 0066            | 0. 05          | Q      |        | ÷.     |       |       |
| 1. 73            | 0. 0073            | 0.05           | Q      | •      |        | •     | •     |
| 1. 89<br>2. 05   | 0. 0080<br>0. 0088 | 0. 06<br>0. 06 | Q<br>Q | •      | •      | •     | •     |
| 2. 21            | 0.0095             | 0.06           | Q      |        |        | •     | •     |
| 2. 37<br>2. 53   | 0. 0102<br>0. 0110 | 0. 06<br>0. 06 | Q<br>Q |        |        |       |       |
| 2. 69            | 0. 0117            | 0. 06          | Q      | •      |        | •     | •     |
| 2. 85            | 0. 0125            | 0.06           | Q      |        |        |       |       |
| 3. 01<br>3. 17   | 0. 0133<br>0. 0140 | 0. 06<br>0. 06 | Q<br>Q | •      |        | •     | •     |
| 3. 33            | 0. 0148            | 0.06           | Q      |        |        |       |       |
| 3. 49<br>3. 65   | 0. 0156<br>0. 0164 | 0. 06<br>0. 06 | Q      | •      |        | •     | •     |
| 3. 81            | 0. 0164            | 0. 06          | Q<br>Q | •      | :      |       | •     |
| 3. 98            | 0. 0180            | 0.06           | Q      |        |        |       |       |
| 4. 14<br>4. 30   | 0. 0188<br>0. 0196 | 0. 06<br>0. 06 | Q<br>Q | •      | •      | •     | •     |
| 4. 46            | 0. 0205            | 0. 06          | Q      |        |        |       |       |
| 4. 62            | 0. 0213            | 0.06           | Q      |        |        |       |       |
| 4. 78            | 0. 0221            | 0. 06          | Q      | •      | Dana 1 | •     | •     |

Page 1

|                  |                    |                |            |   | V/ | 205 1 |   |   |
|------------------|--------------------|----------------|------------|---|----|-------|---|---|
| 4. 94            | 0. 0230            | 0. 06          | Q          |   | Х  | 025_I |   |   |
| 5. 10            | 0. 0238            | 0.06           | Q          |   |    |       |   |   |
| 5. 26<br>5. 42   | 0. 0247<br>0. 0256 | 0. 07<br>0. 07 | Q<br>Q     |   |    |       |   | • |
| 5. 58            | 0. 0265            | 0. 07          | Q          |   |    |       | • |   |
| 5. 74<br>5. 90   | 0. 0274<br>0. 0283 | 0. 07<br>0. 07 | Q<br>Q     | • |    | •     | • | • |
| 6. 06            | 0. 0203            | 0. 07          | Q          |   |    |       | • |   |
| 6. 22            | 0. 0301            | 0.07           | Q          |   |    |       |   |   |
| 6. 38<br>6. 54   | 0. 0310<br>0. 0319 | 0. 07<br>0. 07 | Q<br>Q     | • |    | •     | • | ٠ |
| 6. 70            | 0. 0317            | 0. 07          | Q          |   |    |       |   |   |
| 6. 86            | 0. 0338<br>0. 0348 | 0. 07<br>0. 07 | Q          |   |    |       | • |   |
| 7. 02<br>7. 18   | 0. 0348            | 0. 07          | Q<br>Q     |   |    |       |   |   |
| 7. 34            | 0. 0368            | 0. 07          | Q          |   |    |       |   |   |
| 7. 50<br>7. 66   | 0. 0378<br>0. 0388 | 0. 08<br>0. 08 | Q<br>Q     | • |    | •     | • | ٠ |
| 7. 82            | 0. 0398            | 0. 08          | Q          |   |    |       |   |   |
| 7. 98            | 0. 0408            | 0.08           | Q          |   |    |       | • |   |
| 8. 14<br>8. 30   | 0. 0419<br>0. 0430 | 0. 08<br>0. 08 | Q<br>Q     |   |    |       |   | • |
| 8. 46            | 0.0440             | 0.08           | Q          |   |    |       |   |   |
| 8. 62<br>8. 78   | 0. 0451<br>0. 0462 | 0. 08<br>0. 08 | Q<br>Q     | • |    | •     | • | • |
| 8. 95            | 0. 0474            | 0. 00          | Q          |   |    |       |   |   |
| 9. 11            | 0. 0485            | 0.09           | Q          |   |    |       | • |   |
| 9. 27<br>9. 43   | 0. 0496<br>0. 0508 | 0. 09<br>0. 09 | Q<br>Q     | • |    | •     | • | ٠ |
| 9. 59            | 0.0520             | 0. 09          | Q          |   |    |       | • |   |
| 9. 75<br>9. 91   | 0. 0532<br>0. 0544 | 0. 09<br>0. 09 | Q<br>Q     | • |    | •     | • | • |
| 10. 07           | 0. 0557            | 0. 09          | Q          |   |    |       |   |   |
| 10. 23           | 0. 0570            | 0. 10          | Q          |   |    |       | • |   |
| 10. 39<br>10. 55 | 0. 0583<br>0. 0596 | 0. 10<br>0. 10 | Q<br>Q     |   |    |       |   | • |
| 10. 71           | 0.0609             | 0. 10          | Q          |   |    |       |   |   |
| 10. 87<br>11. 03 | 0. 0623<br>0. 0637 | 0. 10<br>0. 11 | Q<br>Q     |   |    | •     | • | ٠ |
| 11. 19           | 0. 0651            | 0. 11          | Q          |   |    |       |   |   |
| 11. 35           | 0. 0665            | 0. 11          | Q          |   |    |       | • |   |
| 11. 51<br>11. 67 | 0. 0680<br>0. 0695 | 0. 11<br>0. 12 | Q<br>Q     |   |    |       |   |   |
| 11. 83           | 0. 0711            | 0. 12          | Q          |   |    |       |   |   |
| 11. 99<br>12. 15 | 0. 0727<br>0. 0744 | 0. 12<br>0. 14 | Q<br>Q     | • |    | •     | • | • |
| 12. 31           | 0.0764             | 0. 17          | Q          |   |    |       |   |   |
| 12. 47<br>12. 63 | 0. 0787<br>0. 0810 | 0. 17<br>0. 18 | Q<br>Q     |   |    | •     |   | ٠ |
| 12. 03           | 0. 0810            | 0. 18          | Q          |   |    |       |   |   |
| 12. 95           | 0. 0858            | 0. 19          | Q          |   |    |       |   |   |
| 13. 11<br>13. 27 | 0. 0882<br>0. 0908 | 0. 19<br>0. 20 | Q<br>Q     | • |    | •     | • | • |
| 13. 43           | 0.0934             | 0. 20          | Q          |   |    |       |   |   |
| 13. 60<br>13. 76 | 0. 0961<br>0. 0989 | 0. 21<br>0. 21 | Q<br>Q     | • |    | •     | • | ٠ |
| 13. 70           | 0. 1018            | 0. 21          | Q          |   |    |       |   |   |
| 14. 08           | 0. 1048            | 0. 23          | Q          |   |    |       |   |   |
| 14. 24<br>14. 40 | 0. 1079<br>0. 1111 | 0. 24<br>0. 25 | Q<br>Q     | • |    | •     | • | • |
| 14. 56           | 0. 1146            | 0. 27          | . Q        |   |    |       | • |   |
| 14. 72<br>14. 88 | 0. 1182<br>0. 1222 | 0. 28<br>0. 31 | . Q<br>. Q |   |    |       | • | ٠ |
| 15. 04           | 0. 1222            | 0. 31          | . Q<br>. Q |   |    |       |   |   |
| 15. 20           | 0. 1312            | 0. 38          | . Q        |   |    |       |   |   |
| 15. 36<br>15. 52 | 0. 1365<br>0. 1420 | 0. 41<br>0. 42 | . Q<br>. Q |   |    | •     | • | ٠ |
| 15. 68           | 0. 1479            | 0. 42          | . Q        |   |    |       |   |   |
| 15. 84           | 0. 1562            | 0.77           | . 0        |   |    |       | • |   |
| 16. 00<br>16. 16 | 0. 1684<br>0. 1967 | 1. 07<br>3. 20 | . Q        |   | Q  |       | • |   |
| 16. 32           | 0. 2217            | 0. 58          | . Q        |   | •  |       |   |   |
| 16. 48<br>16. 64 | 0. 2284<br>0. 2336 | 0. 43<br>0. 36 | . Q<br>. Q | • |    | •     | • | ٠ |
| 16. 80           | 0. 2379            | 0. 30          | . Q<br>. Q |   |    |       |   |   |
| 16. 96           | 0. 2416            | 0. 26          | . Q        |   |    |       |   |   |
| 17. 12<br>17. 28 | 0. 2449<br>0. 2479 | 0. 23<br>0. 22 | Q<br>Q     | • |    |       | • |   |
| 17. 44           | 0. 2507            | 0. 20          | Q          |   |    |       |   |   |

. Page 2

|                  |                    |                |        |   | X025_I |     |   |
|------------------|--------------------|----------------|--------|---|--------|-----|---|
| 17. 60           | 0. 2533            | 0. 19          | Q      |   |        |     |   |
| 17. 76           | 0. 2558            | 0. 18          | Q      |   | •      | •   |   |
| 17. 92           | 0. 2581            | 0. 17          | Q      |   | •      |     | • |
| 18. 08<br>18. 24 | 0. 2604<br>0. 2623 | 0. 17<br>0. 12 | Q      | • | •      | •   | • |
| 18. 24<br>18. 41 | 0. 2638            | 0. 12          | Q<br>Q | • | •      | •   | • |
| 18. 57           | 0. 2653            | 0. 11          | Q      | • | •      | •   | • |
| 18. 73           | 0. 2667            | 0. 10          | Q      | • | •      | •   | • |
| 18. 89           | 0. 2681            | 0. 10          | Q      | • | •      | •   | • |
| 19. 05           | 0. 2694            | 0. 10          | ã      |   |        |     |   |
| 19. 21           | 0. 2707            | 0. 09          | Q      |   |        |     |   |
| 19. 37           | 0. 2719            | 0.09           | Q      |   |        |     |   |
| 19. 53           | 0. 2731            | 0. 09          | Q      |   |        |     |   |
| 19. 69           | 0. 2742            | 0. 09          | Q      |   | •      | •   | • |
| 19. 85           | 0. 2754            | 0. 08          | Q      |   |        |     |   |
| 20. 01           | 0. 2765            | 0. 08          | Q      |   |        |     |   |
| 20. 17           | 0. 2775            | 0. 08          | Q      | • | •      | •   | • |
| 20. 33           | 0. 2786            | 0.08           | Q      |   | •      |     | • |
| 20. 49<br>20. 65 | 0. 2796<br>0. 2806 | 0. 08<br>0. 07 | Q      | • | •      | •   | • |
| 20. 83           | 0. 2815            | 0. 07          | Q<br>Q | • | •      | •   | • |
| 20. 81           | 0. 2825            | 0. 07          | Q      | • | •      | •   | • |
| 21. 13           | 0. 2834            | 0. 07          | Q      | • | •      | •   | • |
| 21. 29           | 0. 2843            | 0. 07          | Q      | • | •      | •   | • |
| 21. 45           | 0. 2852            | 0. 07          | ã      |   |        | · · | • |
| 21. 61           | 0. 2861            | 0. 07          | Q      |   |        |     |   |
| 21. 77           | 0. 2869            | 0.06           | Q      |   |        |     |   |
| 21. 93           | 0. 2878            | 0.06           | Q      |   |        |     |   |
| 22. 09           | 0. 2886            | 0. 06          | Q      |   | •      |     | • |
| 22. 25           | 0. 2894            | 0. 06          | Q      |   |        |     |   |
| 22. 41           | 0. 2902            | 0.06           | Q      | • | •      | •   | • |
| 22. 57           | 0. 2910            | 0.06           | Q      |   | •      | •   |   |
| 22. 73           | 0. 2918            | 0.06           | Q      |   | •      |     | • |
| 22. 89           | 0. 2925            | 0.06           | Q      | • | •      | •   | • |
| 23. 05<br>23. 22 | 0. 2933<br>0. 2940 | 0. 06<br>0. 06 | Q      | • | •      | •   | • |
| 23. 22           | 0. 2940            | 0.05           | Q<br>Q | • | •      | •   | • |
| 23. 54           | 0. 2955            | 0.05           | Q      | • | •      | •   | • |
| 23. 70           | 0. 2962            | 0.05           | Q      | • | •      | •   | • |
| 23. 86           | 0. 2969            | 0. 05          | Q      | • | •      | •   | • |
| 24. 02           | 0. 2976            | 0. 05          | Q      |   | •      |     |   |
| 24. 18           | 0. 2979            | 0.00           | Q      | · | •      | ·   | • |
|                  |                    |                |        |   |        |     |   |

### Drainage J

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 11.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 13.68
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 2. 98 1.13

| *****            | *****              | *****          | ****   | ***** | ***** | ***** | ***** |
|------------------|--------------------|----------------|--------|-------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 7. 5  | 15. 0 | 22. 5 | 30.0  |
| 0. 04            | 0. 0000            | 0. 00          | Q      |       |       |       |       |
| 0. 27            | 0.0049             | 0. 52          | Q      |       |       |       |       |
| 0. 50            | 0. 0146            | 0. 52          | Q      |       |       |       |       |
| 0. 72            | 0. 0244            | 0. 52          | Q      |       |       |       |       |
| 0. 95            | 0. 0343            | 0. 53          | Q      |       |       | •     |       |
| 1. 18            | 0. 0443            | 0. 53          | Q      |       |       |       |       |
| 1. 41            | 0. 0545            | 0. 54          | Q      |       |       |       |       |
| 1. 64            | 0. 0647            | 0. 55          | Q      | •     | •     | •     | •     |
| 1. 86            | 0. 0750            | 0. 55          | Q      |       |       |       |       |
| 2. 09            | 0. 0854            | 0. 56          | Q      | •     | •     | •     | •     |
| 2. 32<br>2. 55   | 0. 0959            | 0. 56<br>0. 57 | Q      | •     | •     | •     | •     |
| 2. 55<br>2. 78   | 0. 1065<br>0. 1173 | 0. 57          | Q<br>Q | •     | •     | •     | •     |
| 3. 00            | 0. 1173            | 0. 57          | Q      | •     | •     | •     | •     |
| 3. 23            | 0. 1391            | 0. 59          | Q      | •     | •     | •     | •     |
| 3. 46            | 0. 1503            | 0.59           | Q      | •     | •     | •     | •     |
| 3. 69            | 0. 1615            | 0. 60          | ã      |       |       |       |       |
| 3. 92            | 0. 1729            | 0. 61          | Q      |       |       |       |       |
| 4. 14            | 0. 1844            | 0. 61          | Q      |       |       |       |       |
| 4. 37            | 0. 1960            | 0. 62          | Q      |       |       |       |       |
| 4. 60            | 0. 2078            | 0. 63          | Q      |       |       |       |       |
| 4. 83            | 0. 2197            | 0. 64          | Q      |       |       |       |       |
| 5. 06            | 0. 2318            | 0. 64          | Q      |       |       |       |       |
| 5. 28            | 0. 2441            | 0. 66          | Q      | •     | •     |       | •     |
| 5. 51            | 0. 2565            | 0. 66          | Q      | •     |       |       |       |
| 5. 74            | 0. 2690            | 0. 67          | Q      | •     | •     | •     | •     |
| 5. 97<br>6. 20   | 0. 2818<br>0. 2947 | 0. 68<br>0. 69 | Q<br>Q | •     | •     | •     | •     |
| 6. 42            | 0. 2947            | 0. 89          | Q      | •     | •     | •     | •     |
| 6. 65            | 0. 3079            | 0. 70          | 0      | •     | •     | •     | •     |
| 0. 00            | 0. 3212            | 0.71           | Q      | •     | •     | •     | •     |

Page 1

|                                              |               | ΥC  | )25_J    |        |   |
|----------------------------------------------|---------------|-----|----------|--------|---|
| 6. 88 0. 3347 0. 72                          | Q             |     |          |        |   |
| 7. 11 0. 3485 0. 74<br>7. 34 0. 3624 0. 74   | Q<br>Q        | •   |          |        | • |
| 7. 56 0. 3766 0. 76                          | . Q           |     | •        |        |   |
| 7. 79 0. 3910 0. 77<br>8. 02 0. 4057 0. 79   | . Q<br>. Q    |     |          |        |   |
| 8. 25 0. 4207 0. 80                          | . Q           |     |          |        |   |
| 8. 48 0. 4359 0. 82<br>8. 70 0. 4514 0. 83   | . Q<br>. Q    |     |          |        |   |
| 8. 93 0. 4672 0. 85<br>9. 16 0. 4833 0. 86   | . Q<br>. Q    |     |          |        |   |
| 9. 39 0. 4998 0. 89                          | . Q           | •   | •        |        |   |
| 9. 62 0. 5166 0. 90<br>9. 84 0. 5338 0. 93   | . Q<br>. Q    | •   | <b>.</b> |        |   |
| 10. 07 0. 5514 0. 94                         | . Q           |     | •        |        |   |
| 10. 30 0. 5694 0. 97<br>10. 53 0. 5879 0. 99 | . Q<br>. Q    |     | •        |        |   |
| 10. 76 0. 6069 1. 02                         | . Q           |     |          |        |   |
| 10. 98 0. 6263 1. 04<br>11. 21 0. 6463 1. 08 | . Q<br>. Q    |     |          |        |   |
| 11. 44                                       | . Q<br>. Q    |     |          |        |   |
| 11. 90 0. 7101 1. 18                         | . Q           |     | •        |        |   |
| 12. 12 0. 7340 1. 36<br>12. 35 0. 7625 1. 67 | . Q<br>.    Q | •   |          |        |   |
| 12. 58 0. 7946 1. 74                         | . Q           |     | •        |        |   |
| 12. 81 0. 8277 1. 78<br>13. 04 0. 8620 1. 87 | . Q<br>. Q    |     |          |        |   |
| 13. 26                                       | . Q<br>. Q    | •   | •        |        | • |
| 13. 72 0. 9735 2. 09                         | . Q           | •   | •        | ·<br>· |   |
| 13. 95 1. 0141 2. 23<br>14. 18 1. 0569 2. 31 | . Q<br>. Q    | •   | •        |        | • |
| 14. 40 1. 1021 2. 49                         | . Q           | •   | •        | •      |   |
| 14. 63 1. 1504 2. 64<br>14. 86 1. 2039 3. 04 | . Q<br>. Q    |     |          |        |   |
| 15. 09 1. 2637 3. 30                         | . Q           |     |          |        |   |
| 15. 54 1. 4106 4. 24                         | . Q<br>. Q    |     |          |        |   |
| 15. 77                                       | . О           | . Q |          |        |   |
| 16. 23 1. 9676 26. 08                        |               |     |          | . Q    |   |
| 16. 46 2. 2554 4. 47<br>16. 68 2. 3316 3. 62 | . Q<br>. Q    |     |          |        |   |
| 16. 91 2. 3923 2. 82                         | . Q           |     |          |        |   |
| 17. 14 2. 4414 2. 38<br>17. 37 2. 4841 2. 16 | . Q<br>. Q    |     |          |        |   |
| 17. 60 2. 5229 1. 97<br>17. 82 2. 5586 1. 82 | . Q<br>. Q    |     |          |        |   |
| 18. 05 2. 5918 1. 70                         | . Q           |     | •        |        |   |
| 18. 28 2. 6191 1. 20<br>18. 51 2. 6411 1. 13 | . Q<br>. Q    |     |          |        |   |
| 18. 74 2. 6617 1. 06                         | . Q           |     | •        | •      |   |
| 18. 96 2. 6812 1. 01<br>19. 19 2. 6997 0. 96 | . Q<br>. Q    |     |          |        |   |
| 19. 42 2. 7173 0. 91<br>19. 65 2. 7341 0. 87 | . Q<br>. Q    |     |          |        |   |
| 19. 88 2. 7502 0. 84                         | . Q           |     | •        |        |   |
| 20. 10 2. 7658 0. 81<br>20. 33 2. 7807 0. 78 | . Q<br>. Q    | •   | <b>.</b> |        |   |
| 20. 56 2. 7951 0. 75                         | . Q           |     | •        |        |   |
| 20. 79 2. 8091 0. 73<br>21. 02 2. 8226 0. 71 | Q<br>Q        |     |          |        |   |
| 21. 24 2. 8358 0. 69<br>21. 47 2. 8485 0. 67 | Q<br>Q        |     |          |        |   |
| 21. 70 2. 8609 0. 65                         | Q             |     | •        |        |   |
| 21. 93 2. 8730 0. 63<br>22. 16 2. 8848 0. 62 | Q<br>Q        |     |          |        |   |
| 22. 38 2. 8963 0. 60                         | Q             |     | •        |        |   |
| 22. 61 2. 9076 0. 59<br>22. 84 2. 9185 0. 58 | Q<br>Q        |     |          |        |   |
| 23. 07 2. 9293 0. 56                         | Q             |     |          |        |   |
| 23. 30 2. 9398 0. 55<br>23. 52 2. 9501 0. 54 | Q<br>Q        |     |          |        |   |
| 23. 75 2. 9602 0. 53<br>23. 98 2. 9702 0. 52 | Q<br>Q        |     |          |        |   |
| 24. 21 2. 9799 0. 51                         | Q             |     | •        |        |   |
| 24. 44 2. 9847 0. 00                         | <br>          |     |          |        |   |

### Drainage K

## NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 6.30
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION(MIN.) = 11.30
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

-----

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 1.71 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.65

| *****            | *****              | *****          | ***    | ****** | ***** | ***** | ***** |
|------------------|--------------------|----------------|--------|--------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 5.0    | 10.0  | 15. 0 | 20. 0 |
| 0. 18            | 0. 0023            | 0. 29          | Q      |        |       |       |       |
| 0. 37            | 0.0069             | 0. 30          | Q      |        |       |       |       |
| 0. 56            | 0. 0115            | 0. 30          | Q      |        |       |       |       |
| 0.74             | 0. 0162            | 0. 30          | Q      |        |       |       |       |
| 0. 93            | 0. 0209            | 0. 30          | Q      |        | •     |       |       |
| 1. 12            | 0. 0256            | 0. 31          | Q      |        |       |       |       |
| 1. 31            | 0. 0304            | 0. 31          | Q      |        | •     |       |       |
| 1. 50            | 0. 0352            | 0. 31          | Q      |        |       |       |       |
| 1. 69            | 0. 0400            | 0. 31          | Q      | •      | •     | •     | •     |
| 1. 87            | 0. 0449            | 0. 32          | Q      |        |       |       |       |
| 2. 06            | 0. 0499            | 0. 32          | Q      |        |       |       |       |
| 2. 25            | 0. 0548            | 0. 32          | Q      | •      | •     |       |       |
| 2. 44            | 0. 0599            | 0. 32          | Q      | •      | •     |       |       |
| 2. 63            | 0. 0649            | 0. 33          | Q      |        | •     | •     | •     |
| 2. 82            | 0. 0700            | 0. 33          | Q      |        | •     | •     | •     |
| 3. 00            | 0. 0752            | 0. 33          | Q      | •      | •     |       |       |
| 3. 19            | 0. 0804            | 0. 34          | Q      | •      | •     |       |       |
| 3. 38            | 0. 0856            | 0. 34          | Q      |        | •     |       |       |
| 3. 57            | 0. 0909            | 0. 34          | Q      | •      | •     |       |       |
| 3. 76<br>3. 95   | 0. 0963<br>0. 1017 | 0. 35<br>0. 35 | Q      | •      | •     | •     | •     |
| 3. 95<br>4. 13   | 0. 1017<br>0. 1071 | 0. 35          | Q<br>Q | •      | •     | •     | •     |
| 4. 13<br>4. 32   | 0. 1071            | 0. 35          | Q      | •      | •     | •     | •     |
| 4. 32<br>4. 51   | 0. 1120            | 0. 36          | Q      | •      | •     |       | •     |
| 4. 70            | 0. 1162            | 0. 36          | Q      | •      | •     |       | •     |
| 4. 70<br>4. 89   | 0. 1236<br>0. 1295 | 0. 30          | Q      | •      | •     |       | •     |
| 5. 08            | 0. 1253            | 0. 37          | Q      | •      | •     | •     | •     |
| 5. 26            | 0. 1333            | 0. 37          | Q      | •      | •     | •     | •     |
| 5. 45            | 0. 1411            | 0. 38          | Q      | •      | •     | •     | •     |
| 5. 64            | 0. 1529            | 0. 38          | Ö      | •      | •     | •     | •     |
| J. U4            | U. 1JZ7            | 0. 36          | u      | •      | _ •   |       | •     |

Page 1

|                  |                    |                 |            |     | VOOF K |     |   |
|------------------|--------------------|-----------------|------------|-----|--------|-----|---|
| 5. 83            | 0. 1589            | 0. 39           | Q          |     | X025_K |     |   |
| 6. 02            | 0. 1649            | 0. 39           | Q          |     |        |     |   |
| 6. 21<br>6. 39   | 0. 1711<br>0. 1773 | 0. 40<br>0. 40  | Q<br>Q     | •   | ·      | •   |   |
| 6. 58            | 0. 1836            | 0. 41           | Q          |     |        |     |   |
| 6. 77<br>6. 96   | 0. 1900<br>0. 1964 | 0. 41<br>0. 42  | Q<br>Q     | •   |        | •   | • |
| 7. 15            | 0. 2030            | 0. 42           | Q          |     |        | •   |   |
| 7. 34<br>7. 53   | 0. 2096<br>0. 2163 | 0. 43<br>0. 44  | Q<br>Q     | •   |        | •   |   |
| 7. 33<br>7. 71   | 0. 2231            | 0. 44           | Q          |     |        |     |   |
| 7. 90            | 0. 2300            | 0. 45           | Q          |     |        | •   |   |
| 8. 09<br>8. 28   | 0. 2371<br>0. 2442 | 0. 45<br>0. 46  | Q<br>Q     |     |        |     |   |
| 8. 47            | 0. 2514            | 0. 47           | Q          | •   |        | •   |   |
| 8. 65<br>8. 84   | 0. 2587<br>0. 2662 | 0. 48<br>0. 48  | Q<br>Q     | •   | •      | •   | • |
| 9. 03            | 0. 2738            | 0. 49           | Q          |     |        |     |   |
| 9. 22<br>9. 41   | 0. 2815<br>0. 2893 | 0. 50<br>0. 51  | Q<br>. Q   | •   |        | •   |   |
| 9. 60            | 0. 2973            | 0. 51           | . Q<br>. Q |     |        |     |   |
| 9. 78            | 0. 3054<br>0. 3137 | 0. 53           | . Q        | •   |        | •   |   |
| 9. 97<br>10. 16  | 0. 3137            | 0. 54<br>0. 55  | . Q<br>. Q |     |        |     |   |
| 10. 35           | 0. 3308            | 0. 56           | . Q        |     |        |     |   |
| 10. 54<br>10. 73 | 0. 3396<br>0. 3486 | 0. 57<br>0. 58  | . Q<br>. Q | •   | •      | •   | • |
| 10. 91           | 0. 3578            | 0. 60           | . Q        |     |        |     |   |
| 11. 10<br>11. 29 | 0. 3672<br>0. 3768 | 0. 61<br>0. 63  | . Q<br>. Q |     | •      | •   | • |
| 11. 48           | 0. 3867            | 0. 64           | . Q        |     |        |     |   |
| 11. 67<br>11. 86 | 0. 3968<br>0. 4072 | 0. 66<br>0. 67  | . Q<br>. Q | •   |        | •   |   |
| 12. 05           | 0. 4179            | 0. 70           | . Q<br>. Q | •   |        | •   |   |
| 12. 23           | 0. 4304            | 0. 91           | . Q        | •   |        | •   |   |
| 12. 42<br>12. 61 | 0. 4451<br>0. 4605 | 0. 98<br>0. 99  | . Q<br>. Q |     | •      |     |   |
| 12.80            | 0. 4762            | 1.03            | . Q        |     |        |     |   |
| 12. 99<br>13. 18 | 0. 4925<br>0. 5092 | 1. 05<br>1. 10  | . Q<br>. Q | •   | ·      | •   |   |
| 13. 36           | 0. 5265            | 1. 12           | . Q        | •   |        | •   |   |
| 13. 55<br>13. 74 | 0. 5444<br>0. 5630 | 1. 18<br>1. 21  | . Q<br>. Q | •   |        | •   |   |
| 13. 93           | 0. 5824            | 1. 28           | . Q        |     |        |     |   |
| 14. 12<br>14. 30 | 0. 6026<br>0. 6238 | 1. 32<br>1. 39  | . Q<br>. Q | •   |        | •   |   |
| 14. 49           | 0. 6459            | 1. 45           | . Q        |     |        | •   |   |
| 14. 68<br>14. 87 | 0. 6698<br>0. 6957 | 1. 62           | . Q        | •   |        | •   |   |
| 14. 87<br>15. 06 | 0. 6957<br>0. 7244 | 1. 72<br>1. 97  | . Q<br>. Q |     | :      | •   |   |
| 15. 25           | 0. 7564            | 2. 14           | . Q        |     |        |     |   |
| 15. 43<br>15. 62 | 0. 7921<br>0. 8302 | 2. 45<br>2. 45  | . Q<br>. Q |     |        |     | • |
| 15. 81           | 0. 8796            | 3.89            |            | Q . |        | •   |   |
| 16. 00<br>16. 19 | 0. 9532<br>1. 1264 | 5. 56<br>16. 70 | •          | . Q | •      | . Q | • |
| 16. 38           | 1. 2791            | 2. 92           | . Q        |     |        |     |   |
| 16. 57<br>16. 75 | 1. 3201<br>1. 3526 | 2. 34<br>1. 84  | . Q<br>. Q | •   |        | •   |   |
| 16. 94           | 1. 3788            | 1. 53           | . Q        |     |        |     |   |
| 17. 13           | 1. 4011            | 1. 35           | . Q        |     |        | •   |   |
| 17. 32<br>17. 51 | 1. 4213<br>1. 4399 | 1. 24<br>1. 15  | . Q<br>. Q |     | :      | •   |   |
| 17. 69           | 1. 4573            | 1.08            | . Q        |     |        |     |   |
| 17. 88<br>18. 07 | 1. 4735<br>1. 4889 | 1. 01<br>0. 96  | . Q<br>. Q | •   | •      | •   | • |
| 18. 26           | 1. 5017            | 0. 69           | . Q        |     |        |     |   |
| 18. 45<br>18. 64 | 1. 5121<br>1. 5220 | 0. 65<br>0. 62  | . Q<br>. Q | •   |        | •   |   |
| 18. 83           | 1. 5314            | 0. 59           | . Q        |     |        |     |   |
| 19. 01<br>19. 20 | 1. 5403<br>1. 5490 | 0. 57<br>0. 54  | . Q<br>. Q |     |        |     |   |
| 19. 20           | 1. 5573            | 0. 54           | . Q<br>. Q |     |        |     |   |
| 19. 58           | 1. 5652            | 0. 50           | . Q        |     |        |     |   |
| 19. 77<br>19. 95 | 1. 5730<br>1. 5804 | 0. 49<br>0. 47  | Q<br>Q     | •   |        | •   |   |
| 20. 14           | 1. 5876            | 0. 46           | Q          |     |        |     |   |
| 20. 33<br>20. 52 | 1. 5947<br>1. 6015 | 0. 44<br>0. 43  | Q<br>Q     | •   |        |     | • |
|                  | ., 5516            | 0. 10           | -          | •   | Dogo D | -   | • |

Page 2

|        |         |       |   | X025_K |   |   |   |
|--------|---------|-------|---|--------|---|---|---|
| 20. 71 | 1. 6081 | 0.42  | Q |        |   |   |   |
| 20. 90 | 1. 6146 | 0. 41 | Q |        |   |   |   |
| 21. 08 | 1. 6209 | 0.40  | Q |        |   |   |   |
| 21. 27 | 1. 6270 | 0. 39 | Q |        |   |   |   |
| 21. 46 | 1. 6330 | 0. 38 | Q |        |   |   |   |
| 21. 65 | 1. 6389 | 0. 37 | Q |        |   |   |   |
| 21. 84 | 1. 6446 | 0. 37 | 0 |        | _ | _ |   |
| 22. 03 | 1. 6502 | 0. 36 | Q |        |   |   |   |
| 22. 22 | 1. 6557 | 0. 35 | Q |        |   |   |   |
| 22. 40 | 1. 6611 | 0.34  | 0 |        | _ | _ |   |
| 22. 59 | 1. 6664 | 0. 34 | ō |        |   |   |   |
| 22. 78 | 1. 6716 | 0. 33 | Q |        |   |   |   |
| 22. 97 | 1. 6768 | 0. 33 | Q |        |   |   |   |
| 23. 16 | 1. 6818 | 0. 32 | 0 |        | _ | _ |   |
| 23. 34 | 1. 6867 | 0. 31 | ō |        |   |   |   |
| 23. 53 | 1. 6916 | 0. 31 | ō |        |   |   |   |
| 23. 72 | 1. 6963 | 0. 30 | ō |        |   |   |   |
| 23. 91 | 1. 7010 | 0. 30 | Õ |        |   |   |   |
| 24. 10 | 1. 7057 | 0. 29 | Õ |        |   |   |   |
| 24. 29 | 1. 7080 | 0. 00 | Õ |        |   |   |   |
|        |         |       |   | <br>   |   |   | _ |

### Drainage A

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 349.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.150

LOW LOSS FRACTION = 0.350

TIME OF CONCENTRATION(MIN.) = 28.15

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 10

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20 24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 67.35 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 39.86

| *****           | ****           | *****      | **** | ****  | ***** | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 107.5 | 215.0 | 322.5 | 430.0 |
| 0.05            | 0.0000         | 0.00       | Q    |       |       |       |       |
| 0.52            | 0.2275         | 11.73      | .Q   | •     |       |       | •     |
| 0.99            | 0.6852         | 11.88      | . Q  |       |       |       |       |
| 1.46            | 1.1520         | 12.19      | .Q   |       |       |       |       |
| 1.93            | 1.6279         | 12.36      | .Q   |       |       |       |       |
| 2.39            | 2.1138         | 12.70      | .Q   | •     | •     | •     | •     |
| 2.86            | 2.6099         | 12.89      | .Q   | •     | •     | •     | •     |
| 3.33            | 3.1171         | 13.27      | .Q   | •     | •     | •     | •     |
| 3.80            | 3.6357         | 13.48      | .Q   | •     | •     | •     | ě     |
| 4.27            | 4.1668         | 13.92      | .Q   | •     | •     | •     | •     |
| 4.74            | 4.7109         | 14.15      | .Q   | •     | •     | •     | ě     |
| 5.21            | 5.2690         | 14.64      | .Q   | •     | •     | •     | •     |
| 5.68            | 5.8420         | 14.91      | .Q   | •     | •     | •     | •     |
| 6.15            | 6.4311         | 15.48      | .Q   |       |       |       | •     |
| 6.62            | 7.0373         | 15.79      | .Q   | •     | •     | •     | ě     |
| 7.09            | 7.6623         | 16.45      | .Q   | •     | •     | •     | ě     |
| 7.56            | 8.3072         | 16.81      | .Q   | •     | •     | •     | •     |
| 8.02            | 8.9744         | 17.60      | .Q   |       |       |       | •     |
| 8.49            | 9.6652         | 18.03      | .Q   | •     | •     |       | •     |

| 8.96  | 10.3828 | 18.98  | .Q  |    |   |   |    |
|-------|---------|--------|-----|----|---|---|----|
| 9.43  | 11.1290 | 19.51  | .Q  |    |   |   |    |
| 9.90  | 11.9082 | 20.68  | .Q  |    |   |   |    |
| 10.37 | 12.7231 | 21.35  | .Q  | •  | • | • |    |
| 10.84 | 13.5799 | 22.85  | . Q |    |   |   |    |
| 11.31 | 14.4826 | 23.71  | . Q | •  | • | • |    |
| 11.78 | 15.4410 | 25.72  | . Q |    |   |   |    |
| 12.25 | 16.4612 | 26.90  | . Q |    |   |   |    |
| 12.72 | 17.7036 | 37.18  | . Q |    | • | • | •  |
| 13.18 | 19.1810 | 39.02  | . Q |    | • | • | •  |
| 13.65 | 20.7842 | 43.67  | . Q |    | • | • | •  |
| 14.12 | 22.5358 | 46.68  | . Q |    | • | • | •  |
| 14.59 | 24.5093 | 55.11  | . Q |    | • | • | •  |
| 15.06 | 26.7670 | 61.34  | . Q |    |   |   |    |
| 15.53 | 29.5533 | 82.38  | . ( | 2. | • | • |    |
| 16.00 | 33.1616 | 103.74 |     | Q. |   |   |    |
| 16.47 | 43.3728 | 422.96 |     |    |   |   | Q. |
| 16.94 | 52.9334 | 70.18  | . Q |    | • | • | •  |
| 17.41 | 55.2710 | 50.39  | . Q |    | • | • | •  |
| 17.88 | 57.0459 | 41.16  | . Q |    |   | • |    |
| 18.35 | 58.5035 | 34.03  | . Q |    |   | • |    |
| 18.82 | 59.6414 | 24.66  | . Q |    | • | • |    |
| 19.28 | 60.5473 | 22.06  | . Q |    |   | • |    |
| 19.75 | 61.3642 | 20.07  | .Q  |    | • | • | •  |
| 20.22 | 62.1119 | 18.49  | .Q  |    | • | • | •  |
| 20.69 | 62.8037 | 17.19  | .Q  |    | • | • |    |
| 21.16 | 63.4495 | 16.11  | .Q  |    | • | • | •  |
| 21.63 | 64.0562 | 15.19  | .Q  |    | • | • | •  |
| 22.10 | 64.6297 | 14.39  | .Q  |    |   | • |    |
| 22.57 | 65.1741 | 13.69  | .Q  |    | • | • | •  |
| 23.04 | 65.6931 | 13.08  | .Q  |    | • | • | •  |
| 23.51 | 66.1895 | 12.53  | .Q  |    |   | • |    |
| 23.98 | 66.6656 | 12.03  | .Q  |    | • | • | •  |
| 24.44 | 67.1248 | 11.65  | .Q  |    | • | • |    |
| 24.91 | 67.3506 | 0.00   | Q   |    | • | • |    |
|       |         |        |     |    |   |   |    |

### Drainage B

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 135.10

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.070

LOW LOSS FRACTION = 0.200

TIME OF CONCENTRATION(MIN.) = 32.10

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 10

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20

24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 30.86 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 10.57

| ********************* |        |          |     |      |      |       |       |  |  |  |  |
|-----------------------|--------|----------|-----|------|------|-------|-------|--|--|--|--|
| TIME                  | VOLUME | Q        | 0.  | 40.0 | 80.0 | 120.0 | 160.0 |  |  |  |  |
| (HOURS)               | (AF)   | (CFS)    |     |      |      |       |       |  |  |  |  |
| 0.49                  | 0.1116 | <br>5.57 | .Q  |      |      |       |       |  |  |  |  |
| 1.02                  | 0.3595 | 5.64     | . Q |      |      |       |       |  |  |  |  |
| 1.56                  | 0.6127 | 5.81     | . Q |      | •    |       |       |  |  |  |  |
| 2.09                  | 0.8717 | 5.90     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 2.63                  | 1.1370 | 6.09     | .Q  |      | •    | •     |       |  |  |  |  |
| 3.16                  | 1.4086 | 6.20     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 3.70                  | 1.6874 | 6.41     | .Q  |      | •    |       |       |  |  |  |  |
| 4.23                  | 1.9735 | 6.53     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 4.77                  | 2.2677 | 6.78     | .Q  |      | •    | •     |       |  |  |  |  |
| 5.30                  | 2.5704 | 6.91     | .Q  |      | •    | •     |       |  |  |  |  |
| 5.84                  | 2.8825 | 7.20     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 6.37                  | 3.2046 | 7.36     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 6.91                  | 3.5377 | 7.71     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 7.44                  | 3.8827 | 7.90     | .Q  | •    | •    | •     | •     |  |  |  |  |
| 7.98                  | 4.2410 | 8.31     | . Q | •    | •    | •     | •     |  |  |  |  |
| 8.51                  | 4.6137 | 8.54     | . Q | •    | •    | •     | •     |  |  |  |  |
| 9.05                  | 5.0028 | 9.06     | . Q | •    | •    | •     | •     |  |  |  |  |
| 9.58                  | 5.4097 | 9.35     | . Q | •    | •    | •     | •     |  |  |  |  |
| 10.12                 | 5.8376 | 10.01    | . Q |      | •    | •     |       |  |  |  |  |

| 10.65 | 6.2884  | 10.38  | . Q |    |   |   |    |
|-------|---------|--------|-----|----|---|---|----|
| 11.19 | 6.7669  | 11.26  | . Q |    |   |   |    |
| 11.72 | 7.2764  | 11.78  | . Q |    |   |   |    |
| 12.26 | 7.8415  | 13.78  | . Q |    | • | • | •  |
| 12.79 | 8.5289  | 17.31  | . Q |    | • | • | •  |
| 13.32 | 9.3397  | 19.37  | . Q |    | • |   |    |
| 13.86 | 10.2257 | 20.71  | . Q |    | • | • | •  |
| 14.40 | 11.2238 | 24.44  | . Q |    | • | • | •  |
| 14.93 | 12.3656 | 27.21  | . Q |    | • |   |    |
| 15.47 | 13.8104 | 38.15  | •   | Q. | • |   |    |
| 16.00 | 15.6758 | 46.23  | •   | .Q | • |   |    |
| 16.53 | 20.2264 | 159.61 | •   |    | • |   | Q. |
| 17.07 | 24.4433 | 31.13  | . Q |    | • |   |    |
| 17.61 | 25.6255 | 22.35  | . Q |    | • |   |    |
| 18.14 | 26.5232 | 18.26  | . Q |    | • | • | •  |
| 18.67 | 27.2002 | 12.37  | . Q |    | • | • | •  |
| 19.21 | 27.7123 | 10.80  | . Q |    | • | • | •  |
| 19.74 | 28.1647 | 9.66   | . Q |    | • | • | •  |
| 20.28 | 28.5727 | 8.79   | . Q |    | • | • | •  |
| 20.82 | 28.9460 | 8.10   | . Q |    | • | • | •  |
| 21.35 | 29.2915 | 7.53   | .Q  |    | • | • | •  |
| 21.89 | 29.6140 | 7.06   | .Q  |    | • | • | •  |
| 22.42 | 29.9170 | 6.65   | .Q  |    | • | • | •  |
| 22.95 | 30.2033 | 6.30   | .Q  |    | • | • | •  |
| 23.49 | 30.4752 | 6.00   | .Q  |    | • | • | •  |
| 24.02 | 30.7344 | 5.73   | .Q  |    | • |   | •  |
| 24.56 | 30.8610 | 0.00   | Q   |    | • | • | •  |
|       |         |        |     |    |   |   |    |

# Drainage C

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 63.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.200

LOW LOSS FRACTION = 0.390

TIME OF CONCENTRATION(MIN.) = 18.57

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 10

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20

24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 11.50 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 8.01

| ******************* |                |            |    |      |      |      |       |  |  |  |
|---------------------|----------------|------------|----|------|------|------|-------|--|--|--|
| TIME<br>(HOURS)     | VOLUME<br>(AF) | Q<br>(CFS) | 0. | 25.0 | 50.0 | 75.0 | 100.0 |  |  |  |
| 0.22                | 0.0177         | 1.99       | Q  |      |      |      |       |  |  |  |
| 0.53                | 0.0688         | 2.00       | Q  |      |      |      |       |  |  |  |
| 0.83                | 0.1205         | 2.04       | Q  | •    | •    | •    | •     |  |  |  |
| 1.14                | 0.1728         | 2.05       | Q  | •    | •    | •    | •     |  |  |  |
| 1.45                | 0.2259         | 2.09       | Q  | •    | •    | •    | •     |  |  |  |
| 1.76                | 0.2796         | 2.11       | Q  |      |      | •    | •     |  |  |  |
| 2.07                | 0.3340         | 2.15       | Q  |      |      | •    | •     |  |  |  |
| 2.38                | 0.3892         | 2.17       | Q  |      | •    | •    | •     |  |  |  |
| 2.69                | 0.4452         | 2.21       | Q  | •    | •    | •    | •     |  |  |  |
| 3.00                | 0.5020         | 2.23       | Q  |      | •    | •    | •     |  |  |  |
| 3.31                | 0.5596         | 2.28       | Q  | •    | •    | •    | •     |  |  |  |
| 3.62                | 0.6181         | 2.30       | Q  | •    |      | •    | •     |  |  |  |
| 3.93                | 0.6776         | 2.35       | Q  | •    |      | •    | •     |  |  |  |
| 4.24                | 0.7379         | 2.37       | Q  | •    | •    | •    | •     |  |  |  |
| 4.55                | 0.7993         | 2.42       | Q  | •    | •    | •    | •     |  |  |  |
| 4.86                | 0.8616         | 2.45       | Q  | •    | •    | •    | •     |  |  |  |
| 5.17                | 0.9251         | 2.51       | .Q | •    | •    | •    | •     |  |  |  |
| 5.48                | 0.9896         | 2.54       | .Q | •    | •    | •    | •     |  |  |  |
| 5.79                | 1.0554         | 2.60       | .Q | •    | •    | •    | •     |  |  |  |

| 6.10  | 1.1224  | 2.63  | .Q  |    | • | • | •  |
|-------|---------|-------|-----|----|---|---|----|
| 6.41  | 1.1906  | 2.70  | .Q  |    |   |   |    |
| 6.72  | 1.2603  | 2.74  | .Q  |    | • | • |    |
| 7.02  | 1.3314  | 2.82  | · Q |    | • | • |    |
| 7.33  | 1.4040  | 2.86  | . Q |    |   |   |    |
| 7.64  | 1.4782  | 2.94  | . Q |    |   |   |    |
| 7.95  | 1.5540  | 2.99  | . Q |    | • |   |    |
| 8.26  | 1.6317  | 3.09  | . Q |    |   | _ |    |
| 8.57  | 1.7113  | 3.14  | . Q |    |   |   |    |
| 8.88  | 1.7930  | 3.25  | . Q |    | _ | _ |    |
| 9.19  | 1.8768  | 3.31  | .Q  | •  | • | • | ·  |
| 9.50  | 1.9630  | 3.43  | .Q  | •  | • | • | •  |
| 9.81  | 2.0517  | 3.50  | .Q  | •  | • | • | •  |
| 10.12 | 2.1431  | 3.65  | .Q  | •  | • | • | •  |
| 10.43 | 2.2375  | 3.73  | .Q  | •  | • | • | •  |
| 10.74 | 2.3351  | 3.70  | .Q  | •  | • | • | •  |
| 11.05 | 2.4362  | 4.00  |     | •  | • | • | •  |
| 11.36 | 2.4302  | 4.00  | . Q | •  | • | • | •  |
| 11.67 | 2.6503  | 4.33  | . Q | •  | • | • | •  |
| 11.07 | 2.7643  | 4.53  | . Q | •  | • | • | •  |
|       |         | 5.22  | .Q  | •  | • | • | •  |
| 12.29 | 2.8897  |       | . Q | •  | • | • | •  |
| 12.60 | 3.0374  | 6.33  | . Q | •  | • | • | •  |
| 12.90 | 3.2020  | 6.54  | . Q | •  | • | • | •  |
| 13.21 | 3.3751  | 7.00  | . Q | •  | • | • | •  |
| 13.52 | 3.5576  | 7.27  | . Q | •  | • | • | •  |
| 13.83 | 3.7519  | 7.92  | . Q | •  | • | • | •  |
| 14.14 | 3.9595  | 8.31  | . Q | •  | • | • | •  |
| 14.45 | 4.1848  | 9.31  | . Q | •  | • | • | •  |
| 14.76 | 4.4310  | 9.95  | . Q | •  | • | • | •  |
| 15.07 | 4.7084  | 11.74 | . Q | •  | • | • | •  |
| 15.38 | 5.0255  | 13.06 | . Q | •  | • | • | •  |
| 15.69 | 5.3918  | 15.57 | . Q |    | ě | • | •  |
| 16.00 | 5.9062  | 24.65 | •   | Q. | ě | • |    |
| 16.31 | 7.4682  | 97.48 | •   | •  | • | • | Q. |
| 16.62 | 8.8993  | 14.42 | . Q | •  | • | • | •  |
| 16.93 | 9.2209  | 10.74 | . Q | •  | • | • | •  |
| 17.24 | 9.4704  | 8.77  | . Q | •  | • | • | •  |
| 17.55 | 9.6794  | 7.57  | . Q | •  | • | • | •  |
| 17.86 | 9.8627  | 6.76  | . Q | •  | • | • | •  |
| 18.17 | 10.0278 | 6.15  | . Q | •  | • | • | •  |
| 18.48 | 10.1634 | 4.45  | . Q | •  | • | • | •  |
| 18.79 | 10.2727 | 4.10  | . Q | •  | • | • | •  |
| 19.09 | 10.3740 | 3.81  | . Q | •  | • | • | •  |
| 19.40 | 10.4684 | 3.57  | . Q | •  | • | • | •  |
| 19.71 | 10.5572 | 3.37  | . Q | •  | • | • | •  |
| 20.02 | 10.6411 | 3.19  | . Q | •  | • | • | •  |
| 20.33 | 10.7208 | 3.04  | . Q | •  | • | • | •  |
| 20.64 | 10.7967 | 2.90  | .Q  | •  | • | • | •  |
| 20.95 | 10.8693 | 2.78  | .Q  | •  | • | • | •  |
| 21.26 | 10.9390 | 2.67  | .Q  | •  | • | • | •  |
| 21.57 | 11.0060 | 2.57  | .Q  | •  | • | • | •  |
| 21.88 | 11.0706 | 2.48  | Q   |    | • | • | •  |
| 22.19 | 11.1330 | 2.40  | Q   | •  | • | • | •  |
| 22.50 | 11.1933 | 2.32  | Q   | •  | • | • | •  |
| 22.81 | 11.2518 | 2.25  | Q   |    | • | • | •  |
| 23.12 | 11.3086 | 2.19  | Q   |    | • | • | •  |
| 23.43 | 11.3639 | 2.13  | Q   |    | • | • | •  |
| 23.74 | 11.4176 | 2.07  | Q   |    | • | • | •  |
| 24.05 | 11.4699 | 2.02  | Q   | •  | • | • | •  |
| 24.36 | 11.4958 | 0.00  | Q   | •  | • | • | •  |
|       |         |       |     |    |   |   |    |

# Drainage D

## NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

## \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* AND LOW LOSS FRACTION ESTIMATIONS

-----(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 14.29
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.140
LOW LOSS FRACTION = 0.340
TIME OF CONCENTRATION (MIN.) = 10.86
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68 TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 2.78 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1.60 TIME VOLUME Q 0. 10.0 20.0 30.0 40.0 (CFS) (HOURS) (AF) 0.0000 0. 0036 0. 0109 0. 49 0. 49 Q 0.25 0.43 0. 0182 0. 0256 0. 0331 0. 0406 0. 49 0. 50 0. 50 0. 50 0.62 0.80 0.98 1.16 0.51 1.34 0.0481 1. 52 1. 70 0. 0557 0. 0634 0. 51 0. 52 0. 0711 0. 0789 0. 0868 0. 0947 0. 52 0. 52 1. 88 2. 06 2. 24 2. 43 2. 61 2. 79 2. 97 3. 15 3. 33 3. 51 3. 69 3. 87 0. 53 0. 53 0. 1027 0. 1108 0. 54 0. 54 0. 54 0. 55 0. 55 0. 56 0. 56 0.1189 0. 1271 0. 1354 0. 1437 0.1521 0. 57 0. 57 0. 58 0.1606 Q 0. 1692 0. 1779 Q 4. 05

0. 59 0. 59

0.60 0. 61

0.61

0.62

0. 1866

0. 1954 0. 2043 0. 2133 0. 2224

0.2316

Q

Q

Q

Q Q

4. 24

4. 42

4. 60 4. 78

4. 96

5. 14 5. 32

Page 1

|                  |                    |                 |            |    | X010_D |     |  |
|------------------|--------------------|-----------------|------------|----|--------|-----|--|
| 5. 50<br>5. 68   | 0. 2409<br>0. 2503 | 0. 62<br>0. 63  | Q<br>Q     |    |        |     |  |
| 5. 86            | 0. 2598            | 0. 64           | Q          | •  |        |     |  |
| 6. 05<br>6. 23   | 0. 2694<br>0. 2791 | 0. 65<br>0. 65  | Q<br>Q     |    |        |     |  |
| 6. 41<br>6. 59   | 0. 2889<br>0. 2988 | 0. 66<br>0. 67  | Q<br>Q     |    |        |     |  |
| 6. 77<br>6. 95   | 0. 3088<br>0. 3190 | 0. 68<br>0. 68  | Q<br>Q     |    |        |     |  |
| 7. 13<br>7. 31   | 0. 3293<br>0. 3397 | 0. 69<br>0. 70  | Q<br>Q     |    |        |     |  |
| 7. 49            | 0. 3503            | 0. 71           | Q          |    | •      |     |  |
| 7. 67<br>7. 86   | 0. 3610<br>0. 3718 | 0. 72<br>0. 73  | Q<br>Q     |    |        |     |  |
| 8. 04<br>8. 22   | 0. 3828<br>0. 3940 | 0. 74<br>0. 75  | Q<br>Q     |    |        |     |  |
| 8. 40<br>8. 58   | 0. 4053<br>0. 4168 | 0. 76<br>0. 78  | Q<br>Q     |    |        |     |  |
| 8. 76<br>8. 94   | 0. 4284<br>0. 4403 | 0. 78<br>0. 80  | Q<br>Q     |    |        | •   |  |
| 9. 12            | 0. 4523            | 0. 81           | Q          |    |        |     |  |
| 9. 30<br>9. 48   | 0. 4645<br>0. 4770 | 0. 83<br>0. 84  | Q<br>Q     |    |        |     |  |
| 9. 66<br>9. 85   | 0. 4896<br>0. 5025 | 0. 85<br>0. 86  | Q<br>Q     |    |        |     |  |
| 10. 03<br>10. 21 | 0. 5156<br>0. 5289 | 0. 89<br>0. 90  | Q<br>Q     |    |        |     |  |
| 10. 39           | 0. 5425            | 0. 92           | Q          | •  |        |     |  |
| 10. 57<br>10. 75 | 0. 5564<br>0. 5705 | 0. 93<br>0. 96  | Q<br>Q     |    |        | ·   |  |
| 10. 93<br>11. 11 | 0. 5850<br>0. 5998 | 0. 97<br>1. 00  | Q<br>. Q   |    |        |     |  |
| 11. 29<br>11. 48 | 0. 6149<br>0. 6304 | 1. 02<br>1. 05  | . Q<br>. Q |    |        |     |  |
| 11. 66<br>11. 84 | 0. 6462<br>0. 6625 | 1. 07<br>1. 11  | . Q<br>. Q |    |        |     |  |
| 12.02            | 0. 6792            | 1. 13           | . Q        |    |        |     |  |
| 12. 20<br>12. 38 | 0. 6986<br>0. 7209 | 1. 47<br>1. 50  | . Q<br>. Q |    |        | ·   |  |
| 12. 56<br>12. 74 | 0. 7437<br>0. 7671 | 1. 55<br>1. 58  | . Q<br>. Q |    |        |     |  |
| 12. 92<br>13. 10 | 0. 7912<br>0. 8160 | 1. 64<br>1. 68  | . Q<br>. Q |    |        |     |  |
| 13. 28<br>13. 47 | 0. 8417<br>0. 8681 | 1. 75<br>1. 79  | . Q<br>. Q |    |        |     |  |
| 13. 65           | 0.8956             | 1. 88           | . Q        | •  |        |     |  |
| 13. 83<br>14. 01 | 0. 9242<br>0. 9539 | 1. 93<br>2. 05  | . Q<br>. Q |    | •      |     |  |
| 14. 19<br>14. 37 | 0. 9851<br>1. 0178 | 2. 11<br>2. 26  | . Q<br>. Q |    |        |     |  |
| 14. 55<br>14. 73 | 1. 0524<br>1. 0891 | 2. 35<br>2. 56  | . Q<br>. Q |    |        |     |  |
| 14. 91<br>15. 10 | 1. 1284<br>1. 1710 | 2. 69<br>3. 01  | . Q<br>. Q |    |        |     |  |
| 15. 28           | 1. 2175<br>1. 2678 | 3. 22           | . Q        |    |        |     |  |
| 15. 46<br>15. 64 | 1. 3219            | 3. 50<br>3. 74  | . Q<br>. Q |    |        | ·   |  |
| 15. 82<br>16. 00 | 1. 3977<br>1. 5162 | 6. 39<br>9. 46  | . (        | Q. |        |     |  |
| 16. 18<br>16. 36 | 1. 8235<br>2. 0948 | 31. 63<br>4. 65 | . Q        |    |        | . Q |  |
| 16. 54<br>16. 72 | 2. 1555<br>2. 2027 | 3. 47<br>2. 84  | . Q        |    |        | •   |  |
| 16. 91           | 2. 2422            | 2. 45           | . Q        |    |        |     |  |
| 17. 09<br>17. 27 | 2. 2769<br>2. 3081 | 2. 19<br>1. 99  | . Q<br>. Q |    |        |     |  |
| 17. 45<br>17. 63 | 2. 3367<br>2. 3632 | 1. 84<br>1. 71  | . Q<br>. Q |    |        |     |  |
| 17. 81<br>17. 99 | 2. 3881<br>2. 4115 | 1. 61<br>1. 52  | . Q<br>. Q |    |        |     |  |
| 18. 17           | 2. 4319            | 1. 19           | . Q        |    |        |     |  |
| 18. 35<br>18. 53 | 2. 4489<br>2. 4648 | 1. 09<br>1. 03  | . Q<br>. Q |    |        |     |  |
| 18. 72<br>18. 90 | 2. 4799<br>2. 4944 | 0. 99<br>0. 95  | Q<br>Q     |    |        |     |  |
| 19. 08<br>19. 26 | 2. 5082<br>2. 5216 | 0. 91<br>0. 88  | Q<br>Q     |    |        |     |  |
| 19. 44<br>19. 62 | 2. 5345<br>2. 5469 | 0. 84<br>0. 82  | Q<br>Q     |    |        | •   |  |
| . 7. 02          | 2.0707             | 0. 02           | 4          | •  |        | •   |  |

Page 2

|                  |                    |                |        |   | X010_D |   |   |
|------------------|--------------------|----------------|--------|---|--------|---|---|
| 19. 80           | 2. 5589            | 0. 79          | Q      |   | . –    |   |   |
| 19. 98           | 2. 5706            | 0. 77          | Q      |   |        |   |   |
| 20. 16           | 2. 5819            | 0. 75          | Q      |   |        |   |   |
| 20. 34           | 2. 5929            | 0. 73          | Q      |   |        |   |   |
| 20. 52           | 2. 6036            | 0. 71          | Q      |   |        |   |   |
| 20. 71           | 2. 6140            | 0. 69          | Q      |   |        |   |   |
| 20. 89           | 2. 6242            | 0. 67          | Q      |   |        |   |   |
| 21. 07           | 2. 6341            | 0. 66          | Q      |   |        |   |   |
| 21. 25           | 2. 6438            | 0. 64          | Q      |   |        |   |   |
| 21. 43           | 2. 6533            | 0. 63          | Q      |   |        |   |   |
| 21. 61           | 2. 6626            | 0. 61          | Q      | • | •      | • |   |
| 21. 79           | 2. 6717            | 0.60           | Q      | • | •      | • |   |
| 21. 97           | 2. 6806            | 0. 59          | Q      |   |        |   |   |
| 22. 15           | 2. 6893            | 0. 58          | Q      | • | •      |   |   |
| 22. 33           | 2. 6979            | 0. 57          | Q      | • | •      | • |   |
| 22. 52           | 2. 7063            | 0. 56          | Q      | • | •      | • | • |
| 22. 70           | 2. 7146<br>2. 7227 | 0. 55          | Q      | • | •      | • | • |
| 22. 88           | 2. 7227<br>2. 7307 | 0. 54<br>0. 53 | Q      | • | •      | • | • |
| 23. 06<br>23. 24 | 2. 7307<br>2. 7386 | 0. 53          | Q<br>Q | • | •      | • | • |
| 23. 42           | 2. 7360            | 0. 52          | Q      | • | •      | • | • |
| 23. 42<br>23. 60 | 2. 7463<br>2. 7539 | 0. 51          | Q      | • | •      | • | • |
| 23. 78           | 2. 7614            | 0. 51          | Q      | • | •      | • | • |
| 23. 76           | 2. 7688            | 0. 30          | Q      | • | •      | • | • |
| 23. 96<br>24. 14 | 2. 7761            | 0. 49          | Q      | • | •      | • | • |
| 24. 14           | 2. 7797            | 0.40           | Q      | • | •      | • | • |
| 24. 33           | 4. 1171            |                | Q      | • |        |   | · |

# Drainage E

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 97.20
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.200
TIME OF CONCENTRATION(MIN.) = 29.02
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 22.38 7.43

| *****                                                                                                                                                                                                                                        | ******                                                                                                                                                                                                                                                                                                                      | ++++++++     |     |       | ****** | ***** | *****  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-------|--------|-------|--------|
| TI ME<br>(HOURS)                                                                                                                                                                                                                             | VOLUME<br>(AF)                                                                                                                                                                                                                                                                                                              | Q 0<br>(CFS) |     | 32. 5 | 65. 0  | 97. 5 | 130. 0 |
| 0. 04<br>0. 52<br>1. 01<br>1. 49<br>1. 97<br>2. 46<br>2. 94<br>3. 42<br>3. 91<br>4. 39<br>4. 88<br>5. 84<br>6. 33<br>6. 81<br>7. 29<br>7. 78<br>8. 26<br>8. 74<br>9. 23<br>9. 71<br>10. 20<br>10. 68<br>11. 65<br>12. 13<br>12. 61<br>13. 58 | 0. 0000<br>0. 0799<br>0. 2416<br>0. 4063<br>0. 5745<br>0. 7462<br>0. 9217<br>1. 1012<br>1. 2850<br>1. 4733<br>1. 6665<br>1. 8647<br>2. 0686<br>2. 2784<br>2. 4947<br>2. 7179<br>2. 9488<br>3. 1879<br>3. 4362<br>3. 6945<br>3. 9642<br>4. 2462<br>4. 5427<br>4. 8551<br>5. 1868<br>5. 5398<br>5. 9706<br>6. 4834<br>7. 0399 |              |     |       |        |       |        |
| 14. 07                                                                                                                                                                                                                                       | 7. 6479                                                                                                                                                                                                                                                                                                                     | 15. 72       | . О |       |        |       |        |

Page 1

| 14. 55 8. 3329<br>15. 03 9. 1165<br>15. 52 10. 1245<br>16. 00 11. 4368<br>16. 48 14. 6159<br>16. 97 17. 5632<br>17. 45 18. 3877<br>17. 93 19. 0038<br>18. 42 19. 4905<br>18. 90 19. 8657<br>19. 39 20. 1793<br>19. 87 20. 4620<br>20. 35 20. 7207<br>20. 84 20. 9602<br>21. 32 21. 1836 | 18. 56<br>20. 65<br>29. 78<br>35. 88<br>123. 18<br>24. 29<br>16. 97<br>13. 86<br>10. 50<br>8. 28<br>7. 41<br>6. 74<br>6. 21<br>5. 77<br>5. 41 |     |   | X010_E |   | Q : |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--------|---|-----|--|
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               | . Q |   |        |   | •   |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               | . Q |   |        |   | •   |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   | •   |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   |     |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   |     |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   |     |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   | •   |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   |     |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                               |     |   |        |   | •   |  |
| 21. 80 21. 3936                                                                                                                                                                                                                                                                         | 5. 10                                                                                                                                         | . Q |   |        |   |     |  |
| 22. 29 21. 5921                                                                                                                                                                                                                                                                         | 4. 83                                                                                                                                         | . Q |   |        |   |     |  |
| 22. 77 21. 7805                                                                                                                                                                                                                                                                         | 4. 60                                                                                                                                         | . Q |   | •      |   | •   |  |
| 23. 26 21. 9601                                                                                                                                                                                                                                                                         | 4. 39                                                                                                                                         | . Q |   |        |   |     |  |
| 23. 74 22. 1319                                                                                                                                                                                                                                                                         | 4. 21                                                                                                                                         | . Q | • |        |   |     |  |
| 24. 22 22. 2967                                                                                                                                                                                                                                                                         | 4. 04                                                                                                                                         | . Q | • |        |   |     |  |
| 24. 71 22. 3774                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                          | Q   | · | ·      | · |     |  |

# Drainage F

#### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 5.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.250
TIME OF CONCENTRATION(MIN.) = 7.97
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1. 26 0.51

| *****            | *****          | *****      | *** | ****** | ***** | ***** | ***** |
|------------------|----------------|------------|-----|--------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.  | 5.0    | 10.0  | 15. 0 | 20. 0 |
| 0.06             | 0. 0000        | 0. 00      | Q   |        |       |       |       |
| 0. 19            | 0. 0012        | 0. 22      | Q   |        |       |       |       |
| 0. 33            | 0.0037         | 0. 22      | Q   |        |       |       |       |
| 0.46             | 0.0062         | 0. 23      | Q   |        |       |       |       |
| 0. 59            | 0.0086         | 0. 23      | Q   |        |       |       |       |
| 0. 72            | 0. 0111        | 0. 23      | Q   | •      | •     | •     | •     |
| 0. 86            | 0. 0137        | 0. 23      | Q   | •      | •     | •     | •     |
| 0. 99            | 0. 0162        | 0. 23      | Q   | •      | •     | •     | •     |
| 1. 12            | 0. 0187        | 0. 23      | Q   | •      | •     | •     | •     |
| 1. 26            | 0. 0213        | 0. 23      | Q   |        |       |       |       |
| 1. 39            | 0. 0239        | 0. 23      | Q   |        |       |       |       |
| 1. 52            | 0. 0264        | 0. 24      | Q   |        |       |       |       |
| 1. 65            | 0. 0290        | 0. 24      | Q   |        | •     |       |       |
| 1. 79            | 0. 0317        | 0. 24      | Q   | •      | •     |       |       |
| 1. 92            | 0. 0343        | 0. 24      | Q   | •      | •     |       |       |
| 2. 05            | 0. 0369        | 0. 24      | Q   | •      | •     | •     |       |
| 2. 19            | 0. 0396        | 0. 24      | Q   | •      | •     | •     | •     |
| 2. 32            | 0. 0423        | 0. 24      | Q   | •      | •     |       | •     |
| 2. 45            | 0. 0450        | 0. 25      | Q   | •      | •     | •     | •     |
| 2. 58            | 0. 0477        | 0. 25      | Q   |        | •     |       |       |
| 2. 72            | 0. 0504        | 0. 25      | Q   |        | •     |       |       |
| 2. 85            | 0. 0531        | 0. 25      | Q   |        | •     |       |       |
| 2. 98            | 0. 0559        | 0. 25      | Q   |        | •     |       |       |
| 3. 12            | 0. 0587        | 0. 25      | Q   | •      | •     |       |       |
| 3. 25            | 0. 0615        | 0. 26      | Q   | •      | •     |       |       |
| 3. 38            | 0.0643         | 0. 26      | Q   | •      | •     |       |       |
| 3. 51            | 0. 0671        | 0. 26      | Q   | •      | •     | •     | •     |
| 3. 65            | 0. 0700        | 0. 26      | Q   | •      | •     | •     | •     |
| 3. 78            | 0. 0728        | 0. 26      | Q   | •      | •     | •     | •     |
| 3. 91            | 0. 0757        | 0. 26      | Q   | •      |       |       | •     |

Page 1

| 4 05             | 0.0707             | 0.07           | 0          |   | XC | )10_F |   |   |
|------------------|--------------------|----------------|------------|---|----|-------|---|---|
| 4. 05<br>4. 18   | 0. 0786<br>0. 0816 | 0. 27<br>0. 27 | Q<br>Q     |   |    | •     | • | ٠ |
| 4. 31            | 0. 0845            | 0. 27          | Q          | • |    | •     | • | • |
| 4. 44            | 0. 0875            | 0. 27          | Q          |   |    |       |   |   |
| 4. 58            | 0. 0905            | 0. 27          | Q          |   |    |       |   |   |
| 4. 71            | 0. 0935            | 0. 28          | Q          |   |    | •     |   | ٠ |
| 4. 84<br>4. 97   | 0. 0965<br>0. 0996 | 0. 28<br>0. 28 | Q<br>Q     | • |    | •     | • | • |
| 5. 11            | 0. 1027            | 0. 28          | Q          |   |    |       |   |   |
| 5. 24            | 0. 1058            | 0. 28          | Q          |   |    |       |   |   |
| 5. 37            | 0. 1089            | 0. 29          | Q          |   |    |       |   |   |
| 5. 51<br>5. 64   | 0. 1121<br>0. 1153 | 0. 29<br>0. 29 | Q<br>Q     | • |    | •     | • | ٠ |
| 5. 77            | 0. 1185            | 0. 29          | Q          | • |    | •     | • | • |
| 5. 90            | 0. 1217            | 0. 30          | Q          | : |    |       |   |   |
| 6. 04            | 0. 1250            | 0. 30          | Q          |   |    |       |   |   |
| 6. 17            | 0. 1282            | 0. 30          | Q          |   |    |       |   |   |
| 6. 30<br>6. 44   | 0. 1316<br>0. 1349 | 0. 30<br>0. 31 | Q<br>Q     | • |    | •     | • | • |
| 6. 57            | 0. 1383            | 0. 31          | Q          |   |    |       |   |   |
| 6. 70            | 0. 1417            | 0. 31          | Q          |   |    |       |   |   |
| 6. 83            | 0. 1451            | 0. 31          | Q          |   |    |       |   |   |
| 6. 97<br>7. 10   | 0. 1486<br>0. 1521 | 0. 32<br>0. 32 | Q          | • |    | •     | • | ٠ |
| 7. 10<br>7. 23   | 0. 1521            | 0. 32          | Q<br>Q     | • |    | •     | • | • |
| 7. 37            | 0. 1591            | 0. 33          | Q          | : |    |       |   |   |
| 7. 50            | 0. 1627            | 0. 33          | Q          |   |    |       |   |   |
| 7. 63            | 0. 1664            | 0. 33          | Q          |   |    |       | • | ٠ |
| 7. 76<br>7. 90   | 0. 1700<br>0. 1737 | 0. 33<br>0. 34 | Q<br>Q     | • |    | •     | • | • |
| 8. 03            | 0. 1737            | 0. 34          | Q          |   |    |       |   | • |
| 8. 16            | 0. 1812            | 0. 35          | Q          |   |    |       |   |   |
| 8. 30            | 0. 1851            | 0. 35          | Q          |   |    |       |   |   |
| 8. 43            | 0. 1889            | 0. 35          | Q          | • |    | •     | • | ٠ |
| 8. 56<br>8. 69   | 0. 1928<br>0. 1968 | 0. 36<br>0. 36 | Q<br>Q     | • |    | •     | • | • |
| 8. 83            | 0. 2008            | 0. 36          | Q          | : |    |       |   |   |
| 8. 96            | 0. 2048            | 0. 37          | Q          |   |    |       |   |   |
| 9. 09            | 0. 2089            | 0. 37          | Q          |   |    |       | • | ٠ |
| 9. 23<br>9. 36   | 0. 2130<br>0. 2172 | 0. 38<br>0. 38 | Q<br>Q     | • |    | •     | • | ٠ |
| 9. 49            | 0. 2214            | 0. 39          | Q          |   |    |       |   |   |
| 9. 62            | 0. 2257            | 0. 39          | Q          |   |    |       |   |   |
| 9. 76            | 0. 2300            | 0. 40          | Q          |   |    | •     |   |   |
| 9. 89<br>10. 02  | 0. 2344<br>0. 2389 | 0. 40<br>0. 41 | Q<br>Q     | • |    | •     | • | ٠ |
| 10. 16           | 0. 2434            | 0. 41          | Q          |   |    |       |   |   |
| 10. 29           | 0. 2480            | 0. 42          | Q          |   |    |       |   |   |
| 10. 42           | 0. 2527            | 0. 43          | Q          |   |    | •     |   |   |
| 10. 55<br>10. 69 | 0. 2574<br>0. 2622 | 0. 43<br>0. 44 | Q<br>Q     | • |    | •     | • | ٠ |
| 10. 82           | 0. 2670            | 0. 45          | Q          |   |    |       |   |   |
| 10. 95           | 0. 2720            | 0. 45          | Q          |   |    |       |   |   |
| 11. 09           | 0. 2770            | 0. 46          | Q          |   |    |       |   |   |
| 11. 22<br>11. 35 | 0. 2821<br>0. 2873 | 0. 47<br>0. 48 | Q<br>Q     | • |    | •     | • | ٠ |
| 11. 48           | 0. 2926            | 0. 48          | Q          |   |    |       |   | • |
| 11. 62           | 0. 2980            | 0. 50          | Q          |   |    |       |   |   |
| 11. 75           | 0. 3035            | 0. 50          | . Q        |   |    |       |   |   |
| 11. 88           | 0. 3091            | 0. 52          | . Q        |   |    | •     |   | ٠ |
| 12. 02<br>12. 15 | 0. 3148<br>0. 3214 | 0. 52<br>0. 68 | . Q<br>. Q | • |    | •     | • | • |
| 12. 28           | 0. 3289            | 0. 69          | . Q        | : |    |       |   |   |
| 12. 41           | 0. 3365            | 0. 70          | . Q        |   |    | •     |   |   |
| 12. 55           | 0. 3443            | 0. 71          | . Q        |   |    |       | • | ٠ |
| 12. 68<br>12. 81 | 0. 3522<br>0. 3603 | 0. 73<br>0. 74 | . Q<br>. Q | • |    | •     | • | • |
| 12. 91           | 0. 3686            | 0. 74          | . Q        | • |    | •     | • | • |
| 13. 08           | 0. 3770            | 0. 78          | . Q        | • |    |       |   |   |
| 13. 21           | 0. 3857            | 0.80           | . Q        |   |    |       |   |   |
| 13. 34           | 0. 3945            | 0. 81          | . Q        |   |    | •     |   | ٠ |
| 13. 48<br>13. 61 | 0. 4036<br>0. 4130 | 0. 84<br>0. 86 | . Q<br>. Q | • |    | •     | • | ٠ |
| 13. 74           | 0. 4226            | 0. 89          | . Q        | • |    |       |   |   |
| 13. 87           | 0. 4325            | 0. 91          | . Q        |   |    |       |   |   |
| 14. 01           | 0. 4427            | 0. 95          | . Q        |   |    | •     |   |   |
| 14. 14<br>14. 27 | 0. 4533<br>0. 4643 | 0. 97<br>1. 02 | . Q        |   |    | •     | • | ٠ |
| 14. 27<br>14. 41 | 0. 4643<br>0. 4757 | 1. 02          | . Q<br>. Q |   |    | •     |   | • |
|                  | ,                  | 55             | . •        |   |    |       |   | • |

| 11 51            | 0.4077             | 4 44            | 0          | X | 010_F |     |   |
|------------------|--------------------|-----------------|------------|---|-------|-----|---|
| 14. 54<br>14. 67 | 0. 4876<br>0. 5000 | 1. 11<br>1. 15  | . Q<br>. Q |   | •     |     |   |
| 14. 80<br>14. 94 | 0. 5130<br>0. 5269 | 1. 23<br>1. 29  | . Q<br>. Q |   | •     |     |   |
| 15. 07           | 0. 5418            | 1. 44           | . Q<br>. Q |   | •     |     |   |
| 15. 20<br>15. 34 | 0. 5581<br>0. 5762 | 1. 53<br>1. 76  | . Q<br>. Q | • |       |     |   |
| 15. 47           | 0. 5954            | 1. 73           | . Q        |   |       |     |   |
| 15. 60<br>15. 73 | 0. 6158<br>0. 6392 | 1. 98<br>2. 29  | . Q<br>. Q |   | •     |     |   |
| 15. 87           | 0. 6715            | 3. 60           | . Q        |   |       |     |   |
| 16. 00<br>16. 13 | 0. 7190<br>0. 8336 | 5. 05<br>15. 82 | •          | Q | •     | . Q |   |
| 16. 27           | 0. 9361            | 2.84            | . Q        |   |       |     |   |
| 16. 40<br>16. 53 | 0. 9613<br>0. 9799 | 1. 75<br>1. 64  | . Q<br>. Q |   |       |     |   |
| 16. 66           | 0. 9963            | 1. 36           | . Q        |   |       |     |   |
| 16. 80<br>16. 93 | 1. 0103<br>1. 0228 | 1. 19<br>1. 08  | . Q<br>. Q |   |       |     |   |
| 17.06            | 1. 0342            | 1.00            | . Q        |   | •     |     |   |
| 17. 20<br>17. 33 | 1. 0448<br>1. 0547 | 0. 93<br>0. 88  | . Q<br>. Q |   | •     |     |   |
| 17. 46<br>17. 59 | 1. 0641<br>1. 0729 | 0. 83<br>0. 79  | . Q<br>. Q |   |       |     |   |
| 17. 73           | 1. 0729            | 0. 75           | . Q<br>. Q |   |       |     |   |
| 17. 86<br>17. 99 | 1. 0895<br>1. 0973 | 0. 72<br>0. 69  | . Q<br>. Q | • |       |     |   |
| 18. 13           | 1. 1041            | 0. 55           | . Q        |   |       |     |   |
| 18. 26<br>18. 39 | 1. 1100<br>1. 1154 | 0. 51<br>0. 49  | . Q<br>Q   | • | •     |     | • |
| 18. 52           | 1. 1207            | 0. 47           | Q          |   |       |     |   |
| 18. 66<br>18. 79 | 1. 1258<br>1. 1308 | 0. 46<br>0. 44  | Q<br>Q     |   | •     |     |   |
| 18. 92           | 1. 1356            | 0. 43           | Q          |   | •     |     |   |
| 19. 06<br>19. 19 | 1. 1402<br>1. 1448 | 0. 42<br>0. 41  | Q<br>Q     |   |       |     |   |
| 19. 32           | 1. 1492            | 0.40            | Q          |   |       |     |   |
| 19. 45<br>19. 59 | 1. 1535<br>1. 1576 | 0. 39<br>0. 38  | Q<br>Q     |   |       |     |   |
| 19. 72           | 1. 1617            | 0.37            | Q          |   | •     |     |   |
| 19. 85<br>19. 98 | 1. 1657<br>1. 1696 | 0. 36<br>0. 35  | Q<br>Q     |   |       |     |   |
| 20. 12<br>20. 25 | 1. 1734<br>1. 1772 | 0. 34<br>0. 34  | Q<br>Q     |   |       |     |   |
| 20. 38           | 1. 1808            | 0. 33           | Q          |   | •     |     |   |
| 20. 52<br>20. 65 | 1. 1844<br>1. 1880 | 0. 32<br>0. 32  | Q<br>Q     |   | •     |     |   |
| 20. 78           | 1. 1914            | 0. 31           | Q          |   | •     |     |   |
| 20. 91<br>21. 05 | 1. 1948<br>1. 1982 | 0. 31<br>0. 30  | Q<br>Q     | • | •     |     | • |
| 21. 18           | 1. 2014            | 0. 30           | Q          |   | •     |     |   |
| 21. 31<br>21. 45 | 1. 2047<br>1. 2079 | 0. 29<br>0. 29  | Q<br>Q     |   |       |     |   |
| 21. 58           | 1. 2110            | 0. 28           | Q          |   |       |     |   |
| 21. 71<br>21. 84 | 1. 2141<br>1. 2171 | 0. 28<br>0. 27  | Q<br>Q     |   | •     |     |   |
| 21. 98           | 1. 2201            | 0. 27           | Q          |   | •     |     |   |
| 22. 11<br>22. 24 | 1. 2231<br>1. 2260 | 0. 27<br>0. 26  | Q<br>Q     |   | •     |     |   |
| 22. 38<br>22. 51 | 1. 2288<br>1. 2317 | 0. 26<br>0. 26  | Q<br>Q     |   | •     |     |   |
| 22. 64           | 1. 2345            | 0. 25           | Q          |   |       |     |   |
| 22. 77<br>22. 91 | 1. 2372<br>1. 2399 | 0. 25<br>0. 25  | Q<br>Q     |   |       |     |   |
| 23. 04           | 1. 2426            | 0. 24           | Q          |   | •     |     |   |
| 23. 17<br>23. 31 | 1. 2453<br>1. 2479 | 0. 24<br>0. 24  | Q<br>Q     |   | •     |     |   |
| 23. 44           | 1. 2505            | 0. 24           | Q          |   |       |     |   |
| 23. 57<br>23. 70 | 1. 2531<br>1. 2556 | 0. 23<br>0. 23  | Q<br>Q     |   | •     |     |   |
| 23. 84           | 1. 2582            | 0. 23           | Q          |   |       |     |   |
| 23. 97<br>24. 10 | 1. 2606<br>1. 2631 | 0. 23<br>0. 22  | Q<br>Q     |   |       |     |   |
| 24. 24           | 1. 2643            | 0. 00           | Q          |   |       |     |   |

# Drainage G

## NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

## \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 1.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.250
TIME OF CONCENTRATION (MIN.) = 8.11
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.39 0.16

| TOTAL                                  | CATCHWENT                     | 301 L-L033     | VOLU       | WE (ACKE-FEE)       | 1) = 0.          | 10               |                    |
|----------------------------------------|-------------------------------|----------------|------------|---------------------|------------------|------------------|--------------------|
| ************************************** | ***********<br>VOLUME<br>(AF) |                | ****<br>0. | ***********<br>2. 5 | ********<br>5. 0 | ********<br>7. 5 | *********<br>10. 0 |
| 0. 05                                  | 0. 0000                       | 0. 00          | Q          |                     |                  |                  |                    |
| 0. 19                                  | 0. 0004                       | 0. 07          | Q          |                     |                  |                  | •                  |
| 0. 32                                  | 0. 0012                       | 0. 07          | Q          |                     |                  |                  |                    |
| 0. 46                                  | 0. 0019                       | 0. 07          | Q          |                     |                  |                  |                    |
| 0. 59                                  | 0. 0027                       | 0. 07          | Q          |                     |                  |                  |                    |
| 0. 73                                  | 0. 0035                       | 0. 07          | Q          |                     |                  | •                |                    |
| 0. 86                                  | 0. 0043                       | 0. 07          | Q          | •                   |                  | •                | •                  |
| 1. 00                                  | 0. 0051                       | 0. 07          | Q          |                     |                  | •                |                    |
| 1. 13                                  | 0. 0059                       | 0. 07          | Q          |                     |                  | •                | •                  |
| 1. 27                                  | 0. 0067                       | 0. 07          | Q          |                     |                  | •                |                    |
| 1. 40                                  | 0. 0075                       | 0. 07          | Q          |                     |                  | •                |                    |
| 1. 54                                  | 0. 0083                       | 0. 07          | Q          |                     |                  | •                | •                  |
| 1. 67                                  | 0.0092                        | 0. 07          | Q          | •                   | •                | •                | •                  |
| 1. 81                                  | 0.0100                        | 0. 07          | Q          | •                   | •                | •                | •                  |
| 1. 94<br>2. 08                         | 0. 0108<br>0. 0117            | 0. 07<br>0. 08 | Q          | •                   | •                | •                | •                  |
| 2. 06                                  | 0. 0117                       | 0. 08          | Q<br>Q     | •                   | •                | •                | •                  |
| 2. 35                                  | 0. 0123                       | 0. 08          | Q          | •                   | •                | •                | •                  |
| 2. 48                                  | 0. 0134                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 2. 62                                  | 0. 0142                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 2. 75                                  | 0. 0151                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 2. 89                                  | 0. 0168                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 3. 02                                  | 0. 0177                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 3. 16                                  | 0. 0185                       | 0. 08          | Q          | •                   | •                | •                | •                  |
| 3. 29                                  | 0. 0194                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 3. 43                                  | 0. 0203                       | 0.08           | Q          | •                   | •                | •                | •                  |
| 3. 56                                  | 0. 0212                       | 0. 08          | Q          | •                   | •                | •                | •                  |
| 3. 70                                  | 0. 0221                       | 0. 08          | Q          | •                   | •                | •                | •                  |
| 3. 84                                  | 0. 0230                       | 0. 08          | Q          | •                   | •                | •                | •                  |
| 3. 97                                  | 0. 0239                       | 0. 08          | Q          |                     |                  | •                | •                  |
|                                        |                               |                |            |                     |                  |                  |                    |

Page 1

|                  |                    |                |            | XC  | 010_G |   |   |
|------------------|--------------------|----------------|------------|-----|-------|---|---|
| 14. 78<br>14. 92 | 0. 1585<br>0. 1628 | 0. 38<br>0. 39 | . Q<br>. Q | •   | •     | • | • |
| 15. 05           | 0. 1675            | 0. 44          | . Q        |     |       |   |   |
| 15. 19           | 0. 1726            | 0. 47          | . Q        |     |       |   |   |
| 15. 32<br>15. 46 | 0. 1782<br>0. 1843 | 0. 54<br>0. 54 | . Q<br>. Q | •   | •     | • | • |
| 15. 59           | 0. 1907            | 0. 61          | . Q<br>. Q |     |       |   |   |
| 15. 73           | 0. 1980            | 0.70           | . Q        |     |       |   |   |
| 15. 86<br>16. 00 | 0. 2081<br>0. 2230 | 1. 10<br>1. 55 | . Q<br>. Q | •   | •     | • | • |
| 16. 14           | 0. 2588            | 4. 86          | . 4        | . Q | !.    |   |   |
| 16. 27           | 0. 2908            | 0. 87          | . Q        |     |       |   |   |
| 16. 41<br>16. 54 | 0. 2986<br>0. 3044 | 0. 54<br>0. 50 | . Q<br>. Q | •   | •     | • | • |
| 16. 68           | 0. 3096            | 0. 42          | . Q        |     |       |   |   |
| 16. 81           | 0. 3139            | 0. 37          | . Q        |     | •     | • | • |
| 16. 95<br>17. 08 | 0. 3178<br>0. 3214 | 0. 33<br>0. 31 | . Q<br>. Q | •   | •     | • | • |
| 17. 22           | 0. 3247            | 0. 29          | . Q        |     |       |   |   |
| 17. 35           | 0. 3278            | 0. 27          | . Q        |     | •     | • |   |
| 17. 49<br>17. 62 | 0. 3307<br>0. 3335 | 0. 25<br>0. 24 | . Q<br>Q   |     | •     | • |   |
| 17. 76           | 0. 3362            | 0. 23          | Q          |     | •     | • |   |
| 17. 89<br>18. 03 | 0. 3387            | 0. 22<br>0. 21 | Q          | •   | •     | • | • |
| 18. 16           | 0. 3411<br>0. 3432 | 0. 21          | Q<br>Q     |     |       |   |   |
| 18. 30           | 0. 3450            | 0. 16          | Q          |     |       |   |   |
| 18. 43<br>18. 57 | 0. 3467<br>0. 3484 | 0. 15<br>0. 15 | Q<br>Q     |     | •     | • | • |
| 18. 70           | 0. 3500            | 0. 13          | Q          |     |       |   |   |
| 18. 84           | 0. 3515            | 0. 14          | Q          |     |       |   |   |
| 18. 97<br>19. 11 | 0. 3530<br>0. 3545 | 0. 13<br>0. 13 | Q<br>Q     | •   | •     | • | • |
| 19. 24           | 0. 3559            | 0. 13          | Q          |     |       |   |   |
| 19. 38           | 0. 3573            | 0. 12          | Q          |     |       |   |   |
| 19. 51<br>19. 65 | 0. 3586<br>0. 3599 | 0. 12<br>0. 12 | Q<br>Q     | •   | •     | • | • |
| 19. 78           | 0. 3612            | 0. 11          | Q          |     |       |   |   |
| 19. 92           | 0. 3624            | 0. 11          | Q          |     | •     | • | • |
| 20. 06<br>20. 19 | 0. 3637<br>0. 3648 | 0. 11<br>0. 11 | Q<br>Q     | •   | •     | • | • |
| 20. 33           | 0. 3660            | 0. 10          | Q          |     |       |   |   |
| 20. 46<br>20. 60 | 0. 3672<br>0. 3683 | 0. 10<br>0. 10 | Q<br>Q     | •   | •     | • | • |
| 20. 73           | 0. 3694            | 0. 10          | Q          |     |       |   |   |
| 20.87            | 0. 3705            | 0. 10          | Q          |     |       |   |   |
| 21. 00<br>21. 14 | 0. 3715<br>0. 3726 | 0. 09<br>0. 09 | Q<br>Q     | •   | •     | • | • |
| 21. 27           | 0. 3726            | 0.09           | Q          |     |       |   |   |
| 21. 41           | 0. 3746            | 0.09           | Q          |     |       |   |   |
| 21. 54<br>21. 68 | 0. 3756<br>0. 3766 | 0. 09<br>0. 09 | Q<br>Q     | •   | •     | • | • |
| 21. 81           | 0. 3775            | 0.09           | Q          |     |       |   |   |
| 21. 95<br>22. 08 | 0. 3785<br>0. 3794 | 0. 08<br>0. 08 | Q<br>Q     | •   | •     | • | • |
| 22. 22           | 0. 3803            | 0.08           | Q          |     |       |   |   |
| 22. 35           | 0. 3813            | 0.08           | Q          |     |       |   |   |
| 22. 49<br>22. 62 | 0. 3821<br>0. 3830 | 0. 08<br>0. 08 | Q<br>Q     | •   | •     | • | • |
| 22. 76           | 0. 3839            | 0. 08          | Q          |     |       |   |   |
| 22. 89           | 0. 3848            | 0.08           | Q          |     |       | • | • |
| 23. 03<br>23. 16 | 0. 3856<br>0. 3865 | 0. 08<br>0. 07 | Q<br>Q     |     |       |   |   |
| 23. 30           | 0. 3873            | 0. 07          | Q          |     |       | • | • |
| 23. 43           | 0. 3881            | 0.07           | Q          |     |       | • | • |
| 23. 57<br>23. 70 | 0. 3889<br>0. 3897 | 0. 07<br>0. 07 | Q<br>Q     |     |       |   |   |
| 23.84            | 0. 3905            | 0.07           | Q          |     | •     | • |   |
| 23. 97<br>24. 11 | 0. 3913<br>0. 3921 | 0.07           | Q<br>Q     | •   |       | • |   |
| 24. 11           | 0. 3921            | 0. 07<br>0. 00 | Q          |     |       |   |   |
|                  |                    |                |            |     |       |   |   |

# Drainage H

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 7.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.250
TIME OF CONCENTRATION (MIN.) = 8.42
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1. 53 0. 62

|                                                                                                 |                                                                                                                       |                                                                                        |               | UME (ACRE-FEET |       | . 62                       |       |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|----------------|-------|----------------------------|-------|
| TI ME<br>(HOURS)                                                                                | **********<br>VOLUME<br>(AF)                                                                                          |                                                                                        | * * * *<br>O. | 5. 0           | 10. 0 | *******<br>15. 0           | 20. 0 |
| 0. 00<br>0. 14<br>0. 28<br>0. 42<br>0. 56<br>0. 70<br>0. 84<br>0. 98<br>1. 12<br>1. 26          | 0. 0000<br>0. 0016<br>0. 0047<br>0. 0078<br>0. 0110<br>0. 0142<br>0. 0174<br>0. 0206<br>0. 0238<br>0. 0271            | 0. 00<br>0. 27<br>0. 27<br>0. 27<br>0. 27<br>0. 28<br>0. 28<br>0. 28<br>0. 28<br>0. 28 |               |                |       |                            |       |
| 1. 41<br>1. 55<br>1. 69<br>1. 83<br>1. 97<br>2. 11<br>2. 25<br>2. 39<br>2. 53<br>2. 67<br>2. 81 | 0. 0304<br>0. 0337<br>0. 0370<br>0. 0403<br>0. 0437<br>0. 0471<br>0. 0505<br>0. 0539<br>0. 0573<br>0. 0608<br>0. 0643 | 0. 28<br>0. 29<br>0. 29<br>0. 29<br>0. 29<br>0. 29<br>0. 30<br>0. 30<br>0. 30          | 000000000000  |                |       |                            |       |
| 2. 95<br>3. 09<br>3. 23<br>3. 37<br>3. 51<br>3. 65<br>3. 79<br>3. 93<br>4. 07                   | 0. 0678<br>0. 0713<br>0. 0749<br>0. 0785<br>0. 0821<br>0. 0857<br>0. 0894<br>0. 0931                                  | 0. 30<br>0. 31<br>0. 31<br>0. 31<br>0. 31<br>0. 31<br>0. 32<br>0. 32<br>0. 32          |               |                |       | :<br>:<br>:<br>:<br>:<br>: |       |

Page 1

|                  |                    |                |            |   | XO | 10_H |      |  |
|------------------|--------------------|----------------|------------|---|----|------|------|--|
| 4. 21<br>4. 35   | 0. 1005<br>0. 1043 | 0. 32<br>0. 33 | Q<br>Q     |   |    |      |      |  |
| 4. 49            | 0. 1043            | 0.33           | Q          |   |    |      | <br> |  |
| 4. 63<br>4. 77   | 0. 1119<br>0. 1158 | 0. 33<br>0. 33 | Q<br>Q     | • |    |      |      |  |
| 4. 77            | 0. 1197            | 0. 33          | Q          |   |    |      | · .  |  |
| 5. 05<br>5. 19   | 0. 1236<br>0. 1275 | 0. 34<br>0. 34 | Q<br>Q     | • |    |      |      |  |
| 5. 33            | 0. 1315            | 0.34           | Q          |   |    |      | · .  |  |
| 5. 47<br>5. 62   | 0. 1355<br>0. 1396 | 0. 35<br>0. 35 | Q<br>Q     |   |    |      |      |  |
| 5. 76            | 0. 1437            | 0. 35          | Q          |   |    |      | · .  |  |
| 5. 90<br>6. 04   | 0. 1478<br>0. 1519 | 0. 36<br>0. 36 | Q<br>Q     | • | •  |      |      |  |
| 6. 18            | 0. 1561            | 0.36           | Q          |   |    |      | · .  |  |
| 6. 32<br>6. 46   | 0. 1603<br>0. 1646 | 0. 37<br>0. 37 | Q<br>Q     | • | •  |      |      |  |
| 6. 60            | 0. 1689            | 0. 37          | Q          |   |    |      |      |  |
| 6. 74<br>6. 88   | 0. 1733<br>0. 1776 | 0. 38<br>0. 38 | Q<br>Q     | • | •  |      |      |  |
| 7. 02            | 0. 1821            | 0.38           | Q          |   |    |      |      |  |
| 7. 16<br>7. 30   | 0. 1865<br>0. 1910 | 0. 39<br>0. 39 | Q<br>Q     | • | •  |      |      |  |
| 7.44             | 0. 1956            | 0.40           | Q          |   |    |      |      |  |
| 7. 58<br>7. 72   | 0. 2002<br>0. 2049 | 0. 40<br>0. 40 | Q<br>Q     | • | •  |      |      |  |
| 7. 86            | 0. 2096            | 0. 41          | Q          |   |    |      |      |  |
| 8. 00<br>8. 14   | 0. 2143<br>0. 2191 | 0. 41<br>0. 42 | Q<br>Q     | • | •  |      |      |  |
| 8. 28            | 0. 2240            | 0.42           | Q          |   |    |      |      |  |
| 8. 42<br>8. 56   | 0. 2289<br>0. 2339 | 0. 43<br>0. 43 | Q<br>Q     | • |    |      |      |  |
| 8. 70            | 0. 2389            | 0.44           | Q          |   |    |      |      |  |
| 8. 84<br>8. 98   | 0. 2440<br>0. 2491 | 0. 44<br>0. 45 | Q<br>Q     | • | •  |      |      |  |
| 9. 12            | 0. 2544            | 0.45           | Q          |   |    |      |      |  |
| 9. 26<br>9. 40   | 0. 2596<br>0. 2650 | 0. 46<br>0. 47 | Q<br>Q     | • |    |      |      |  |
| 9. 54            | 0. 2704            | 0.47           | Q          |   |    |      |      |  |
| 9. 68<br>9. 83   | 0. 2759<br>0. 2815 | 0. 48<br>0. 48 | Q<br>Q     |   |    |      |      |  |
| 9. 97            | 0. 2871            | 0.49           | Q          |   |    |      |      |  |
| 10. 11<br>10. 25 | 0. 2928<br>0. 2987 | 0. 50<br>0. 51 | Q<br>. Q   |   |    |      |      |  |
| 10. 39<br>10. 53 | 0. 3046<br>0. 3106 | 0. 51<br>0. 52 | . Q<br>. Q | • |    |      |      |  |
| 10. 53           | 0. 3166            | 0. 53          | . Q<br>. Q |   |    |      | · .  |  |
| 10. 81<br>10. 95 | 0. 3228<br>0. 3291 | 0. 54<br>0. 55 | . Q<br>. Q |   |    |      |      |  |
| 11. 09           | 0. 3355            | 0.56           | . Q<br>. Q |   |    |      | · .  |  |
| 11. 23<br>11. 37 | 0. 3420<br>0. 3487 | 0. 57<br>0. 58 | . Q<br>. Q |   |    |      |      |  |
| 11. 51           | 0. 3554            | 0. 59          | . Q        |   |    |      | · .  |  |
| 11. 65<br>11. 79 | 0. 3623<br>0. 3694 | 0. 60<br>0. 61 | . Q<br>. Q |   |    |      |      |  |
| 11. 93           | 0. 3765            | 0.63           | . Q        |   |    |      |      |  |
| 12. 07<br>12. 21 | 0. 3839<br>0. 3923 | 0. 64<br>0. 82 | . Q<br>. Q |   |    |      |      |  |
| 12. 35           | 0. 4020            | 0.84           | . Q        |   |    |      |      |  |
| 12. 49<br>12. 63 | 0. 4118<br>0. 4218 | 0. 86<br>0. 87 | . Q<br>. Q |   |    |      |      |  |
| 12. 77<br>12. 91 | 0. 4320            | 0. 90<br>0. 91 | . Q<br>. Q | • | •  |      |      |  |
| 13. 05           | 0. 4425<br>0. 4532 | 0. 91          | . Q<br>. Q |   |    |      | · .  |  |
| 13. 19<br>13. 33 | 0. 4642<br>0. 4755 | 0. 95<br>0. 99 | . Q<br>. Q | • |    |      |      |  |
| 13. 47           | 0. 4871            | 1. 01          | . Q        |   |    |      | · .  |  |
| 13. 61<br>13. 75 | 0. 4990<br>0. 5112 | 1. 05<br>1. 07 | . Q<br>. Q | • |    |      |      |  |
| 13. 90           | 0. 5239            | 1. 12          | . Q        |   |    |      |      |  |
| 14. 04<br>14. 18 | 0. 5370<br>0. 5506 | 1. 14<br>1. 20 | . Q<br>. Q |   | •  |      |      |  |
| 14. 32           | 0. 5647            | 1. 23          | . Q        |   |    |      |      |  |
| 14. 46<br>14. 60 | 0. 5794<br>0. 5948 | 1. 31<br>1. 35 | . Q<br>. Q |   |    |      |      |  |
| 14. 74           | 0. 6110            | 1. 44          | . Q        |   |    |      |      |  |
| 14. 88<br>15. 02 | 0. 6280<br>0. 6464 | 1. 50<br>1. 67 | . Q<br>. Q |   |    |      |      |  |
| 15. 16           | 0. 6664            | 1. 78          | . Q        |   |    |      |      |  |

. Page 2

|                  |                    |                 |            |     | X010_H |   |     |
|------------------|--------------------|-----------------|------------|-----|--------|---|-----|
| 15. 30<br>15. 44 | 0. 6887<br>0. 7132 | 2. 05<br>2. 18  | . Q<br>. Q | •   | •      |   |     |
| 15. 58           | 0. 7391            | 2. 30           | . Q        |     |        |   |     |
| 15. 72           | 0. 7678            | 2. 66           | . Q        | •   |        |   |     |
| 15. 86           | 0.8075             | 4. 19           | . 0        |     |        | • |     |
| 16. 00<br>16. 14 | 0. 8660<br>1. 0073 | 5. 89<br>18. 48 | •          | . Q | •      | • | Q . |
| 16. 28           | 1. 1335            | 3. 27           | . Q        |     |        |   |     |
| 16. 42           | 1. 1642            | 2. 03           | . Q        |     |        | • |     |
| 16. 56<br>16. 70 | 1. 1870<br>1. 2072 | 1. 91<br>1. 58  | . Q<br>. Q | •   | •      | • |     |
| 16. 84           | 1. 2245            | 1. 39           | . Q        |     |        |   |     |
| 16. 98           | 1. 2399            | 1. 27           | . Q        |     |        |   |     |
| 17. 12<br>17. 26 | 1. 2540<br>1. 2671 | 1. 17<br>1. 09  | . Q<br>. Q |     | •      | • | •   |
| 17. 40           | 1. 2794            | 1. 03           | . Q        |     | •      |   |     |
| 17. 54           | 1. 2910            | 0. 97           | . Q        |     |        |   |     |
| 17. 68<br>17. 82 | 1. 3020<br>1. 3125 | 0. 92<br>0. 88  | . Q<br>. Q |     |        | • |     |
| 17. 96           | 1. 3125            | 0.85            | . Q<br>. Q | •   |        |   |     |
| 18. 11           | 1. 3319            | 0. 77           | . Q        |     | •      |   |     |
| 18. 25           | 1. 3400            | 0.62            | . Q        |     |        | • |     |
| 18. 39<br>18. 53 | 1. 3470<br>1. 3538 | 0. 59<br>0. 57  | . Q<br>. Q | •   | •      | • | •   |
| 18. 67           | 1. 3603            | 0. 55           | . Q        |     |        |   |     |
| 18. 81           | 1. 3666            | 0. 53           | . Q        |     |        |   |     |
| 18. 95<br>19. 09 | 1. 3727<br>1. 3786 | 0. 52<br>0. 50  | . Q<br>. Q | •   | •      | • |     |
| 19. 23           | 1. 3843            | 0. 49           | Q          | ·   | •      |   | •   |
| 19. 37           | 1. 3899            | 0. 47           | Q          |     |        | • |     |
| 19. 51<br>19. 65 | 1. 3953<br>1. 4006 | 0. 46<br>0. 45  | Q<br>Q     |     | •      | • | •   |
| 19. 79           | 1. 4057            | 0.43            | Q          |     | •      |   |     |
| 19. 93           | 1. 4108            | 0. 43           | Q          |     |        |   |     |
| 20. 07           | 1. 4157<br>1. 4205 | 0. 42<br>0. 41  | Q          |     | •      | • | •   |
| 20. 21<br>20. 35 | 1. 4252            | 0.41            | Q<br>Q     |     |        |   |     |
| 20. 49           | 1. 4298            | 0. 39           | Q          |     |        |   |     |
| 20. 63           | 1. 4343            | 0. 39           | Q          |     |        | • |     |
| 20. 77<br>20. 91 | 1. 4387<br>1. 4431 | 0. 38<br>0. 37  | Q<br>Q     | •   | •      | • | •   |
| 21. 05           | 1. 4473            | 0. 36           | Q          | ·   |        |   |     |
| 21. 19           | 1. 4515            | 0. 36           | Q          |     | ·      |   |     |
| 21. 33<br>21. 47 | 1. 4556<br>1. 4597 | 0. 35<br>0. 35  | Q<br>Q     | •   | •      | • | •   |
| 21. 61           | 1. 4637            | 0. 34           | Q          |     |        |   |     |
| 21. 75           | 1. 4676            | 0. 34           | Q          |     |        |   |     |
| 21. 89<br>22. 03 | 1. 4714<br>1. 4752 | 0. 33<br>0. 33  | Q<br>Q     | •   | •      | • |     |
| 22. 03           | 1. 4790            | 0. 33           | Q          |     | •      |   |     |
| 22. 32           | 1. 4827            | 0. 32           | Q          |     |        |   |     |
| 22. 46<br>22. 60 | 1. 4863<br>1. 4899 | 0. 31<br>0. 31  | Q<br>Q     | •   | •      | • | •   |
| 22. 74           | 1. 4934            | 0.31            | Q          |     |        |   |     |
| 22. 88           | 1. 4969            | 0. 30           | Q          |     | •      |   | •   |
| 23. 02           | 1. 5004            | 0.30            | Q          |     | •      |   |     |
| 23. 16<br>23. 30 | 1. 5038<br>1. 5071 | 0. 29<br>0. 29  | Q<br>Q     |     | •      | • | •   |
| 23. 44           | 1. 5104            | 0. 28           | Q          |     | •      |   |     |
| 23. 58           | 1. 5137            | 0. 28           | Q          |     | •      |   |     |
| 23. 72<br>23. 86 | 1. 5169<br>1. 5201 | 0. 28<br>0. 27  | Q<br>Q     | •   | •      | • |     |
| 24.00            | 1. 5233            | 0. 27           | Q          | •   |        | • |     |
| 24. 14           | 1. 5264            | 0. 27           | Q          | •   |        | • |     |
| 24. 28           | 1. 5280            | 0.00            | Q          |     |        |   |     |

# Drainage I

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 1.10
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.250
TIME OF CONCENTRATION(MIN.) = 9.63
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.24 0.10

|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                           |        | *****  |      |      |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------|------|-------|
| TI ME<br>(HOURS)                                                                                                                                                                                                                                         | VOLUME<br>(AF)                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                           | 0.     | 2. 5   | 5. 0 | 7. 5 | 10. 0 |
| 0. 11<br>0. 27<br>0. 43<br>0. 59<br>0. 75<br>0. 91<br>1. 07<br>1. 23<br>1. 39<br>1. 55<br>1. 72<br>1. 88<br>2. 04<br>2. 20<br>2. 36<br>2. 52<br>2. 68<br>2. 84<br>3. 30<br>3. 16<br>3. 32<br>3. 48<br>3. 64<br>3. 80<br>3. 96<br>4. 12<br>4. 28<br>4. 44 | 0. 0002<br>0. 0008<br>0. 0013<br>0. 0019<br>0. 0025<br>0. 0036<br>0. 0042<br>0. 0048<br>0. 0054<br>0. 0060<br>0. 0066<br>0. 0072<br>0. 0078<br>0. 0084<br>0. 0090<br>0. 0090<br>0. 0103<br>0. 0109<br>0. 0115<br>0. 0122<br>0. 0128<br>0. 0135<br>0. 0141<br>0. 0148<br>0. 0155<br>0. 0161<br>0. 0168 | 0. 04<br>0. 04<br>0. 04<br>0. 04<br>0. 04<br>0. 04<br>0. 04<br>0. 05<br>0. 05 |        |        |      |      |       |
| 4. 60<br>4. 76                                                                                                                                                                                                                                           | 0. 0175<br>0. 0182                                                                                                                                                                                                                                                                                    | 0. 05<br>0. 05                                                                                                                                                                            | Q<br>Q | ·<br>· |      |      | •     |

Page 1

|                  |                    |                |            |   | X010_I |   |   |
|------------------|--------------------|----------------|------------|---|--------|---|---|
| 4. 93            | 0. 0189            | 0.05           | Q          |   |        |   |   |
| 5. 09<br>5. 25   | 0. 0196<br>0. 0203 | 0. 05<br>0. 05 | Q<br>Q     | • | •      |   |   |
| 5. 41            | 0. 0210            | 0.05           | Q          |   |        | • |   |
| 5. 57<br>5. 73   | 0. 0218<br>0. 0225 | 0. 05<br>0. 06 | Q<br>Q     |   |        | • | • |
| 5. 89            | 0. 0232            | 0.06           | Q          |   |        |   |   |
| 6. 05<br>6. 21   | 0. 0240<br>0. 0247 | 0. 06<br>0. 06 | Q<br>Q     |   |        |   |   |
| 6. 37            | 0. 0255<br>0. 0263 | 0. 06<br>0. 06 | Q          |   |        |   |   |
| 6. 53<br>6. 69   | 0. 0203            | 0.06           | Q<br>Q     |   | ·<br>· |   |   |
| 6. 85<br>7. 01   | 0. 0278<br>0. 0286 | 0. 06<br>0. 06 | Q<br>Q     |   |        |   |   |
| 7. 17            | 0. 0294            | 0.06           | Q          |   |        |   |   |
| 7. 33<br>7. 49   | 0. 0302<br>0. 0310 | 0. 06<br>0. 06 | Q<br>Q     | • | •      | • |   |
| 7. 65            | 0. 0319            | 0.06           | Q          |   |        |   |   |
| 7. 81<br>7. 97   | 0. 0327<br>0. 0336 | 0. 06<br>0. 06 | Q<br>Q     |   |        |   |   |
| 8. 14            | 0. 0344            | 0. 07          | Q          |   |        | • |   |
| 8. 30<br>8. 46   | 0. 0353<br>0. 0362 | 0. 07<br>0. 07 | Q<br>Q     |   |        | • | • |
| 8. 62            | 0. 0371            | 0.07           | Q          |   |        |   |   |
| 8. 78<br>8. 94   | 0. 0380<br>0. 0389 | 0. 07<br>0. 07 | Q<br>Q     |   |        |   |   |
| 9. 10<br>9. 26   | 0. 0398            | 0.07           | Q          |   |        |   |   |
| 9. 26<br>9. 42   | 0. 0408<br>0. 0417 | 0. 07<br>0. 07 | Q<br>Q     |   | •      |   |   |
| 9. 58<br>9. 74   | 0. 0427<br>0. 0437 | 0. 07<br>0. 08 | Q<br>Q     | • |        |   |   |
| 9. 90            | 0. 0447            | 0.08           | Q          |   |        |   |   |
| 10. 06<br>10. 22 | 0. 0457<br>0. 0468 | 0. 08<br>0. 08 | Q<br>Q     | • |        | • | • |
| 10. 38           | 0. 0478            | 0.08           | Q          |   | ·<br>· |   |   |
| 10. 54<br>10. 70 | 0. 0489<br>0. 0500 | 0. 08<br>0. 08 | Q<br>Q     |   |        |   |   |
| 10. 86           | 0. 0511            | 0.08           | Q          |   |        |   |   |
| 11. 02<br>11. 18 | 0. 0523<br>0. 0534 | 0. 09<br>0. 09 | Q<br>Q     |   |        | • | • |
| 11. 35           | 0. 0546            | 0.09           | Q          |   |        |   |   |
| 11. 51<br>11. 67 | 0. 0558<br>0. 0571 | 0. 09<br>0. 09 | Q<br>Q     |   | •      |   |   |
| 11. 83<br>11. 99 | 0. 0583<br>0. 0596 | 0. 10<br>0. 10 | Q<br>Q     | • |        |   |   |
| 12. 15           | 0. 0610            | 0. 11          | Q          |   |        |   |   |
| 12. 31<br>12. 47 | 0. 0626<br>0. 0644 | 0. 13<br>0. 13 | Q<br>Q     | • |        | • | • |
| 12. 63           | 0.0662             | 0. 14          | Q          |   | ·<br>· |   |   |
| 12. 79<br>12. 95 | 0. 0680<br>0. 0699 | 0. 14<br>0. 14 | Q<br>Q     |   |        |   |   |
| 13. 11           | 0. 0718            | 0. 15          | Q          |   |        |   |   |
| 13. 27<br>13. 43 | 0. 0738<br>0. 0759 | 0. 15<br>0. 16 | Q<br>Q     |   |        |   |   |
| 13. 59           | 0. 0780            | 0. 16          | Q          |   |        |   |   |
| 13. 75<br>13. 91 | 0. 0802<br>0. 0824 | 0. 17<br>0. 18 | Q<br>Q     |   |        |   |   |
| 14. 07<br>14. 23 | 0. 0848<br>0. 0873 | 0. 18<br>0. 19 | Q<br>Q     |   |        |   |   |
| 14. 40           | 0. 0898            | 0. 20          | Q          |   |        |   |   |
| 14. 56<br>14. 72 | 0. 0926<br>0. 0954 | 0. 21<br>0. 22 | Q<br>Q     |   |        |   |   |
| 14. 88           | 0. 0985            | 0. 24          | Q          |   | ÷      |   |   |
| 15. 04<br>15. 20 | 0. 1017<br>0. 1054 | 0. 26<br>0. 29 | . Q<br>. Q | • |        | • |   |
| 15. 36           | 0. 1095            | 0.32           | . Q        |   |        |   |   |
| 15. 52<br>15. 68 | 0. 1138<br>0. 1184 | 0. 33<br>0. 38 | . Q<br>. Q | • |        | • |   |
| 15. 84           | 0. 1249            | 0.60           | . 0        |   |        |   |   |
| 16. 00<br>16. 16 | 0. 1346<br>0. 1580 | 0. 85<br>2. 68 | . Q        | Q |        | • |   |
| 16. 32           | 0. 1788            | 0.46           | . Q        |   |        |   |   |
| 16. 48<br>16. 64 | 0. 1841<br>0. 1881 | 0. 34<br>0. 27 | . Q<br>. Q |   |        |   |   |
| 16. 80           | 0. 1915<br>0. 1943 | 0. 23<br>0. 20 | Q<br>Q     |   |        |   |   |
| 16. 96<br>17. 12 | 0. 1969            | 0. 19          | Q          | • |        |   |   |
| 17. 28<br>17. 44 | 0. 1993<br>0. 2015 | 0. 17<br>0. 16 | Q<br>Q     |   |        |   |   |
| 17.44            | 0. 2010            | 0. 10          | ų.         | • |        |   | • |

Page 2

|                  |                    |                |        |   | X010_I |   |                                       |
|------------------|--------------------|----------------|--------|---|--------|---|---------------------------------------|
| 17. 61           | 0. 2035            | 0. 15          | Q      |   |        |   |                                       |
| 17. 77           | 0. 2055            | 0. 14          | Q      | • | •      | • | •                                     |
| 17. 93           | 0. 2073            | 0. 14          | Q      |   |        | • | •                                     |
| 18. 09           | 0. 2091            | 0. 13          | Q      | • | •      | • | •                                     |
| 18. 25<br>18. 41 | 0. 2106<br>0. 2118 | 0. 10<br>0. 09 | Q<br>Q | • | •      | • | •                                     |
| 18. 57           | 0. 2110            | 0.09           | Q      | • | •      | • | •                                     |
| 18. 73           | 0. 2142            | 0.09           | Q      | • | •      | • | •                                     |
| 18. 89           | 0. 2153            | 0.08           | ã      | • | •      | • | •                                     |
| 19. 05           | 0. 2164            | 0. 08          | Q      |   |        |   |                                       |
| 19. 21           | 0. 2174            | 0. 08          | Q      |   |        |   |                                       |
| 19. 37           | 0. 2184            | 0. 07          | Q      |   |        |   |                                       |
| 19. 53           | 0. 2194            | 0. 07          | Q      |   |        |   |                                       |
| 19. 69           | 0. 2204            | 0. 07          | Q      |   |        |   |                                       |
| 19. 85           | 0. 2213            | 0. 07          | Q      |   |        |   |                                       |
| 20. 01           | 0. 2222            | 0. 07          | Q      | • |        | • |                                       |
| 20. 17           | 0. 2230            | 0. 06          | Q      | • |        | • |                                       |
| 20. 33           | 0. 2239            | 0.06           | Q      |   |        | • | •                                     |
| 20. 49           | 0. 2247            | 0.06           | Q      | • | •      | • | •                                     |
| 20. 65<br>20. 82 | 0. 2255<br>0. 2263 | 0. 06<br>0. 06 | Q      | • | •      | • | •                                     |
| 20. 82<br>20. 98 | 0. 2263            | 0.06           | Q<br>Q | • | •      | • | •                                     |
| 21. 14           | 0. 2271            | 0.06           | Q      | • | •      | • | •                                     |
| 21. 30           | 0. 2286            | 0.06           | Q      | • | •      | • | •                                     |
| 21. 46           | 0. 2293            | 0.05           | ã      | • | •      | • | •                                     |
| 21. 62           | 0. 2301            | 0.05           | Q      | • |        |   | •                                     |
| 21. 78           | 0. 2308            | 0. 05          | Q      |   |        |   |                                       |
| 21. 94           | 0. 2315            | 0. 05          | Q      |   |        |   |                                       |
| 22. 10           | 0. 2321            | 0.05           | Q      |   |        |   |                                       |
| 22. 26           | 0. 2328            | 0. 05          | Q      | • | •      | • | •                                     |
| 22. 42           | 0. 2335            | 0. 05          | Q      |   |        | • |                                       |
| 22. 58           | 0. 2341            | 0. 05          | Q      |   |        |   |                                       |
| 22. 74           | 0. 2347            | 0. 05          | Q      | • | •      | • | •                                     |
| 22. 90           | 0. 2354            | 0. 05          | Q      |   | •      | • |                                       |
| 23. 06           | 0. 2360            | 0.05           | Q      | • | •      | • | •                                     |
| 23. 22<br>23. 38 | 0. 2366<br>0. 2372 | 0. 05<br>0. 04 | Q      | • | •      | • | •                                     |
| 23. 38<br>23. 54 | 0. 2372<br>0. 2378 | 0. 04          | Q<br>Q | • | •      | • | •                                     |
| 23. 70           | 0. 2376            | 0. 04          | Q      | • | •      | • | •                                     |
| 23. 70           | 0. 2390            | 0. 04          | Q      | • | •      | • | •                                     |
| 24. 02           | 0. 2395            | 0. 04          | Q      | • | •      | • | •                                     |
| 24. 19           | 0. 2398            | 0.00           | Q      | • | •      | • | •                                     |
| ,                |                    |                |        | · | ·      | · | · · · · · · · · · · · · · · · · · · · |

# Drainage J

| 4. 11            | 0. 0249            | 0. 08          | Q          |   | X | 010_G |   |   |
|------------------|--------------------|----------------|------------|---|---|-------|---|---|
| 4. 11            | 0. 0249            | 0. 08          | Q          |   |   | •     |   |   |
| 4. 38            | 0. 0267            | 0. 08          | Q          |   |   |       |   |   |
| 4. 51            | 0. 0277            | 0. 08          | Q          |   |   | •     | • |   |
| 4. 65<br>4. 78   | 0. 0286<br>0. 0296 | 0. 09<br>0. 09 | Q<br>Q     |   |   | •     | • | • |
| 4. 92            | 0. 0305            | 0.09           | Q          |   |   |       |   | • |
| 5. 05            | 0. 0315            | 0. 09          | Q          |   |   |       |   |   |
| 5. 19            | 0. 0325            | 0. 09          | Q          |   |   | •     | • |   |
| 5. 32<br>5. 46   | 0. 0335<br>0. 0345 | 0. 09<br>0. 09 | Q<br>Q     |   |   | •     | • | • |
| 5. 59            | 0. 0355            | 0. 09          | Q          |   |   |       |   |   |
| 5. 73            | 0. 0365            | 0. 09          | Q          |   |   |       |   |   |
| 5. 86            | 0. 0375<br>0. 0385 | 0. 09          | Q          |   |   | •     | • |   |
| 6. 00<br>6. 13   | 0. 0385            | 0. 09<br>0. 09 | Q<br>Q     | • |   | •     | • | ٠ |
| 6. 27            | 0. 0406            | 0. 09          | Q          |   |   |       | • |   |
| 6. 40            | 0. 0417            | 0. 09          | Q          |   |   |       |   |   |
| 6. 54<br>6. 67   | 0. 0427<br>0. 0438 | 0. 10<br>0. 10 | Q<br>Q     | • |   | •     | • | • |
| 6. 81            | 0. 0438            | 0. 10          | Q          | • |   | •     | • | • |
| 6. 94            | 0. 0460            | 0. 10          | Q          |   |   | •     |   |   |
| 7. 08            | 0. 0471            | 0. 10          | Q          |   |   | •     | • |   |
| 7. 21<br>7. 35   | 0. 0482<br>0. 0493 | 0. 10<br>0. 10 | Q<br>Q     |   |   | •     | • | • |
| 7. 48            | 0. 0504            | 0. 10          | Q          |   |   |       |   |   |
| 7. 62            | 0. 0516            | 0. 10          | Q          |   |   |       |   |   |
| 7. 75            | 0. 0527<br>0. 0539 | 0. 10          | Q          |   |   | •     | • |   |
| 7. 89<br>8. 03   | 0. 0539            | 0. 10<br>0. 11 | Q<br>Q     | • |   | •     | • | ٠ |
| 8. 16            | 0. 0563            | 0. 11          | Q          |   |   |       |   |   |
| 8. 30            | 0. 0575            | 0. 11          | Q          |   |   |       |   |   |
| 8. 43<br>8. 57   | 0. 0587<br>0. 0599 | 0. 11<br>0. 11 | Q<br>Q     | • |   | •     | • |   |
| 8. 70            | 0. 0544            | 0. 11          | Q          |   |   |       |   |   |
| 8. 84            | 0.0624             | 0. 11          | Q          |   |   |       |   |   |
| 8. 97            | 0.0637             | 0. 11          | Q          |   |   | •     | • |   |
| 9. 11<br>9. 24   | 0. 0650<br>0. 0663 | 0. 12<br>0. 12 | Q<br>Q     | • |   | •     | • | ٠ |
| 9. 38            | 0. 0676            | 0. 12          | Q          |   |   |       |   |   |
| 9. 51            | 0. 0690            | 0. 12          | Q          |   |   |       |   |   |
| 9. 65<br>9. 78   | 0. 0703<br>0. 0717 | 0. 12<br>0. 12 | Q<br>Q     | • |   | •     | • |   |
| 9. 92            | 0. 0717            | 0. 12          | Q          |   |   |       |   | • |
| 10. 05           | 0. 0745            | 0. 13          | Q          |   |   |       |   |   |
| 10. 19<br>10. 32 | 0. 0759<br>0. 0774 | 0. 13<br>0. 13 | Q<br>Q     |   |   | •     | • |   |
| 10. 32<br>10. 46 | 0. 0774            | 0. 13          | Q          | • |   | •     | • | • |
| 10. 59           | 0. 0804            | 0. 13          | Q          |   |   |       |   |   |
| 10. 73           | 0. 0819            | 0. 14          | Q          |   |   | •     | • |   |
| 10. 86<br>11. 00 | 0. 0834<br>0. 0850 | 0. 14<br>0. 14 | Q<br>Q     |   |   | •     | • | • |
| 11. 13           | 0. 0866            | 0. 14          | Q          |   |   |       |   |   |
| 11. 27           | 0. 0882            | 0. 15          | Q          |   |   |       |   |   |
| 11. 40<br>11. 54 | 0. 0899<br>0. 0915 | 0. 15<br>0. 15 | Q<br>Q     | • |   | •     | • |   |
| 11. 67           | 0. 0913            | 0. 15          | Q          |   |   |       |   |   |
| 11. 81           | 0. 0950            | 0. 16          | Q          |   |   |       |   |   |
| 11. 95           | 0. 0968            | 0. 16          | Q          |   |   | •     | • |   |
| 12. 08<br>12. 22 | 0. 0987<br>0. 1009 | 0. 18<br>0. 21 | Q<br>Q     |   |   | •     | • | • |
| 12. 35           | 0. 1033            | 0. 22          | Q          |   |   |       |   |   |
| 12. 49           | 0. 1057            | 0. 22          | Q          |   |   |       |   |   |
| 12.62            | 0. 1082            | 0. 23          | Q          |   |   | •     | • |   |
| 12. 76<br>12. 89 | 0. 1107<br>0. 1133 | 0. 23<br>0. 24 | Q<br>Q     | • |   | •     | • | ٠ |
| 13. 03           | 0. 1160            | 0. 24          | Q          |   |   | •     | • |   |
| 13. 16           | 0. 1187            | 0. 25          | Q          |   |   |       |   |   |
| 13. 30<br>13. 43 | 0. 1214<br>0. 1243 | 0. 25<br>0. 26 | . Q<br>. Q | • |   | •     | • |   |
| 13. 43           | 0. 1243            | 0. 26          | . Q<br>. Q |   |   |       |   |   |
| 13. 70           | 0. 1302            | 0. 27          | . Q        |   |   | •     | • |   |
| 13. 84           | 0. 1333            | 0. 28          | . Q        | • |   |       | • |   |
| 13. 97<br>14. 11 | 0. 1365<br>0. 1398 | 0. 29<br>0. 30 | . Q<br>. Q |   |   | •     | • |   |
| 14. 11           | 0. 1433            | 0. 30          | . Q        |   |   |       |   |   |
| 14. 38           | 0. 1468            | 0. 32          | . Q        |   |   |       |   |   |
| 14. 51           | 0. 1505            | 0.34           | . Q        |   |   | •     | • |   |
| 14. 65           | 0. 1544            | 0. 35          | . Q        | • |   | •     | • | ٠ |

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 11.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.250
TIME OF CONCENTRATION(MIN.) = 13.89
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 2.40 0.97

| ++++++++                                                                                                                                                      |                                                                                                                                                                                                      | +++++++                                                                                                                          | ++++             | ***** |       | ++++++++ | +++++++++ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------|----------|-----------|
| TI ME<br>(HOURS)                                                                                                                                              | VOLUME<br>(AF)                                                                                                                                                                                       |                                                                                                                                  | 0.               | 7. 5  | 15. 0 | 22. 5    | 30. 0     |
| (HOURS) 0. 03 0. 26 0. 49 0. 72 0. 95 1. 18 1. 42 1. 65 1. 88 2. 11 2. 34 2. 57 2. 80 3. 04 3. 27 3. 50 3. 73 3. 96 4. 19 4. 42 4. 66 4. 89 5. 12 5. 35 5. 58 | (AF) 0. 0000 0. 0040 0. 0122 0. 0204 0. 0287 0. 0371 0. 0455 0. 0541 0. 0627 0. 0714 0. 0802 0. 0891 0. 1072 0. 1164 0. 1257 0. 1351 0. 1446 0. 1542 0. 1640 0. 1739 0. 1839 0. 1940 0. 2042 0. 2146 | 0. (CFS) 0. 00 0. 42 0. 43 0. 44 0. 44 0. 45 0. 45 0. 46 0. 47 0. 47 0. 48 0. 49 0. 50 0. 50 0. 51 0. 52 0. 52 0. 53 0. 54 0. 55 |                  | 7.5   | 15. 0 | 22.5     | 30.0      |
| 5. 81<br>6. 05<br>6. 28<br>6. 51<br>6. 74                                                                                                                     | 0. 2252<br>0. 2359<br>0. 2467<br>0. 2577<br>0. 2689                                                                                                                                                  | 0. 55<br>0. 56<br>0. 57<br>0. 58<br>0. 59                                                                                        | Q<br>Q<br>Q<br>Q |       |       |          |           |

Page 1

|                  |                    |                |            | ΧC | )10_J |   |   |
|------------------|--------------------|----------------|------------|----|-------|---|---|
| 6. 97            | 0. 2802            | 0.60           | Q          |    |       | • |   |
| 7. 20<br>7. 43   | 0. 2917<br>0. 3035 | 0. 61<br>0. 62 | Q<br>Q     |    |       |   |   |
| 7. 67<br>7. 90   | 0. 3154<br>0. 3275 | 0. 63<br>0. 64 | Q<br>Q     |    |       |   |   |
| 8. 13            | 0. 3398            | 0. 65          | Q          |    | •     | • |   |
| 8. 36<br>8. 59   | 0. 3524<br>0. 3651 | 0. 66<br>0. 67 | Q<br>Q     | •  |       | • |   |
| 8. 82            | 0. 3782            | 0. 69          | Q          | •  | •     | • |   |
| 9. 05<br>9. 29   | 0. 3915<br>0. 4050 | 0. 70<br>0. 72 | Q<br>Q     |    |       | • |   |
| 9. 52<br>9. 75   | 0. 4189<br>0. 4331 | 0. 73<br>0. 75 | Q<br>. Q   |    |       |   |   |
| 9. 98            | 0. 4476            | 0. 76          | . Q        |    | •     | • |   |
| 10. 21<br>10. 44 | 0. 4624<br>0. 4776 | 0. 79<br>0. 80 | . Q<br>. Q | •  | •     | • | • |
| 10. 68           | 0. 4932            | 0.83           | . Q        |    | •     | • |   |
| 10. 91<br>11. 14 | 0. 5092<br>0. 5256 | 0. 84<br>0. 88 | . Q<br>. Q |    |       |   |   |
| 11. 37           | 0. 5426            | 0.89           | . Q        |    |       |   |   |
| 11. 60<br>11. 83 | 0. 5600<br>0. 5781 | 0. 93<br>0. 95 | . Q<br>. Q |    |       |   |   |
| 12. 06<br>12. 30 | 0. 5967<br>0. 6183 | 1. 00<br>1. 26 | . Q<br>. Q |    |       |   |   |
| 12. 53           | 0. 6433            | 1. 34          | . Q        |    | •     | • |   |
| 12. 76<br>12. 99 | 0. 6693<br>0. 6963 | 1. 38<br>1. 44 | . Q<br>. Q | •  |       | • |   |
| 13. 22           | 0. 7243            | 1. 48          | . Q        |    | •     | • |   |
| 13. 45<br>13. 68 | 0. 7535<br>0. 7840 | 1. 57<br>1. 62 | . Q<br>. Q |    |       |   |   |
| 13. 92<br>14. 15 | 0. 8162<br>0. 8501 | 1. 74<br>1. 80 | . Q<br>. Q |    |       |   |   |
| 14. 38           | 0. 8861            | 1. 97          | . Q        | •  | •     | • |   |
| 14. 61<br>14. 84 | 0. 9247<br>0. 9665 | 2. 06<br>2. 31 | . Q<br>. Q | •  |       |   |   |
| 15. 07           | 1. 0125            | 2. 50          | . Q        | •  | •     | • |   |
| 15. 31<br>15. 54 | 1. 0660<br>1. 1273 | 3. 09<br>3. 32 | . Q<br>. Q |    |       |   |   |
| 15. 77<br>16. 00 | 1. 2022<br>1. 3096 | 4. 51<br>6. 72 | . Q<br>. Q |    | •     | • |   |
| 16. 23           | 1. 5797            | 21. 51         | . u        |    | . Q   | • |   |
| 16. 46<br>16. 69 | 1. 8188<br>1. 8786 | 3. 49<br>2. 76 | . Q<br>. Q |    |       |   |   |
| 16. 93           | 1. 9258            | 2. 18          | . Q        | •  | •     | • |   |
| 17. 16<br>17. 39 | 1. 9646<br>1. 9987 | 1. 88<br>1. 68 | . Q<br>. Q |    |       | • |   |
| 17. 62<br>17. 85 | 2. 0293<br>2. 0574 | 1. 53<br>1. 41 | . Q<br>. Q | •  | •     | • |   |
| 18. 08           | 2. 0834            | 1. 31          | . Q        |    | •     | • |   |
| 18. 32<br>18. 55 | 2. 1053<br>2. 1233 | 0. 97<br>0. 91 | . Q<br>. Q | •  | •     | • | • |
| 18. 78           | 2. 1403            | 0. 86          | . Q        |    | •     | • |   |
| 19. 01<br>19. 24 | 2. 1563<br>2. 1715 | 0. 81<br>0. 78 | . Q<br>. Q |    |       | • |   |
| 19. 47<br>19. 70 | 2. 1860<br>2. 1999 | 0. 74<br>0. 71 | Q<br>Q     | •  | •     | • |   |
| 19. 94           | 2. 2132            | 0. 68          | Q          |    | •     | • |   |
| 20. 17<br>20. 40 | 2. 2260<br>2. 2383 | 0. 66<br>0. 63 | Q<br>Q     | •  |       | • |   |
| 20. 63           | 2. 2502            | 0. 61          | Q          | •  | •     | • |   |
| 20. 86<br>21. 09 | 2. 2617<br>2. 2729 | 0. 59<br>0. 58 | Q<br>Q     |    |       | • |   |
| 21. 32           | 2. 2838            | 0.56           | Q          |    | •     | • |   |
| 21. 56<br>21. 79 | 2. 2943<br>2. 3046 | 0. 54<br>0. 53 | Q<br>Q     |    |       |   |   |
| 22. 02<br>22. 25 | 2. 3146<br>2. 3243 | 0. 52<br>0. 50 | Q<br>Q     |    |       |   |   |
| 22. 48           | 2. 3338            | 0. 49          | Q          |    | •     |   |   |
| 22. 71<br>22. 94 | 2. 3431<br>2. 3522 | 0. 48<br>0. 47 | Q<br>Q     |    |       |   |   |
| 23. 18           | 2. 3611            | 0. 46          | Q          |    |       |   |   |
| 23. 41<br>23. 64 | 2. 3698<br>2. 3784 | 0. 45<br>0. 44 | Q<br>Q     |    |       |   |   |
| 23. 87<br>24. 10 | 2. 3867<br>2. 3950 | 0. 43<br>0. 43 | Q<br>Q     |    |       |   |   |
| 24. 33           | 2. 3990            | 0. 43          | Q          |    | •     |   |   |
|                  |                    |                |            |    |       |   |   |

# Drainage K

### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 6.30
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.080
LOW LOSS FRACTION = 0.250
TIME OF CONCENTRATION (MIN.) = 11.39
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 10
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.34
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.72
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.95
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.59
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.20
24-HOUR POINT RAINFALL VALUE (INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 1. 37 0. 56

| TI ME (HOURS) VOLUME (CFS)  0. 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IOIAL                                                                                                                                                             | CATCHMENT                                                                                                                                                                                                                               | S01 L-L0SS                                                                                                                                | VOLU                                    | ME(ACRE-FEET | ) = 0 | . 56 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-------|------|--|
| 0. 24       0. 0019       0. 24       0         0. 43       0. 0057       0. 24       0         0. 62       0. 0096       0. 25       0         0. 81       0. 0135       0. 25       0         1. 00       0. 0174       0. 25       0         1. 19       0. 0213       0. 25       0         1. 38       0. 0253       0. 25       0         1. 57       0. 0293       0. 26       0         1. 76       0. 0333       0. 26       0         2. 14       0. 0415       0. 26       0         2. 33       0. 0457       0. 26       0         2. 52       0. 0499       0. 27       0         2. 71       0. 0541       0. 27       0         2. 90       0. 0583       0. 27       0         3. 28       0. 0669       0. 28       0         3. 47       0. 0713       0. 28       0         3. 85       0. 0802       0. 28       0         4. 04       0. 0847       0. 29       0         4. 42       0. 0938       0. 29       0         4. 42       0. 0938       0. 29       0 | TIME                                                                                                                                                              | VOLUME                                                                                                                                                                                                                                  | Q                                                                                                                                         |                                         |              |       |      |  |
| 5. 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. 24 0. 43 0. 62 0. 81 1. 00 1. 19 1. 38 1. 57 1. 76 1. 95 2. 14 2. 33 2. 52 2. 71 2. 90 3. 09 3. 28 3. 47 3. 66 3. 85 4. 04 4. 23 4. 61 4. 80 4. 99 5. 18 5. 37 | 0. 0019 0. 0057 0. 0096 0. 0135 0. 0174 0. 0213 0. 0253 0. 0293 0. 0333 0. 0374 0. 0415 0. 0457 0. 0499 0. 0541 0. 0583 0. 0626 0. 0669 0. 0713 0. 0757 0. 0802 0. 0847 0. 0892 0. 0938 0. 0938 0. 0985 0. 1031 0. 1079 0. 1127 0. 1175 | 0. 24 0. 25 0. 25 0. 25 0. 25 0. 26 0. 26 0. 26 0. 26 0. 27 0. 27 0. 27 0. 27 0. 28 0. 28 0. 28 0. 29 0. 29 0. 30 0. 30 0. 30 0. 31 0. 31 | 000000000000000000000000000000000000000 |              |       |      |  |

Page 1

|                  |                    |                 |            |     | VC | 10 V  |     |
|------------------|--------------------|-----------------|------------|-----|----|-------|-----|
| 5. 75            | 0. 1273            | 0. 32           | Q          |     | ΧC | )10_K |     |
| 5. 94<br>6. 13   | 0. 1323<br>0. 1374 | 0. 32<br>0. 32  | Q<br>Q     |     |    |       |     |
| 6. 32            | 0. 1425            | 0. 33           | Q          |     |    |       |     |
| 6. 51<br>6. 70   | 0. 1477<br>0. 1530 | 0. 33<br>0. 34  | Q<br>Q     |     |    |       | : : |
| 6. 89            | 0. 1583            | 0.34            | Q          |     |    |       |     |
| 7. 08<br>7. 27   | 0. 1637<br>0. 1691 | 0. 35<br>0. 35  | Q<br>Q     | :   |    |       |     |
| 7. 46<br>7. 65   | 0. 1747<br>0. 1803 | 0. 36<br>0. 36  | Q<br>Q     |     |    |       |     |
| 7.84             | 0. 1859            | 0. 37           | Q          |     |    |       | : : |
| 8. 03<br>8. 22   | 0. 1917<br>0. 1976 | 0. 37<br>0. 38  | Q<br>Q     |     |    |       |     |
| 8. 41            | 0. 2035            | 0. 38           | Q          |     |    |       | : : |
| 8. 60<br>8. 79   | 0. 2096<br>0. 2157 | 0. 39<br>0. 39  | Q<br>Q     |     |    |       | : : |
| 8. 98<br>9. 17   | 0. 2219            | 0.40            | Q          |     |    |       |     |
| 9. 17<br>9. 36   | 0. 2283<br>0. 2347 | 0. 41<br>0. 42  | Q<br>Q     |     |    |       |     |
| 9. 55<br>9. 74   | 0. 2413<br>0. 2479 | 0. 42<br>0. 43  | Q<br>Q     |     |    |       |     |
| 9. 93            | 0. 2547            | 0.44            | Q          |     |    |       |     |
| 10. 12<br>10. 30 | 0. 2617<br>0. 2687 | 0. 45<br>0. 45  | Q<br>Q     |     |    |       | :   |
| 10. 49           | 0. 2760            | 0. 47           | Q          |     |    |       |     |
| 10. 68<br>10. 87 | 0. 2833<br>0. 2909 | 0. 47<br>0. 49  | Q<br>Q     |     |    |       |     |
| 11. 06<br>11. 25 | 0. 2986<br>0. 3065 | 0. 50<br>0. 51  | Q<br>. Q   |     |    |       |     |
| 11. 44           | 0. 3146            | 0. 52           | . Q        |     |    |       |     |
| 11. 63<br>11. 82 | 0. 3229<br>0. 3314 | 0. 54<br>0. 55  | . Q<br>. Q |     |    |       |     |
| 12. 01           | 0. 3401            | 0. 57           | . Q        |     |    |       |     |
| 12. 20<br>12. 39 | 0. 3499<br>0. 3611 | 0. 67<br>0. 76  | . Q<br>. Q | :   |    |       |     |
| 12. 58<br>12. 77 | 0. 3731<br>0. 3854 | 0. 77<br>0. 80  | . Q<br>. Q |     |    |       |     |
| 12. 96           | 0. 3981            | 0.82            | . Q        |     |    |       |     |
| 13. 15<br>13. 34 | 0. 4113<br>0. 4249 | 0. 86<br>0. 88  | . Q<br>. Q |     |    |       | : : |
| 13. 53           | 0. 4389            | 0. 92           | . Q        |     |    |       |     |
| 13. 72<br>13. 91 | 0. 4536<br>0. 4688 | 0. 94<br>1. 00  | . Q<br>. Q |     |    |       |     |
| 14. 10<br>14. 29 | 0. 4847<br>0. 5015 | 1. 03<br>1. 11  | . Q<br>. Q |     |    |       |     |
| 14. 48           | 0. 5192            | 1. 15           | . Q        |     |    |       |     |
| 14. 67<br>14. 86 | 0. 5380<br>0. 5582 | 1. 25<br>1. 31  | . Q<br>. Q |     |    |       | : : |
| 15. 05<br>15. 24 | 0. 5803<br>0. 6050 | 1. 51<br>1. 64  | . Q<br>. Q |     |    |       |     |
| 15. 43           | 0. 6329            | 1. 92           | . Q        |     |    |       | : : |
| 15. 62<br>15. 81 | 0. 6630<br>0. 7018 | 1. 92<br>3. 04  | . Q        | Q . |    |       |     |
| 16. 00           | 0. 7600            | 4. 37           |            | Q . |    |       | : : |
| 16. 19<br>16. 38 | 0. 9032<br>1. 0302 | 13. 88<br>2. 31 | . Q        |     |    | . Q   |     |
| 16. 57<br>16. 76 | 1. 0625<br>1. 0876 | 1. 81<br>1. 39  | . Q<br>. Q |     |    |       |     |
| 16. 95           | 1. 1079            | 1. 20           | . Q        |     |    |       |     |
| 17. 14<br>17. 33 | 1. 1257<br>1. 1416 | 1. 07<br>0. 97  | . Q<br>. Q |     |    |       |     |
| 17. 52           | 1. 1563            | 0. 90           | . Q        |     |    |       |     |
| 17. 71<br>17. 90 | 1. 1699<br>1. 1826 | 0. 84<br>0. 79  | . Q<br>. Q |     |    |       |     |
| 18. 09           | 1. 1946<br>1. 2048 | 0. 74<br>0. 56  | . Q<br>. Q |     |    |       |     |
| 18. 28<br>18. 47 | 1. 2134            | 0. 58           | . Q<br>. Q |     |    |       | : : |
| 18. 66<br>18. 85 | 1. 2215<br>1. 2292 | 0. 50<br>0. 48  | . Q<br>Q   |     |    |       |     |
| 19. 04           | 1. 2366            | 0. 46           | Q          |     |    |       |     |
| 19. 23<br>19. 42 | 1. 2436<br>1. 2504 | 0. 44<br>0. 43  | Q<br>Q     |     |    |       |     |
| 19. 61           | 1. 2570            | 0. 41           | Q          |     |    |       |     |
| 19. 80<br>19. 99 | 1. 2633<br>1. 2695 | 0. 40<br>0. 38  | Q<br>Q     |     |    |       |     |
| 20. 18<br>20. 37 | 1. 2754<br>1. 2812 | 0. 37<br>0. 36  | Q<br>Q     |     |    |       |     |
| 20. 56           | 1. 2868            | 0. 35           | Q          |     |    |       |     |
|                  |                    |                 |            |     | Do |       |     |

Page 2

|        |         |       |   |    | X010_K |   |   |
|--------|---------|-------|---|----|--------|---|---|
| 20. 75 | 1. 2923 | 0. 34 | Q |    |        |   |   |
| 20. 94 | 1. 2976 | 0. 33 | Q |    |        |   |   |
| 21. 13 | 1. 3028 | 0. 33 | Q |    |        |   |   |
| 21. 32 | 1. 3078 | 0. 32 | Q |    |        |   |   |
| 21. 51 | 1. 3128 | 0. 31 | 0 | _  | _      | _ |   |
| 21. 69 | 1. 3176 | 0. 30 | 0 |    | _      | _ |   |
| 21. 88 | 1. 3223 |       | Ō |    |        |   |   |
| 22. 07 | 1. 3270 |       | Õ | i. | •      | • | • |
| 22. 26 | 1. 3315 |       | Õ |    | •      | • | • |
| 22. 45 | 1. 3360 |       | 0 | •  | •      | • | • |
| 22. 64 | 1. 3403 |       | Ô | •  | •      | • | • |
| 22. 83 | 1. 3446 |       | Ô | •  | •      | • | • |
| 23. 02 | 1. 3489 |       | 0 | •  | •      | • | • |
| 23. 21 | 1. 3530 |       | 0 | •  | •      | • | • |
|        |         |       | - | •  | •      | • | • |
| 23. 40 | 1. 3571 |       | Q | •  | •      | • | • |
| 23. 59 | 1. 3611 | 00    | Q | •  | •      | • | • |
| 23. 78 | 1. 3650 | 00    | Q | •  |        |   | • |
| 23. 97 | 1. 3689 |       | Q | •  | •      | • | • |
| 24. 16 | 1. 3727 |       | Q | •  |        |   |   |
| 24. 35 | 1. 3746 | 0. 00 | Q |    |        |   |   |
|        |         |       |   |    |        |   |   |

b) Expected Value (50% Confidence) Events

i. Infiltration Analysis

# INFILTRATION RATE CALCULATION SUMMARY NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 100-YEAR EXPECTED VALUE EVENT

|                     | Existing Condition |        |       |       |       |      |      |      |      |       |      |
|---------------------|--------------------|--------|-------|-------|-------|------|------|------|------|-------|------|
| Node                | Α                  | В      | С     | D     | E     | F    | G    | Н    | I    | J     | К    |
| Total Area<br>(ac)  | 349.56             | 135.09 | 63.61 | 14.29 | 97.15 | 5.80 | 1.75 | 6.99 | 1.06 | 11.00 | 6.30 |
| Y                   | 0.69               | 0.83   | 0.66  | 0.70  | 0.83  | 0.76 | 0.76 | 0.76 | 0.76 | 0.76  | 0.76 |
| Ybar                | 0.31               | 0.17   | 0.34  | 0.30  | 0.17  | 0.24 | 0.24 | 0.24 | 0.24 | 0.24  | 0.24 |
| Average $a_p$       | 0.64               | 0.37   | 1.00  | 0.68  | 0.30  | 0.20 | 0.20 | 0.20 | 0.20 | 0.20  | 0.20 |
| Total Fm<br>(in/hr) | 0.19               | 0.11   | 0.30  | 0.20  | 0.09  | 0.06 | 0.06 | 0.06 | 0.06 | 0.06  | 0.06 |

### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + ... + Y_{m}A_{m}}{A_{1} + A_{2} + ... + A_{m}} = \sum Y_{j}A_{j}$$
 P24, 25-Year Storm Event for Non-Mountainous Area (in) = 4.49 Total Area (ac) = 349.56

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

4.49 8.76

Total Area (ac) = 349.56

0.69

ap - See Figure C-4

P24, 25-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 0.64

Total Fm (in/hr) =

0.19

|     |                              |             |              |               |                         |              | Offsite Area       | <u> </u>     |       |                |                |            |                | Total                     | Fm (In/nr) =              | 0.19                                      |
|-----|------------------------------|-------------|--------------|---------------|-------------------------|--------------|--------------------|--------------|-------|----------------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                              | Pervious-   |              |               |                         |              | A <sub>i</sub>     |              |       | Low Loss       | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%) | Area<br>(ac) | Soil<br>Group | Pervious/<br>Impervious | Area<br>(ac) | (Area<br>Fraction) | CN<br>AMC II | S     | la             | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub> (in/hr)    | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway        | 10%         | 7.57         | Α             | Pervious                | 0.76         | 0.002              | 32           | 21.25 | 4.25           | 0.00           | 0.000      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
| '   | Olban Covel - Roadway        | 10%         | 7.57         | A             | Impervious              | 6.81         | 0.019              | 98           | 0.20  | 0.04           | 0.95           | 0.018      |                |                           |                           |                                           |
| 2   | Urban Cover - Roadway        | 10%         | 2.65         | D             | Pervious                | 0.27         | 0.001              | 75           | 3.33  | 0.67           | 0.45           | 0.000      | 0.10           | 0.30                      | 0.03                      | 0.000                                     |
| 2   | Olbali Covel - Roadway       | 1078        | 2.00         | D             | Impervious              | 2.39         | 0.007              | 98           | 0.20  | 0.04           | 0.95           | 0.006      |                |                           |                           |                                           |
| 3   | Single Family Residential    | 20%         | 45.27        | Α             | Pervious                | 9.05         | 0.026              | 32           | 21.25 | 4.25           | 0.00           | 0.000      | 0.20           | 0.30                      | 0.06                      | 0.008                                     |
| 3   | (>10 dwellings/acre)         | 2076        | 45.27        | A             | Impervious              | 36.22        | 0.104              | 98           | 0.20  | 0.04           | 0.95           | 0.098      |                |                           |                           |                                           |
| 4   | Single Family Residential    | 20%         | 31.84        | В             | Pervious                | 6.37         | 0.018              | 56           | 7.86  | 1.57           | 0.18           | 0.003      | 0.20           | 0.30                      | 0.06                      | 0.005                                     |
| 4   | (>10 dwellings/acre)         | 2076        | 31.04        | ь             | Impervious              | 25.47        | 0.073              | 98           | 0.20  | 0.04           | 0.95           | 0.069      |                |                           |                           |                                           |
| 5   | Single Family Residential    | 20%         | 26.51        | D             | Pervious                | 5.30         | 0.015              | 75           | 3.33  | 0.67           | 0.45           | 0.007      | 0.20           | 0.30                      | 0.06                      | 0.005                                     |
| 5   | (>10 dwellings/acre)         | 20%         | 20.51        | D             | Impervious              | 21.21        | 0.061              | 98           | 0.20  | 0.04           | 0.95           | 0.057      |                |                           |                           |                                           |
| 6   | Commercial / Industrial      | 10%         | 31.91        | D             | Pervious                | 3.19         | 0.009              | 75           | 3.33  | 0.67           | 0.45           | 0.004      | 0.10           | 0.30                      | 0.03                      | 0.003                                     |
| 0   | Commercial / Industrial      | 1076        | 31.91        | D             | Impervious              | 28.72        | 0.082              | 98           | 0.20  | 0.04           | 0.95           | 0.078      |                |                           |                           |                                           |
| 7   | Oil Operations               | 100%        | 11.89        | D             | Pervious                | 11.89        | 0.034              | 93           | 0.75  | 0.15           | 0.82           | 0.028      | 1.00           | 0.30                      | 0.30                      | 0.010                                     |
| '   | Oil Operations               | 100%        | 11.09        | D             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.95           | 0.000      |                |                           |                           |                                           |
| 8   | Open Space / Habitat Area    | 100%        | 16.64        | Α             | Pervious                | 16.64        | 0.048              | 46           | 11.74 | 2.35           | 0.07           | 0.004      | 1.00           | 0.30                      | 0.30                      | 0.014                                     |
| 0   | Open Space / Habitat Area    | 100 /6      | 10.04        | Α             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.95           | 0.000      |                |                           |                           |                                           |
| 9   | Oxbow Loop Channel           | 10%         | 6.55         | Α             | Pervious                | 0.66         | 0.002              | 78           | 2.82  | 0.56           | 0.51           | 0.001      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
| 9   | Oxbow Loop Charmer           | 1076        | 0.55         | A             | Impervious              | 5.90         | 0.017              | 98           | 0.20  | 0.04           | 0.95           | 0.016      |                |                           |                           |                                           |
|     |                              |             |              |               |                         |              | Onsite Area        | 1            |       | •              | •              | -          |                | •                         | •                         |                                           |
|     |                              | Pervious-   | Area         | Soil          | Pervious/               | Area         | $A_j$              | CN           |       | Low Loss       | Rate, Ybar     | 1          |                |                           | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%) | (ac)         | Group         | Impervious              | (ac)         | (Area<br>Fraction) | AMC II       | S     | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Oil Operations / Barren Area | 100%        | 4.78         | Α             | Pervious                | 4.78         | 0.014              | 78           | 2.82  | 0.56           | 0.51           | 0.007      | 1.00           | 0.30                      | 0.30                      | 0.004                                     |
| ı ı | Oil Operations / Barren Area | 10070       | 4.70         | Α             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.95           | 0.000      |                |                           |                           |                                           |
| 2   | Oil Operations / Barren Area | 100%        | 10.98        | D             | Pervious                | 10.98        | 0.031              | 93           | 0.75  | 0.15           | 0.82           | 0.026      | 1.00           | 0.30                      | 0.30                      | 0.009                                     |
| 2   | Oil Operations / Darren Area | 10078       | 10.30        | J             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.95           | 0.000      |                |                           |                           |                                           |
| 3   | Open Space / Habitat Area    | 100%        | 152.97       | D             | Pervious                | 152.97       | 0.438              | 83           | 2.05  | 0.41           | 0.61           | 0.265      | 1.00           | 0.30                      | 0.30                      | 0.131                                     |
| 3   | Open Opace / Habitat Area    | 10078       | 152.91       |               | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.95           | 0.000      |                |                           |                           |                                           |

Total Area =

349.56

Y = Ybar = 1 - Y =

0.31

Total  $F_m = 0.19$ 

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

4.49

8.76

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 25-Year Storm Event for Non-Mountainous Area (in) = P24, 25-Year Storm Event for Mountainous Area (in) =

Total Area (ac) = 135.09 0.83

ap - See Figure C-4

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 0.37

Total Fm (in/hr) =

|     |                              |              |        |       |            |       |                    |        |      |          |                |            |                | Total                     | Fm (in/hr) =              | <u>0.11</u>                               |
|-----|------------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                              |              |        |       |            |       | Offsite Area       |        |      |          |                |            |                |                           |                           |                                           |
|     |                              | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>i</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway        | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.45           | 0.002      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
| '   | Olbali Covel - Roadway       | 10%          | 5.35   | D     | Impervious | 4.82  | 0.036              | 98     | 0.20 | 0.04     | 0.95           | 0.034      |                |                           |                           |                                           |
| 2   | Single Family Residential    | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.45           | 0.004      | 0.20           | 0.30                      | 0.06                      | 0.003                                     |
| 2   | (>10 dwellings/acre)         | 20%          | 5.94   | D     | Impervious | 4.75  | 0.035              | 98     | 0.20 | 0.04     | 0.95           | 0.033      |                |                           |                           |                                           |
| 3   | Communical / Indicatrial     | 10%          | 80.09  | D     | Pervious   | 8.01  | 0.059              | 75     | 3.33 | 0.67     | 0.45           | 0.027      | 0.10           | 0.30                      | 0.03                      | 0.018                                     |
| 3   | Commercial / Industrial      | 10%          | 80.09  | D     | Impervious | 72.08 | 0.534              | 98     | 0.20 | 0.04     | 0.95           | 0.506      |                |                           |                           |                                           |
| 4   | School                       | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.044              | 75     | 3.33 | 0.67     | 0.45           | 0.020      | 0.60           | 0.30                      | 0.18                      | 0.013                                     |
| 4   | SCHOOL                       | 00%          | 9.91   | D     | Impervious | 3.96  | 0.029              | 98     | 0.20 | 0.04     | 0.95           | 0.028      |                |                           |                           |                                           |
|     |                              |              |        |       |            |       | Onsite Area        | ı      |      |          |                |            |                |                           |                           |                                           |
|     |                              | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Oil Operations / Parron Area | 100%         | 12.82  | D     | Pervious   | 12.82 | 0.095              | 93     | 0.75 | 0.15     | 0.82           | 0.078      | 1.00           | 0.30                      | 0.30                      | 0.028                                     |
| 1   | Oil Operations / Barren Area | 100%         | 12.82  | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
| 0   | Open Space / Hebitat Area    | 100%         | 20.98  | D     | Pervious   | 20.98 | 0.155              | 83     | 2.05 | 0.41     | 0.61           | 0.094      | 1.00           | 0.30                      | 0.30                      | 0.047                                     |
| 2   | Open Space / Habitat Area    | 100%         | 20.98  | U     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
|     |                              | Total Area = | 135.09 |       | •          |       |                    |        |      |          | Y =            | 0.83       |                |                           | Total F <sub>m</sub> =    | 0.11                                      |

Ybar = 1 - Y =

0.17

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 100-YEAR EXPECTED VALUE EVENT**

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

4.49

8.76

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 25-Year Storm Event for Non-Mountainous Area (in) = P24, 25-Year Storm Event for Mountainous Area (in) =

Total Area (ac) = 63.61 0.66

ap - See Figure C-4

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 1.00

Total Fm (in/hr) = 0.30

|          |                              |              |              |       |            |              | Onsite Area        | l      |      |          |            |                                |                |                           |                           |                                           |
|----------|------------------------------|--------------|--------------|-------|------------|--------------|--------------------|--------|------|----------|------------|--------------------------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|          |                              | Pervious-    | Aron         | Soil  | Pervious/  | ٨٠٥٥         | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar |                                |                | Max. Los                  | Rate, F <sub>m</sub>      |                                           |
| No.      | Land Use                     | ness<br>(%)  | Area<br>(ac) | Group | Impervious | Area<br>(ac) | (Area<br>Fraction) | AMC II | S    | la       | Yj         | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1        | Oil Operations / Barren Area | 100%         | 17.24        | D     | Pervious   | 17.24        | 0.271              | 93     | 0.75 | 0.15     | 0.82       | 0.223                          | 1.00           | 0.30                      | 0.30                      | 0.081                                     |
| <b>'</b> | Oil Operations / Barren Area | 100%         | 17.24        | D     | Impervious | 0.00         | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000                          |                |                           |                           |                                           |
| 2        | Open Space / Habitat Area    | 100%         | 46.37        | D     | Pervious   | 46.37        | 0.729              | 83     | 2.05 | 0.41     | 0.61       | 0.441                          | 1.00           | 0.30                      | 0.30                      | 0.219                                     |
|          | Open Space / Habitat Area    | 100%         | 40.37        | D     | Impervious | 0.00         | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000                          |                |                           |                           |                                           |
|          | <u>-</u>                     | Total Area = | 63.61        |       |            |              |                    |        |      | -        | Y =        | 0.66                           |                |                           | Total F <sub>m</sub> =    | 0.30                                      |

Ybar = 1 - Y = 0.34

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA D

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $(P_{24}-I_a+S)P_2$ 

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 14.29Y = 0.70 ap - See Figure C-4

P24, 25-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y = **0.30** 

4.49

8.76

Fp - See Table C-2 Average  $a_p = 0.68$ 

Total E

Total Fm (in/hr) = **0.20** 

|     |                           |              |       |       |            |      |                    |        |      |                |            |            |                | Total                     | rm (m/m) =                | 0.20                                      |
|-----|---------------------------|--------------|-------|-------|------------|------|--------------------|--------|------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |       |       |            |      | Offsite Area       | 1      |      |                |            |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area  | Soil  | Pervious/  | Area | A <sub>j</sub>     | CN     |      | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | l <sub>a</sub> | Yj         | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 5.68  | D     | Pervious   | 1.14 | 0.079              | 75     | 3.33 | 0.67           | 0.45       | 0.036      | 0.20           | 0.30                      | 0.06                      | 0.024                                     |
| '   | (>10 dwellings/acre)      | 2076         | 5.00  | D     | Impervious | 4.54 | 0.318              | 98     | 0.20 | 0.04           | 0.95       | 0.301      |                |                           |                           |                                           |
|     |                           | Onsite Area  |       |       |            |      |                    |        |      |                |            |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area  | Soil  | Pervious/  | Area | Aj                 | CN     |      | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la             | Yj         | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Open Space / Habitat Area | 100%         | 8.61  | D     | Pervious   | 8.61 | 0.603              | 83     | 2.05 | 0.41           | 0.61       | 0.365      | 1.00           | 0.30                      | 0.30                      | 0.181                                     |
|     | Open Space / Habitat Area | 100%         | 0.01  |       | Impervious | 0.00 | 0.000              | 98     | 0.20 | 0.04           | 0.95       | 0.000      |                |                           |                           |                                           |
|     |                           | Total Area = | 14.29 |       |            |      |                    |        |      |                | Y =        | 0.70       |                |                           | Total F <sub>m</sub> =    | 0.20                                      |

Ybar = 1 - Y = **0.30** 

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA E

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 97.15 0.83

ap - See Figure C-4

P24, 25-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y = 0.17

Fp - See Table C-2 Average a<sub>p</sub> = 0.30

4.49

8.76

Total Fm (in/hr) = 0.09

Total F<sub>m</sub> =

0.09

|     |                           |             |       |       |            |       | Offsite Area       |        |      |                |            |            |       |                           |                           |                                           |
|-----|---------------------------|-------------|-------|-------|------------|-------|--------------------|--------|------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss       | Rate, Ybar |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%         | 44.48 | D     | Pervious   | 8.90  | 0.092              | 75     | 3.33 | 0.67           | 0.45       | 0.042      | 0.20  | 0.30                      | 0.06                      | 0.027                                     |
| '   | (>10 dwellings/acre)      | 2076        | 44.40 | D     | Impervious | 35.58 | 0.366              | 98     | 0.20 | 0.04           | 0.95       | 0.347      |       |                           |                           |                                           |
| 2   | Commercial / Industrial   | 10%         | 36.05 | D     | Pervious   | 3.61  | 0.037              | 75     | 3.33 | 0.67           | 0.45       | 0.017      | 0.10  | 0.30                      | 0.03                      | 0.011                                     |
|     | Commercial / muusmai      | 1076        | 30.03 | D     | Impervious | 32.45 | 0.334              | 98     | 0.20 | 0.04           | 0.95       | 0.316      |       |                           |                           |                                           |
| 3   | Open Space / Habitat Area | 100%        | 16.62 | D     | Pervious   | 16.62 | 0.171              | 83     | 2.05 | 0.41           | 0.61       | 0.104      | 1.00  | 0.30                      | 0.30                      | 0.051                                     |
| 3   | Open Opace / Habitat Area | 100 /6      | 10.02 |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.95       | 0.000      |       |                           |                           |                                           |

Total Area =

97.15

Y = 0.83 Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

Total Area (ac) =

4.49

8.76

5.80 0.76

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.20 Total Fm (in/hr) = 0.06

 $F_m = a_p F_p$ 

|     |                           |              |      |       |            | C    | Offsite Area       | ·F     |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 5.80 | ۸     | Pervious   | 1.16 | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.20           | 0.30                      | 0.06                      | 0.060                                     |
|     | (>10 dwellings/acre)      | 2070         | 5.60 | А     | Impervious | 4.64 | 0.800              | 98     | 0.20  | 0.04           | 0.95       | 0.758      |                |                           |                           |                                           |
|     |                           | Total Area = | 5.80 | •     |            |      |                    |        |       |                | Y =        | 0.76       |                |                           | Total F <sub>m</sub> =    | 0.06                                      |

5.80 Y = Ybar = 1 - Y = 0.24

|     |                           |              |              |       |            | 0    | ffsite Area -      | ·G     |       |          |                |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|--------------|-------|------------|------|--------------------|--------|-------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Aron         | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | Area<br>(ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 1.75         | ۸     | Pervious   | 0.35 | 0.200              | 32     | 21.25 | 4.25     | 0.00           | 0.000      | 0.20           | 0.30                      | 0.06                      | 0.060                                     |
| '   | (>10 dwellings/acre)      | 2076         | 1.73         | A     | Impervious | 1.40 | 0.800              | 98     | 0.20  | 0.04     | 0.95           | 0.758      |                |                           |                           |                                           |
|     |                           | Total Area = | 1.75         |       |            |      |                    |        |       |          | Y =            | 0.76       |                |                           | Total F <sub>m</sub> =    | 0.06                                      |

1.75 Ybar = 1 - Y = 0.24

|          |                           |             |      |       |            | 0    | ffsite Area -      | Н      |       |          |            |            |       |                           |                           |                                           |
|----------|---------------------------|-------------|------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|          |                           | Pervious-   | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss | Rate, Ybar |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No.      | Land Use                  | ness<br>(%) | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | la       | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1        | Single Family Residential | 20%         | 6.99 | ۸     | Pervious   | 1.40 | 0.200              | 32     | 21.25 | 4.25     | 0.00       | 0.000      | 0.20  | 0.30                      | 0.06                      | 0.060                                     |
| <u> </u> | (>10 dwellings/acre)      | 2076        | 0.99 | Χ.    | Impervious | 5.59 | 0.800              | 98     | 0.20  | 0.04     | 0.95       | 0.758      |       |                           |                           |                                           |

Total F<sub>m</sub> = Total Area = 6.99 Y = **0.76** 0.06

Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

|     |                           |              |      |       |            | (    | Offsite Area       | -1     |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Loss                 | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 1.06 | ۸     | Pervious   | 0.21 | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.20           | 0.30                      | 0.06                      | 0.060                                     |
| 1'  | (>10 dwellings/acre)      | 2076         | 1.00 | A     | Impervious | 0.85 | 0.800              | 98     | 0.20  | 0.04           | 0.95       | 0.758      |                |                           |                           |                                           |
|     |                           | Total Area = | 1.06 |       |            |      |                    |        |       |                | Y =        | 0.76       |                |                           | Total F <sub>m</sub> =    | 0.06                                      |

Total Area = 1.06 Y = **0.76** 

Ybar = 1 - Y = **0.24** 

|    |                           |             |       |       |            | C    | Offsite Area -     | J      |       |                |                |            |       |                           |                           |                                           |
|----|---------------------------|-------------|-------|-------|------------|------|--------------------|--------|-------|----------------|----------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|    |                           | Pervious-   | Area  | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss       | Rate, Ybar     |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No | . Land Use                | ness<br>(%) | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Single Family Residential | 20%         | 11.00 | ۸     | Pervious   | 2.20 | 0.200              | 32     | 21.25 | 4.25           | 0.00           | 0.000      | 0.20  | 0.30                      | 0.06                      | 0.060                                     |
| '  | (>10 dwellings/acre)      | 2076        | 11.00 | ^     | Impervious | 8.80 | 0.800              | 98     | 0.20  | 0.04           | 0.95           | 0.758      |       |                           |                           |                                           |

Total Area = Total  $F_m = 0.06$ 11.00 Y = **0.76** 

Ybar = 1 - Y = **0.24** 

|    |                           |             |              |       |            | 0    | ffsite Area -      | K      |       |                |            |            |                |                           |                           |                                           |
|----|---------------------------|-------------|--------------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|    |                           | Pervious-   | Aroo         | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No | . Land Use                | ness<br>(%) | Area<br>(ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Single Family Residential | 20%         | 6.30         | ۸     | Pervious   | 1.26 | 0.200              | 32     | 21.25 | 4.25           | 0.00       | 0.000      | 0.20           | 0.30                      | 0.06                      | 0.060                                     |
| '  | (>10 dwellings/acre)      | 2076        | 0.30         | ^     | Impervious | 5.04 | 0.800              | 98     | 0.20  | 0.04           | 0.95       | 0.758      |                |                           |                           | 1                                         |

Total Area = 6.30 Y = **0.76** Total  $F_m = 0.06$ 

Ybar = 1 - Y = **0.24** 

# INFILTRATION RATE CALCULATION SUMMARY NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION 2-YEAR EXPEXTED VALUE EVENT

|                        |        |        |       |       | Existing ( | Condition |      |      |      |       |      |
|------------------------|--------|--------|-------|-------|------------|-----------|------|------|------|-------|------|
| Node                   | Α      | В      | С     | D     | E          | F         | G    | Н    | ı    | J     | К    |
| Total Area<br>(ac)     | 349.56 | 135.09 | 63.61 | 14.29 | 97.15      | 5.80      | 1.75 | 6.99 | 1.06 | 11.00 | 6.30 |
| Y                      | 0.46   | 0.64   | 0.33  | 0.42  | 0.65       | 0.74      | 0.74 | 0.74 | 0.74 | 0.74  | 0.74 |
| Ybar                   | 0.54   | 0.36   | 0.67  | 0.58  | 0.35       | 0.26      | 0.26 | 0.26 | 0.26 | 0.26  | 0.26 |
| Average a <sub>p</sub> | 0.64   | 0.37   | 1.00  | 0.68  | 0.30       | 0.20      | 0.20 | 0.20 | 0.20 | 0.20  | 0.20 |
| Total Fm<br>(in/hr)    | 0.38   | 0.22   | 0.60  | 0.41  | 0.18       | 0.12      | 0.12 | 0.12 | 0.12 | 0.12  | 0.12 |

### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

1.44

2.67

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 349.56 ap - See Figure C-4 0.46

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 0.64

 $F_m = a_p F_p$ 

Total Fm (in/hr) =

|     |                              |              |              |               |                         |              | Offsite Area       | l            |       |                |                |            |                |                           | (,) –                     | <u> </u>                                  |
|-----|------------------------------|--------------|--------------|---------------|-------------------------|--------------|--------------------|--------------|-------|----------------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                              | Pervious-    | ۸            | Cail          | Damieus/                | ۸            | A <sub>i</sub>     | CNI          |       | Low Loss       | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%)  | Area<br>(ac) | Soil<br>Group | Pervious/<br>Impervious | Area<br>(ac) | (Area<br>Fraction) | CN<br>AMC II | S     | la             | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway        | 10%          | 7.57         | А             | Pervious                | 0.76         | 0.002              | 32           | 21.25 | 4.25           | 0.30           | 0.001      | 0.10           | 0.60                      | 0.06                      | 0.001                                     |
|     | Orban Cover - Roadway        | 1076         | 7.57         | ζ             | Impervious              | 6.81         | 0.019              | 98           | 0.20  | 0.04           | 0.85           | 0.017      |                |                           |                           |                                           |
| 2   | Urban Cover - Roadway        | 10%          | 2.65         | D             | Pervious                | 0.27         | 0.001              | 75           | 3.33  | 0.67           | 0.10           | 0.000      | 0.10           | 0.60                      | 0.06                      | 0.000                                     |
|     | Olbali Covel - Roadway       | 1076         | 2.03         | ם             | Impervious              | 2.39         | 0.007              | 98           | 0.20  | 0.04           | 0.85           | 0.006      |                |                           |                           |                                           |
| 3   | Single Family Residential    | 20%          | 45.27        | А             | Pervious                | 9.05         | 0.026              | 32           | 21.25 | 4.25           | 0.30           | 0.008      | 0.20           | 0.60                      | 0.12                      | 0.016                                     |
| 3   | (>10 dwellings/acre)         | 20%          | 45.27        | ζ             | Impervious              | 36.22        | 0.104              | 98           | 0.20  | 0.04           | 0.85           | 0.088      |                |                           |                           |                                           |
| 4   | Single Family Residential    | 20%          | 31.84        | В             | Pervious                | 6.37         | 0.018              | 56           | 7.86  | 1.57           | 0.00           | 0.000      | 0.20           | 0.60                      | 0.12                      | 0.011                                     |
| 4   | (>10 dwellings/acre)         | 2076         | 31.04        | ם             | Impervious              | 25.47        | 0.073              | 98           | 0.20  | 0.04           | 0.85           | 0.062      |                |                           |                           |                                           |
| 5   | Single Family Residential    | 20%          | 26.51        | D             | Pervious                | 5.30         | 0.015              | 75           | 3.33  | 0.67           | 0.10           | 0.002      | 0.20           | 0.60                      | 0.12                      | 0.009                                     |
| 5   | (>10 dwellings/acre)         | 20%          | 20.51        | ט             | Impervious              | 21.21        | 0.061              | 98           | 0.20  | 0.04           | 0.85           | 0.051      |                |                           |                           |                                           |
| 6   | Commercial / Industrial      | 10%          | 31.91        | D             | Pervious                | 3.19         | 0.009              | 75           | 3.33  | 0.67           | 0.10           | 0.001      | 0.10           | 0.60                      | 0.06                      | 0.005                                     |
| 0   | Commercial/industrial        | 1076         | 31.31        | D             | Impervious              | 28.72        | 0.082              | 98           | 0.20  | 0.04           | 0.85           | 0.070      |                |                           |                           |                                           |
| 7   | Oil Operations               | 100%         | 11.89        | D             | Pervious                | 11.89        | 0.034              | 93           | 0.75  | 0.15           | 0.56           | 0.019      | 1.00           | 0.60                      | 0.60                      | 0.020                                     |
| ′   | Oil Operations               | 100 /6       | 11.09        | ט             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
| 8   | Open Space / Habitat Area    | 100%         | 16.64        | А             | Pervious                | 16.64        | 0.048              | 46           | 11.74 | 2.35           | 0.05           | 0.003      | 1.00           | 0.60                      | 0.60                      | 0.029                                     |
| 0   | Open Space / Habitat Area    | 10078        | 10.04        | ζ             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
| 9   | Oxbow Loop Channel           | 10%          | 6.55         | А             | Pervious                | 0.66         | 0.002              | 78           | 2.82  | 0.56           | 0.14           | 0.000      | 0.10           | 0.60                      | 0.06                      | 0.001                                     |
| 3   | Oxbow Loop Charmer           | 1076         | 0.55         | ζ             | Impervious              | 5.90         | 0.017              | 98           | 0.20  | 0.04           | 0.85           | 0.014      |                |                           |                           |                                           |
|     |                              |              |              |               |                         |              | Onsite Area        | ı            |       |                | •              | -          |                | •                         |                           |                                           |
| l l |                              | Pervious-    | Area         | Soil          | Pervious/               | Area         | $A_j$              | CN           |       | Low Loss       | Rate, Ybar     | 1          |                |                           | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                     | ness<br>(%)  | (ac)         | Group         | Impervious              | (ac)         | (Area<br>Fraction) | AMC II       | S     | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Oil Operations / Barren Area | 100%         | 4.78         | А             | Pervious                | 4.78         | 0.014              | 78           | 2.82  | 0.56           | 0.14           | 0.002      | 1.00           | 0.60                      | 0.60                      | 0.008                                     |
|     | Oil Operations / Darren Alea | 10070        | 7.70         |               | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
| 2   | Oil Operations / Barren Area | 100%         | 10.98        | D             | Pervious                | 10.98        | 0.031              | 93           | 0.75  | 0.15           | 0.56           | 0.018      | 1.00           | 0.60                      | 0.60                      | 0.019                                     |
|     | Oil Operations / Darren Alea | 10070        | 10.30        | D             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
| 3   | Open Space / Habitat Area    | 100%         | 152.97       | D             | Pervious                | 152.97       | 0.438              | 83           | 2.05  | 0.41           | 0.24           | 0.104      | 1.00           | 0.60                      | 0.60                      | 0.263                                     |
| 3   | Open Space / Habitat Alea    | 100 /0       | 102.87       | U             | Impervious              | 0.00         | 0.000              | 98           | 0.20  | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
|     |                              | Total Area = | 349.56       |               |                         |              |                    |              |       |                | Y =            | 0.46       |                |                           | Total F <sub>m</sub> =    | 0.38                                      |

Total Area = 349.56 Y = 0.46 Total F<sub>m</sub> = 0.38

#### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

1.44

2.67

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 135.09 ap - See Figure C-4 0.64 Fp - See Table C-2

Ybar = 1 - Y = Average a<sub>p</sub> =

Total Fm (in/hr) =

0.37

 $F_m = a_p F_p$ 

|     |                               |              |        |       |            |       |                    |        |      |          |                |                                |                | Total                     | Fm (in/hr) =              | 0.22                                      |
|-----|-------------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|--------------------------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                               |              |        |       |            |       | Offsite Area       | I      |      |          |                |                                |                |                           |                           |                                           |
|     |                               | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                      | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 4   | Urban Cover - Roadway         | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.10           | 0.000                          | 0.10           | 0.60                      | 0.06                      | 0.002                                     |
| '   | Orban Cover - Roadway         | 10%          | 5.35   | D     | Impervious | 4.82  | 0.036              | 98     | 0.20 | 0.04     | 0.85           | 0.030                          |                |                           |                           |                                           |
| 2   | Single Family Residential     | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.10           | 0.001                          | 0.20           | 0.60                      | 0.12                      | 0.005                                     |
| 2   | (>10 dwellings/acre)          | 20%          | 5.94   | D     | Impervious | 4.75  | 0.035              | 98     | 0.20 | 0.04     | 0.85           | 0.030                          |                |                           |                           |                                           |
| 3   | Communical / Individual       | 4.00/        | 00.00  | -     | Pervious   | 8.01  | 0.059              | 75     | 3.33 | 0.67     | 0.10           | 0.006                          | 0.10           | 0.60                      | 0.06                      | 0.036                                     |
| 3   | Commercial / Industrial       | 10%          | 80.09  | D     | Impervious | 72.08 | 0.534              | 98     | 0.20 | 0.04     | 0.85           | 0.452                          |                |                           |                           |                                           |
| 4   | Cabaal                        | 000/         | 9.91   | D     | Pervious   | 5.95  | 0.044              | 75     | 3.33 | 0.67     | 0.10           | 0.004                          | 0.60           | 0.60                      | 0.36                      | 0.026                                     |
| 4   | School                        | 60%          | 9.91   | D     | Impervious | 3.96  | 0.029              | 98     | 0.20 | 0.04     | 0.85           | 0.025                          |                |                           |                           |                                           |
|     |                               |              |        | •     |            |       | Onsite Area        | ı      |      |          | •              | •                              | •              | •                         |                           |                                           |
|     |                               | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                      | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 4   | Oil Operations / Barren Area  | 100%         | 12.82  | D     | Pervious   | 12.82 | 0.095              | 93     | 0.75 | 0.15     | 0.56           | 0.054                          | 1.00           | 0.60                      | 0.60                      | 0.057                                     |
| '   | Oil Operations / Barrett Area | 100%         | 12.02  |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.85           | 0.000                          |                |                           |                           |                                           |
| 2   | Open Space / Habitat Area     | 100%         | 20.98  | D     | Pervious   | 20.98 | 0.155              | 83     | 2.05 | 0.41     | 0.24           | 0.037                          | 1.00           | 0.60                      | 0.60                      | 0.093                                     |
| 2   | Open Space / Habitat Area     | 100%         | 20.98  |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.85           | 0.000                          |                |                           |                           |                                           |
|     |                               | Total Area = | 135.09 | •     |            |       | •                  |        | -    | •        | Y =            | 0.64                           | •              | •                         | Total F <sub>m</sub> =    | 0.22                                      |

Ybar = 1 - Y =

### **NEWPORT BANNING RANCH PROJECT - EXISTING CONDITION**

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

1.44

2.67

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

63.61

 $F_m = a_p F_p$ 

0.33

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y =

Total Area (ac) =

Average a<sub>p</sub> = 1.00

Total Fm (in/hr) =

0.60

|    |                              |              |       |       |            |       |                    |        |      |                |                |            |                | Total                     | 1 111 (111/111) –         | 0.00                                      |
|----|------------------------------|--------------|-------|-------|------------|-------|--------------------|--------|------|----------------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|    |                              |              |       |       |            |       | Onsite Area        | 1      |      |                |                |            |                |                           |                           |                                           |
|    |                              | Pervious-    | Area  | Soil  | Pervious/  | Area  | $A_j$              | CN     |      | Low Loss       | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No | . Land Use                   | ness<br>(%)  | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1  | Oil Operations / Barren Area | 100%         | 17.24 | D     | Pervious   | 17.24 | 0.271              | 93     | 0.75 | 0.15           | 0.56           | 0.153      | 1.00           | 0.60                      | 0.60                      | 0.163                                     |
| '  | Oil Operations / Barren Area | 100 %        | 17.24 | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
| 2  | Open Space / Habitat Area    | 100%         | 46.37 | D     | Pervious   | 46.37 | 0.729              | 83     | 2.05 | 0.41           | 0.24           | 0.174      | 1.00           | 0.60                      | 0.60                      | 0.437                                     |
| 2  | Open Space / Habitat Area    | 100%         | 40.37 | J 0   | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.85           | 0.000      |                |                           |                           |                                           |
|    | •                            | Total Area = | 63.61 | •     |            |       |                    |        |      |                | Y =            | 0.33       |                |                           | Total F <sub>m</sub> =    | 0.60                                      |

Ybar = 1 - Y = 0.67

#### PROPOSED NEWPORT BANNING RANCH PROJECT

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA D

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

1.44

2.67

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

14.29

0.42 Ybar = 1 - Y =

Total Area (ac) =

ap - See Figure C-4 Fp - See Table C-2

Average a<sub>p</sub> =

0.68

|     |                           |              |       |       |            |      |                    |        |      |          |                |            |                | Total                     | Fm (in/hr) =              | 0.41                                      |
|-----|---------------------------|--------------|-------|-------|------------|------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |       |       |            |      | Offsite Area       |        |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area  | Soil  | Pervious/  | Area | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 5.68  | D     | Pervious   | 1.14 | 0.079              | 75     | 3.33 | 0.67     | 0.10           | 0.008      | 0.20           | 0.60                      | 0.12                      | 0.048                                     |
| '   | (>10 dwellings/acre)      | 20%          | 5.00  | D     | Impervious | 4.54 | 0.318              | 98     | 0.20 | 0.04     | 0.85           | 0.269      |                |                           |                           |                                           |
|     |                           |              |       |       |            |      | Onsite Area        | 1      |      | •        | ·              |            |                | •                         |                           |                                           |
|     |                           | Pervious-    | Area  | Soil  | Pervious/  | Area | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)  | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la       | Yj             | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Open Space / Habitat Area | 100%         | 8.61  | D     | Pervious   | 8.61 | 0.603              | 83     | 2.05 | 0.41     | 0.24           | 0.144      | 1.00           | 0.60                      | 0.60                      | 0.362                                     |
| '   | Open Space / Habitat Area | 100%         | 0.01  | J 0   | Impervious | 0.00 | 0.000              | 98     | 0.20 | 0.04     | 0.85           | 0.000      |                |                           |                           |                                           |
|     |                           | Total Area = | 14.29 |       |            |      |                    |        |      |          | Y =            | 0.42       |                |                           | Total F <sub>m</sub> =    | 0.41                                      |

Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA E

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2}}$$

1.44

2.67

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

Total Area (ac) = 97.15 0.65

ap - See Figure C-4 Fp - See Table C-2

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.30

Total Fm (in/hr) =

0.18

|     |                                                                                                          |                                                  |       |       |            |       |                    |        |      |          |            |            |                | Total                     | 1 111 (111/111) –         | 0.10                                      |
|-----|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------|-------|------------|-------|--------------------|--------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                                                                                                          |                                                  |       |       |            |       | Offsite Area       |        |      |          |            |            |                |                           |                           |                                           |
|     |                                                                                                          | Pervious-                                        | Area  | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                                                                                                 | ness<br>(%)                                      | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
|     | Single Family Residential                                                                                | 20%                                              | 44.48 | D     | Pervious   | 8.90  | 0.092              | 75     | 3.33 | 0.67     | 0.10       | 0.009      | 0.20           | 0.60                      | 0.12                      | 0.055                                     |
| '   | (>10 dwellings/acre)                                                                                     | 20%                                              | 44.40 | D     | Impervious | 35.58 | 0.366              | 98     | 0.20 | 0.04     | 0.85       | 0.310      |                |                           |                           |                                           |
| _   | Pervious 3.61 0.037 75 3.33 0.67 0.10 0.004 0.10 0.60                                                    |                                                  |       |       |            |       |                    |        |      |          |            | 0.06       | 0.022          |                           |                           |                                           |
| -   | Commercial / Industrial   10%   36.05   D   Impervious   32.45   0.334   98   0.20   0.04   0.85   0.283 |                                                  |       |       |            |       |                    |        |      |          |            |            |                |                           |                           |                                           |
| 3   | Onen Space / Habitat Area                                                                                | 100%                                             | 16.62 | D     | Pervious   | 16.62 | 0.171              | 83     | 2.05 | 0.41     | 0.24       | 0.041      | 1.00           | 0.60                      | 0.60                      | 0.103                                     |
| 3   | Open Space / Habitat Area                                                                                | 100%                                             | 10.02 | U     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.85       | 0.000      |                |                           |                           |                                           |
|     |                                                                                                          | Total Area = 97.15 Y = 0.65 Total F <sub>1</sub> |       |       |            |       |                    |        |      |          |            |            |                | Total F <sub>m</sub> =    | 0.18                      |                                           |

0.65 Y = 0.35 Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

#### 2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 0.74 ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.20 Total Fm (in/hr) = 0.12

|     |                           |              |      |       |            | C    | offsite Area -     | F      |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 5.80 | ۸     | Pervious   | 1.16 | 0.200              | 32     | 21.25 | 4.25           | 0.30       | 0.060      | 0.20           | 0.60                      | 0.12                      | 0.120                                     |
|     | (>10 dwellings/acre)      | 2076         | 5.60 | ^     | Impervious | 4.64 | 0.800              | 98     | 0.20  | 0.04           | 0.85       | 0.678      |                |                           |                           |                                           |
|     |                           | Total Area = | 5.80 |       |            |      |                    |        |       |                | Y =        | 0.74       |                |                           | Total F <sub>m</sub> =    | 0.12                                      |

5.80 Y = 0.74 Ybar = 1 - Y = 0.26

|     |                           |              |      |       |            | 0    | ffsite Area -      | G      |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 1.75 | ۸     | Pervious   | 0.35 | 0.200              | 32     | 21.25 | 4.25           | 0.30       | 0.060      | 0.20           | 0.60                      | 0.12                      | 0.120                                     |
| '   | (>10 dwellings/acre)      | 2070         | 1.73 | ^     | Impervious | 1.40 | 0.800              | 98     | 0.20  | 0.04           | 0.85       | 0.678      |                |                           |                           |                                           |
|     |                           | Total Area = | 1.75 |       |            |      |                    |        |       |                | Y =        | 0.74       |                |                           | Total F <sub>m</sub> =    | 0.12                                      |

Ybar = 1 - Y = 0.26

1.44

2.67

|     |                           |             |      |       |            | 0    | ffsite Area -      | ·H     |       |          |            |            |       |                           |                           |                                           |
|-----|---------------------------|-------------|------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-   | Area | Soil  | Pervious/  | Area | $A_{j}$            | CN     |       | Low Loss | Rate, Ybar |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No. | Land Use                  | ness<br>(%) | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | Ø     | la       | $Y_j$      | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%         | 6.99 | ۸     | Pervious   | 1.40 | 0.200              | 32     | 21.25 | 4.25     | 0.30       | 0.060      | 0.20  | 0.60                      | 0.12                      | 0.120                                     |
|     | (>10 dwellings/acre)      | 2076        | 0.99 | Α     | Impervious | 5.59 | 0.800              | 98     | 0.20  | 0.04     | 0.85       | 0.678      |       |                           |                           |                                           |

Total F<sub>m</sub> = Total Area = 6.99 Y = **0.74** 0.12

Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA F to K

|     |                           |              |      |       |            | C    | Offsite Area       | -1     |       |          |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss | Rate, Ybar |            |                | Max. Loss                 | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S     | $I_a$    | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
|     |                           | (70)         |      |       |            |      |                    |        |       |          |            |            |                | . ,                       | ` ′                       |                                           |
| 1   | Single Family Residential | 20%          | 1.06 | ۸     | Pervious   | 0.21 | 0.200              | 32     | 21.25 | 4.25     | 0.30       | 0.060      | 0.20           | 0.60                      | 0.12                      | 0.120                                     |
|     | (>10 dwellings/acre)      | 2076         | 1.00 | χ.    | Impervious | 0.85 | 0.800              | 98     | 0.20  | 0.04     | 0.85       | 0.678      |                |                           |                           |                                           |
|     |                           | Total Area = | 1.06 | •     |            |      |                    |        |       |          | Y =        | 0.74       |                |                           | Total F <sub>m</sub> =    | 0.12                                      |

Total Area = 1.06 Y = **0.74** 

Ybar = 1 - Y = 0.26

Offsite Area -J Max. Loss Rate, F<sub>m</sub> Pervious-Low Loss Rate, Ybar Soil CN Area Pervious/ Area No. Land Use ness (Area Fp F<sub>m</sub> F<sub>m</sub>\*A<sub>i</sub> (ac) Group Impervious (ac) AMC II S  $Y_i$  $Y_j^*A_j$  $a_p$ (%) Fraction) (in/hr) (in/hr) (in/hr) 0.20 0.60 0.12 0.120 0.200 0.060 Single Family Residential Pervious 21.25 4.25 0.30 20% 11.00 Α (>10 dwellings/acre) 8.80 0.800 98 0.20 0.04 0.85 0.678 Impervious

> Total F<sub>m</sub> = 11.00 0.74 0.12 Total Area = Y =

Ybar = 1 - Y = 0.26

|     |                           |              |      |       |            | O    | offsite Area -     | ·K     |       |                |            |            |                |                           |                           |                                           |
|-----|---------------------------|--------------|------|-------|------------|------|--------------------|--------|-------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area | Soil  | Pervious/  | Area | $A_j$              | CN     |       | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | Ø     | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 20%          | 6.30 | ۸     | Pervious   | 1.26 | 0.200              | 32     | 21.25 | 4.25           | 0.30       | 0.060      | 0.20           | 0.60                      | 0.12                      | 0.120                                     |
| '   | (>10 dwellings/acre)      | 2076         | 0.30 | Α     | Impervious | 5.04 | 0.800              | 98     | 0.20  | 0.04           | 0.85       | 0.678      |                |                           |                           |                                           |
|     |                           | Total Area = | 6.30 |       |            |      |                    |        |       |                | Y =        | 0.74       |                |                           | Total F <sub>m</sub> =    | 0.12                                      |

Ybar = 1 - Y = 0.26

ii. EV 100-Year Storm Event

### Drainage A

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 349.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.190

LOW LOSS FRACTION = 0.310

TIME OF CONCENTRATION(MIN.) = 26.83

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 85.15 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 45.66

| *****           | *****          | *****      | **** | ***** | ***** | ****** | ****** |
|-----------------|----------------|------------|------|-------|-------|--------|--------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 132.5 | 265.0 | 397.5  | 530.0  |
| 0.35            | 0.2143         | 14.85      | .Q   |       |       |        |        |
| 0.80            | 0.7659         | 15.00      | .Q   |       | •     | •      |        |
| 1.24            | 1.3273         | 15.38      | .Q   |       | •     | •      |        |
| 1.69            | 1.8992         | 15.57      | .Q   |       | •     |        |        |
| 2.14            | 2.4824         | 15.99      | .Q   | •     | •     | •      | •      |
| 2.59            | 3.0772         | 16.21      | .Q   |       | •     |        |        |
| 3.03            | 3.6846         | 16.66      | .Q   |       | •     |        |        |
| 3.48            | 4.3050         | 16.91      | .Q   |       | •     |        |        |
| 3.93            | 4.9393         | 17.42      | .Q   |       | •     | •      |        |
| 4.37            | 5.5881         | 17.69      | .Q   |       | •     |        |        |
| 4.82            | 6.2527         | 18.27      | .Q   |       | •     | •      |        |
| 5.27            | 6.9337         | 18.58      | .Q   |       | •     | •      |        |
| 5.72            | 7.6325         | 19.24      | .Q   |       | •     | •      |        |
| 6.16            | 8.3501         | 19.59      | .Q   |       | •     | •      |        |
| 6.61            | 9.0881         | 20.35      | .Q   |       | •     | •      |        |
| 7.06            | 9.8478         | 20.76      | .Q   |       | •     | •      |        |
| 7.50            | 10.6313        | 21.64      | .Q   |       | •     | •      | •      |
| 7.95            | 11.4400        | 22.12      | .Q   | •     | •     | •      |        |
| 8.40            | 12.2770        | 23.17      | .Q   | •     |       | •      |        |

| 9.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.85 | 13.1439 | 23.74 | .Q    |     |   |   |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------|-------|-----|---|---|-----|
| 9.74 14.9820 25.71 Q 10.19 15.9612 27.28 Q 10.63 16.9857 28.16 Q 11.08 18.0635 30.17 Q 11.53 19.1997 31.32 Q 11.98 20.4067 34.00 Q 12.42 21.7820 40.43 Q 12.87 23.4758 51.23 Q 13.32 25.4148 53.70 Q 14.21 29.8031 63.94 Q 14.66 32.3565 74.24 Q 15.11 35.2530 82.52 Q 15.55 38.7797 108.34 Q 16.00 43.2090 131.37 Q 16.89 66.7217 94.23 Q 17.74 69.7241 68.25 Q 17.75 79 72.0304 56.56 Q 18.24 73.9822 49.06 Q 18.68 75.4910 32.59 Q 19.13 76.6313 29.12 Q 19.13 76.6313 29.12 Q 19.15 77.6584 26.47 Q 20.02 78.5975 24.36 Q 20.47 79.4658 22.63 Q 21.81 81.7540 18.90 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 22.71 83.0847 17.16 Q 23.15 83.7054 16.43 Q 23.15 83.7054 16.43 Q 23.15 83.7054 16.43 Q 23.15 83.7054 16.43 Q 23.16 084.3006 15.78 Q                                          |      |         | 25.01 |       |     |   |   |     |
| 10.19       15.9612       27.28       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 14.9820 | 25.71 |       |     |   | _ |     |
| 10.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |         |       |       |     |   |   |     |
| 11.08       18.0635       30.17       Q         11.53       19.1997       31.32       Q         11.98       20.4067       34.00       Q         12.42       21.7820       40.43       Q         12.87       23.4758       51.23       Q         13.76       27.5143       59.92       Q         13.76       27.5143       59.92       Q         14.21       29.8031       63.94       Q         14.66       32.3565       74.24       Q         15.11       35.2530       82.52       Q         15.55       38.7797       108.34       Q         16.00       43.2090       131.37       Q         16.89       66.7217       94.23       Q         17.74       69.7241       68.25       Q         17.79       72.0304       56.56       Q         18.24       73.9822       49.06       Q         19.13       76.6313       29.12       Q         19.58       77.6584       26.47       Q         20.02       78.5975       24.36       Q         20.92       80.2755       21.19       Q                 |      |         |       |       | -   |   | - |     |
| 11.53       19.1997       31.32       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |       |       |     |   |   |     |
| 11.98       20.4067       34.00       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |       |       | -   |   | - |     |
| 12.42       21.7820       40.43       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |       |       | •   | • | • | •   |
| 12.87       23.4758       51.23       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |       |       |     |   |   |     |
| 13.32       25.4148       53.70       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       |     |   |   |     |
| 13.76       27.5143       59.92       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |         |       |       | •   | • | • | •   |
| 14.21       29.8031       63.94       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       | •   | • | • |     |
| 14.66       32.3565       74.24       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       |     |   |   |     |
| 15.11       35.2530       82.52       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       | •   | • | • | •   |
| 15.55       38.7797       108.34       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       |     | • | • |     |
| 16.00       43.2090       131.37       Q.       .       .       Q.         16.45       55.3085       523.44       .       .       Q.         16.89       66.7217       94.23       Q.       .       .         17.34       69.7241       68.25       Q.       .       .         17.79       72.0304       56.56       Q.       .       .         18.24       73.9822       49.06       Q.       .       .         18.68       75.4910       32.59       Q.       .       .         19.13       76.6313       29.12       Q.       .       .         19.58       77.6584       26.47       Q.       .       .         20.02       78.5975       24.36       Q.       .       .         20.47       79.4658       22.63       Q.       .       .         20.92       80.2755       21.19       Q.       .       .         21.37       81.0359       19.96       Q.       .       .         21.81       81.7540       18.90       Q.       .       .         22.71       83.0847       17.16       Q.       . |      |         |       | • ×   |     | • | • | •   |
| 16.45       55.3085       523.44       .       .       .       Q.         16.89       66.7217       94.23       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                 |      |         |       | •     |     | • | • | •   |
| 16.89       66.7217       94.23       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       | •     | ۷.  | • | • | 0   |
| 17.34       69.7241       68.25       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       | •     | 0   | • | • | ٧.  |
| 17.79       72.0304       56.56       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |       | . 0   | × · | • | • |     |
| 18.24       73.9822       49.06       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |       |       |     |   |   |     |
| 18.68       75.4910       32.59       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       | •   | • | • | •   |
| 19.13       76.6313       29.12       . Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |         |       |       | •   | • | • |     |
| 19.58       77.6584       26.47       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       |     |   |   |     |
| 20.02       78.5975       24.36       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       |     |   |   |     |
| 20.47       79.4658       22.63       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       | •   | • | • |     |
| 20.92       80.2755       21.19       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       |     |   |   |     |
| 21.37       81.0359       19.96       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       |     |   |   |     |
| 21.81       81.7540       18.90       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       |     | • | • |     |
| 22.26       82.4355       17.98       Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                   |      |         |       |       | •   | • | • | •   |
| 22.71       83.0847       17.16       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       | •   | • | • | •   |
| 23.15       83.7054       16.43       .Q       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                  |      |         |       |       | •   | • | • | •   |
| 23.60 84.3006 15.78 .Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |       |       | •   | • | • | •   |
| 24.05 84.8727 15.19 .Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |       |       |     | • | • |     |
| ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |         |       |       |     | • | - | · . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |       |       | •   | • | • |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | ·       |       | ~<br> |     |   |   |     |

### Drainage B

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 135.10

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.110

LOW LOSS FRACTION = 0.170

TIME OF CONCENTRATION(MIN.) = 30.93

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 38.51

TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 12.04

| *****                                                                                                                | * * * * * * * * * * *                                                                                                                              | ******                                                                                                               | *****                                   | ***** | *****                                 | * * * * * * * * * * * | ***** |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|---------------------------------------|-----------------------|-------|
| TIME<br>(HOURS)                                                                                                      | VOLUME<br>(AF)                                                                                                                                     | Q<br>(CFS)                                                                                                           | 0.                                      | 50.0  | 100.0                                 | 150.0                 | 200.0 |
| 0.02<br>0.53<br>1.05<br>1.57<br>2.08<br>2.60<br>3.11<br>3.63<br>4.14<br>4.66<br>5.17<br>5.69<br>6.21<br>6.72<br>7.24 | 0.0000<br>0.1470<br>0.4448<br>0.7485<br>1.0591<br>1.3767<br>1.7021<br>2.0355<br>2.3776<br>2.7289<br>3.0902<br>3.4621<br>3.8456<br>4.2416<br>4.6513 | 0.00<br>6.90<br>7.08<br>7.18<br>7.40<br>7.51<br>7.76<br>7.89<br>8.17<br>8.32<br>8.64<br>8.82<br>9.19<br>9.39<br>9.84 | Q . Q . Q Q . Q Q Q Q Q Q Q Q Q Q Q Q Q |       | · · · · · · · · · · · · · · · · · · · |                       |       |
| 7.75<br>8.27<br>8.78<br>9.30                                                                                         | 5.0757<br>5.5168<br>5.9756<br>6.4550                                                                                                               | 10.08<br>10.62<br>10.92<br>11.58                                                                                     | . Q<br>. Q<br>. Q<br>. Q                |       | ·<br>·<br>·                           |                       |       |

| 9.81  | 6.9565  | 11.96  | . Q |    |   | • | •  |
|-------|---------|--------|-----|----|---|---|----|
| 10.33 | 7.4842  | 12.81  | . Q |    |   | • | •  |
| 10.85 | 8.0404  | 13.30  | . Q |    |   | • | •  |
| 11.36 | 8.6313  | 14.44  | . Q | •  |   | • | •  |
| 11.88 | 9.2608  | 15.11  | . Q | •  |   | • | •  |
| 12.39 | 10.0127 | 20.19  | . Q | •  |   | • | •  |
| 12.91 | 10.9368 | 23.19  | . Q | •  |   | • | •  |
| 13.42 | 11.9820 | 25.88  | . Q | •  |   | • | •  |
| 13.94 | 13.1215 | 27.61  | . Q | •  |   | • | •  |
| 14.45 | 14.3936 | 32.11  | . 0 |    |   | • | •  |
| 14.97 | 15.8359 | 35.60  |     | Q. |   | • |    |
| 15.48 | 17.6302 | 48.63  | •   | Q. | • | • | •  |
| 16.00 | 19.8591 | 56.01  |     | .Q |   | • |    |
| 16.52 | 25.1924 | 194.37 |     | •  |   | • | Q. |
| 17.03 | 30.1989 | 40.66  | •   | Q. | • | • | •  |
| 17.55 | 31.6986 | 29.74  | . Q | •  | • | • | •  |
| 18.06 | 32.8525 | 24.43  | . Q | •  | • | • | •  |
| 18.58 | 33.7109 | 15.87  | . Q | •  |   | • | •  |
| 19.09 | 34.3437 | 13.84  | . Q | •  | • | • | •  |
| 19.61 | 34.9020 | 12.37  | . Q | •  |   | • | •  |
| 20.12 | 35.4048 | 11.24  | . Q | •  | • | • | •  |
| 20.64 | 35.8646 | 10.34  | . Q | •  | • | • | •  |
| 21.16 | 36.2896 | 9.61   | .Q  | •  |   | • | •  |
| 21.67 | 36.6860 | 9.00   | .Q  | •  |   | • | •  |
| 22.19 | 37.0583 | 8.48   | .Q  | •  | • | • | •  |
| 22.70 | 37.4099 | 8.03   | .Q  | •  |   | • | •  |
| 23.22 | 37.7435 | 7.63   | .Q  | •  |   | • | •  |
| 23.73 | 38.0613 | 7.29   | .Q  | •  | • | • | •  |
| 24.25 | 38.3652 | 6.98   | .Q  | •  | • | • | •  |
| 24.76 | 38.5138 | 0.00   | Q   | •  | • | • | •  |
|       |         |        |     |    |   |   |    |

\_\_\_\_\_\_

### Drainage C

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 63.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.300

LOW LOSS FRACTION = 0.340

TIME OF CONCENTRATION(MIN.) = 18.32

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 14.74 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =

| *****   | *****  | ***** | **** | **** | ***** | ***** | ***** |
|---------|--------|-------|------|------|-------|-------|-------|
| TIME    | VOLUME | Q     | 0.   | 30.0 | 60.0  | 90.0  | 120.0 |
| (HOURS) | (AF)   | (CFS) |      |      |       |       |       |
| 0.12    | 0.0000 | 0.00  |      |      |       |       |       |
|         |        |       | Q    | •    | •     | •     | •     |
| 0.43    | 0.0328 | 2.60  | Q    | •    | •     | •     | •     |
| 0.73    | 0.0986 | 2.62  | Q    | •    | •     | •     | •     |
| 1.04    | 0.1652 | 2.66  | Q    | •    | •     |       | •     |
| 1.34    | 0.2327 | 2.69  | Q    | •    | •     |       | •     |
| 1.65    | 0.3011 | 2.73  | Q    | •    | •     |       | •     |
| 1.95    | 0.3704 | 2.76  | Q    | •    | •     |       | •     |
| 2.26    | 0.4407 | 2.81  | Q    | •    | •     | •     | •     |
| 2.57    | 0.5119 | 2.84  | Q    |      | •     | •     | •     |
| 2.87    | 0.5841 | 2.89  | Q    |      |       | •     | •     |
| 3.18    | 0.6574 | 2.92  | Q    | •    |       |       | •     |
| 3.48    | 0.7318 | 2.98  | Q    |      |       | •     | •     |
| 3.79    | 0.8074 | 3.01  | .Q   |      |       |       | •     |
| 4.09    | 0.8841 | 3.07  | .Q   |      |       | •     | •     |
| 4.40    | 0.9621 | 3.11  | .Q   |      |       |       | •     |
| 4.70    | 1.0413 | 3.18  | .Q   |      |       |       | •     |
| 5.01    | 1.1219 | 3.21  | .Q   |      |       | •     | •     |
| 5.31    | 1.2039 | 3.29  | .Q   | •    | •     | •     | •     |
| 5.62    | 1.2874 | 3.33  | .Q   | •    |       |       |       |

| 5.92           | 1.3724             | 3.41           | 0          |    |   |   |     |
|----------------|--------------------|----------------|------------|----|---|---|-----|
| 6.23           | 1.4590             | 3.45           | . Q<br>. Q |    | • | • | •   |
| 6.53           | 1.5473             | 3.55           | .Q         |    |   |   | •   |
| 6.84           | 1.6374             | 3.59           | . Q        |    | • | • |     |
| 7.15           | 1.7294             | 3.70           | .Q         |    | • | • | •   |
| 7.45           | 1.8233             | 3.75           | .Q         | •  | • | • | •   |
| 7.76           | 1.9194             | 3.86           | . Q        | •  | • | • | •   |
| 8.06           | 2.0176             | 3.92           | . Q        | •  | • | • | •   |
| 8.37<br>8.67   | 2.1183<br>2.2214   | 4.05<br>4.12   | . Q        | •  | • | • | •   |
| 8.98           | 2.3272             | 4.12           | . Q<br>. Q | •  | • | • | •   |
| 9.28           | 2.4359             | 4.35           | .Q<br>.Q   |    | • | • | •   |
| 9.59           | 2.5477             | 4.51           | .Q         |    | • |   |     |
| 9.89           | 2.6627             | 4.60           | . Q        |    | • |   | •   |
| 10.20          | 2.7813             | 4.80           | . Q        |    |   | • | •   |
| 10.50          | 2.9038             | 4.91           | .Q         |    | • | • | •   |
| 10.81          | 3.0306             | 5.14           | .Q         |    | • | • |     |
| 11.11          | 3.1618             | 5.27           | . Q        | •  | • | • | •   |
| 11.42          | 3.2983             | 5.55           | . Q        | •  | • | • | •   |
| 11.73<br>12.03 | 3.4402             | 5.70           | .Q         | •  | • | • | •   |
| 12.03          | 3.5885<br>3.7602   | 6.05<br>7.56   | . Q<br>. Q | •  | • | • | •   |
| 12.64          | 3.7602             | 8.74           | . Q<br>. Q | •  | • | • | •   |
| 12.95          | 4.1898             | 9.01           | . Q        | •  |   | • | •   |
| 13.25          | 4.4250             | 9.63           | . Q        |    |   |   | •   |
| 13.56          | 4.6726             | 10.00          | . Q        | •  | • | • | •   |
| 13.86          | 4.9358             | 10.86          | . Q        |    |   | • | •   |
| 14.17          | 5.2165             | 11.39          | . Q        |    | • | • |     |
| 14.47          | 5.5185             | 12.55          | . Q        |    | • | • | •   |
| 14.78          | 5.8460             | 13.40          | . Q        | •  | • | • | •   |
| 15.08          | 6.2142             | 15.78          | . Q        | •  | • | • | •   |
| 15.39<br>15.69 | 6.6345<br>7.1167   | 17.54<br>20.68 | . Q        | •  | • | • | •   |
| 16.00          | 7.7531             | 20.00          | . Q        | Q. | • | • | •   |
| 16.31          | 9.5733             | 114.52         | •          | ۷٠ | • | • | Q . |
| 16.61          | 11.2598            | 19.14          | . Q        |    |   | • | · . |
| 16.92          | 11.6836            | 14.45          | . Q        | •  | • | • | •   |
| 17.22          | 12.0157            | 11.87          | . Q        |    |   | • | •   |
| 17.53          | 12.2966            | 10.40          | . Q        |    | • | • |     |
| 17.83          | 12.5453            | 9.31           | . Q        | •  | • | • | •   |
| 18.14          | 12.7698            | 8.49           | . Q        | •  | • | • | •   |
| 18.44          | 12.9510            | 5.87           | . Q        | •  | • | • | •   |
| 18.75<br>19.05 | 13.0932<br>13.2247 | 5.40<br>5.02   | . Q        | •  | • | • | •   |
| 19.05          | 13.3473            | 4.70           | . Q<br>. Q | •  | • | • | •   |
| 19.66          | 13.4625            | 4.43           | .Q         | •  |   | • | •   |
| 19.97          | 13.5712            | 4.19           | .Q         |    |   |   | •   |
| 20.27          | 13.6744            | 3.99           | . Q        |    | • | • |     |
| 20.58          | 13.7728            | 3.81           | . Q        |    |   | • | •   |
| 20.89          | 13.8668            | 3.64           | .Q         |    | • | • |     |
| 21.19          | 13.9569            | 3.50           | .Q         | •  | • | • | •   |
| 21.50          | 14.0435            | 3.37           | . Q        | •  | • | • | •   |
| 21.80          | 14.1270            | 3.25           | . Q        | •  | • | • | •   |
| 22.11<br>22.41 | 14.2076            | 3.14           | . Q        | •  | • | • | •   |
| 22.41          | 14.2856<br>14.3612 | 3.04<br>2.95   | . Q<br>Q   | •  | • | • | •   |
| 23.02          | 14.4345            | 2.95           | Q<br>Q     | •  | • | • | •   |
| 23.33          | 14.5057            | 2.78           | Q          |    | • |   | •   |
| 23.63          | 14.5751            | 2.71           | Q          | •  | • | • | •   |
| 23.94          | 14.6426            | 2.64           | Q          |    | • |   |     |
| 24.24          | 14.7084            | 2.58           | Q          |    | • | • |     |
| 24.55          | 14.7410            | 0.00           | Q          | •  | • | • | •   |
|                |                    |                |            |    |   |   |     |

### Drainage D

## \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)
AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

| ******                                                                                                                                                                  | *****                                                                                                                                                                                                                                           | ******                                                                                                                                                                                                                                                               | ******                                                                                                   | ******                                                                 | *****        | ******           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|------------------|
| Problem [                                                                                                                                                               | Description:                                                                                                                                                                                                                                    | S:                                                                                                                                                                                                                                                                   |                                                                                                          |                                                                        |              |                  |
| TOTAL SOI L-L SOI L-L LOW LC TI ME C SMALL ORANGE RETURN 5-N 30-N 1-+ 3-+ 6-+                                                                                           | CATCHMENT OSS RATE, OSS FRACTIO OF CONCENTR. AREA PEAK E COUNTY "V. N FREQUENCY MINUTE POIN HOUR POIN HOUR POIN HOUR POIN                                                                                                                       | CALIBRATION CO<br>AREA (ACRES) =<br>Fm, (INCH/HR) =<br>N = 0.300<br>ATION (MIN.) =<br>Q COMPUTED USI<br>ALLEY" RAINFAL<br>(YEARS) = 25<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL<br>T RAINFALL VAL | 14. 29 10. 60 NG PEAK FLOI L VALUES ARI UE (I NCHES) UE (I NCHES) UE (I NCHES) UE (I NCHES) UE (I NCHES) | W RATE FOR<br>E USED<br>= 0.40<br>= 0.87<br>= 1.15<br>= 1.94<br>= 2.71 | MULA         |                  |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                 | RUNOFF VOLU<br>SOIL-LOSS VOLU                                                                                                                                                                                                                                        |                                                                                                          |                                                                        | . 51<br>. 83 |                  |
| TIME                                                                                                                                                                    | VOLUME<br>(AF)                                                                                                                                                                                                                                  | ************<br>Q 0.<br>(CFS)                                                                                                                                                                                                                                        | 10. 0                                                                                                    |                                                                        |              | *******<br>40. 0 |
| 0. 10 0. 28 0. 45 0. 63 0. 81 0. 98 1. 16 1. 34 1. 51 1. 69 1. 87 2. 04 2. 57 2. 75 2. 73 3. 10 3. 28 3. 46 3. 63 3. 81 3. 99 4. 16 4. 34 4. 52 4. 69 4. 87 5. 05 5. 22 | 0. 0000 0. 0045 0. 0135 0. 0226 0. 0318 0. 0410 0. 0503 0. 0597 0. 0692 0. 0787 0. 0883 0. 0979 0. 1077 0. 1175 0. 1274 0. 1374 0. 1475 0. 1576 0. 1678 0. 1782 0. 1886 0. 1991 0. 2097 0. 2205 0. 2313 0. 2422 0. 2532 0. 2643 0. 2756 0. 2869 | 0. 00                                                                                                                                                                                                                                                                |                                                                                                          |                                                                        |              |                  |

Page 1

|                  |                    |                  |            |            | X100EV_D |   |     |
|------------------|--------------------|------------------|------------|------------|----------|---|-----|
| 5. 40<br>5. 58   | 0. 2984<br>0. 3100 | 0. 79<br>0. 80   | Q<br>Q     | •          |          | • |     |
| 5. 75            | 0. 3217            | 0. 81            | Q          |            |          | • |     |
| 5. 93<br>6. 11   | 0. 3336<br>0. 3456 | 0. 82<br>0. 82   | Q<br>Q     |            |          |   |     |
| 6. 28<br>6. 46   | 0. 3577<br>0. 3699 | 0. 84<br>0. 84   | Q<br>Q     |            |          |   |     |
| 6. 64            | 0. 3823            | 0.86             | Q          |            |          |   |     |
| 6. 81<br>6. 99   | 0. 3949<br>0. 4076 | 0. 86<br>0. 88   | Q<br>Q     | •          |          | • |     |
| 7. 17            | 0. 4204            | 0.88             | Q          |            |          |   |     |
| 7. 34<br>7. 52   | 0. 4334<br>0. 4466 | 0. 90<br>0. 91   | Q<br>Q     |            | •        |   |     |
| 7. 70<br>7. 87   | 0. 4599<br>0. 4735 | 0. 92<br>0. 93   | Q<br>Q     |            |          |   |     |
| 8. 05            | 0. 4872            | 0. 95            | Q          |            |          | • |     |
| 8. 23<br>8. 40   | 0. 5011<br>0. 5152 | 0. 96<br>0. 98   | Q<br>Q     |            |          |   |     |
| 8. 58<br>8. 76   | 0. 5295<br>0. 5440 | 0. 99<br>1. 00   | Q<br>. Q   | •          | •        | • |     |
| 8. 93            | 0. 5588            | 1. 02            | . Q        |            |          | • |     |
| 9. 11<br>9. 29   | 0. 5738<br>0. 5890 | 1. 04<br>1. 05   | . Q<br>. Q |            |          |   |     |
| 9. 46            | 0.6045             | 1. 07            | . Q        |            |          |   |     |
| 9. 64<br>9. 82   | 0. 6202<br>0. 6362 | 1. 08<br>1. 11   | . Q<br>. Q |            |          |   |     |
| 9. 99<br>10. 17  | 0. 6525<br>0. 6691 | 1. 12<br>1. 15   | . Q<br>. Q |            |          |   |     |
| 10. 35           | 0. 6860            | 1. 17            | . Q        |            |          | • |     |
| 10. 52<br>10. 70 | 0. 7033<br>0. 7209 | 1. 20<br>1. 21   | . Q<br>. Q |            |          |   |     |
| 10. 88<br>11. 05 | 0. 7388<br>0. 7572 | 1. 25<br>1. 27   | . Q<br>. Q | •          | •        | • |     |
| 11. 23           | 0. 7759            | 1. 30            | . Q        |            |          |   |     |
| 11. 41<br>11. 58 | 0. 7951<br>0. 8147 | 1. 32<br>1. 37   | . Q<br>. Q |            |          |   |     |
| 11. 76<br>11. 94 | 0. 8349<br>0. 8555 | 1. 39<br>1. 44   | . Q<br>. Q | •          | •        | • |     |
| 12. 11           | 0. 8768            | 1. 47            | . Q        |            |          |   |     |
| 12. 29<br>12. 47 | 0. 9021<br>0. 9316 | 2. 01<br>2. 04   | . Q<br>. Q |            |          |   |     |
| 12. 64<br>12. 82 | 0. 9619<br>0. 9930 | 2. 11<br>2. 15   | . Q<br>. Q |            |          |   |     |
| 13.00            | 1. 0249            | 2. 23            | . Q        |            |          | • |     |
| 13. 17<br>13. 35 | 1. 0578<br>1. 0918 | 2. 27<br>2. 37   | . Q<br>. Q |            |          |   |     |
| 13. 53           | 1. 1268            | 2. 43            | . Q        |            |          |   |     |
| 13. 70<br>13. 88 | 1. 1631<br>1. 2008 | 2. 55<br>2. 61   | . Q<br>. Q |            |          |   |     |
| 14. 06<br>14. 23 | 1. 2400<br>1. 2808 | 2. 76<br>2. 81   | . Q<br>. Q |            |          |   |     |
| 14.41            | 1. 3233            | 3. 01            | . Q        |            |          | • |     |
| 14. 59<br>14. 76 | 1. 3681<br>1. 4157 | 3. 13<br>3. 40   | . Q<br>. Q |            |          | • |     |
| 14. 94<br>15. 12 | 1. 4666<br>1. 5217 | 3. 57<br>3. 98   | . Q<br>. Q |            |          |   |     |
| 15. 29           | 1. 5818            | 4. 25            | . Q        |            |          |   |     |
| 15. 47<br>15. 65 | 1. 6458<br>1. 7136 | 4. 50<br>4. 79   | . Q<br>. Q |            |          |   |     |
| 15. 82<br>16. 00 | 1. 8054<br>1. 9467 | 7. 78            |            | Q .<br>. Q |          |   |     |
| 16. 18           | 2. 3069            | 11. 57<br>37. 76 |            | . Q        |          |   | Q . |
| 16. 35<br>16. 53 | 2. 6232<br>2. 6974 | 5. 57<br>4. 59   | . Q<br>. Q | •          |          | • |     |
| 16. 71           | 2. 7583            | 3. 76            | . Q        |            |          |   |     |
| 16. 88<br>17. 06 | 2. 8095<br>2. 8545 | 3. 25<br>2. 91   | . Q<br>. Q |            | •        |   |     |
| 17. 24<br>17. 41 | 2. 8953<br>2. 9331 | 2. 69<br>2. 48   | . Q<br>. Q |            |          |   |     |
| 17. 59           | 2. 9682            | 2. 32            | . Q        |            |          |   |     |
| 17. 77<br>17. 94 | 3. 0011<br>3. 0322 | 2. 19<br>2. 07   | . Q<br>. Q |            | ·        |   |     |
| 18. 12           | 3. 0616            | 1. 96            | . Q        |            |          |   |     |
| 18. 30<br>18. 47 | 3. 0862<br>3. 1064 | 1. 41<br>1. 35   | . Q<br>. Q |            | •        |   |     |
| 18. 65<br>18. 83 | 3. 1256<br>3. 1439 | 1. 28<br>1. 23   | . Q<br>. Q |            |          |   |     |
| 19.00            | 3. 1615            | 1. 18            | . Q        |            |          | • |     |
| 19. 18           | 3. 1785            | 1. 14            | . Q        | •          |          |   | •   |

Page 2

|        |         |                    |   | X100EV_D |   |   |
|--------|---------|--------------------|---|----------|---|---|
| 19. 36 | 3. 1948 | 1.10 .Q            |   | . –      |   |   |
| 19. 53 | 3. 2105 | 1.06 .Q            |   |          |   |   |
| 19. 71 | 3. 2257 | 1.03 .Q            |   |          |   |   |
| 19. 89 | 3. 2405 | 0. 99 Q            |   |          |   |   |
| 20. 06 | 3. 2548 | 0. 97 Q            |   |          |   |   |
| 20. 24 | 3. 2687 | 0. 94 Q            |   |          |   | _ |
| 20. 42 | 3. 2822 | 0. 91 Q            |   |          |   |   |
| 20. 59 | 3. 2954 | 0.89 Q             | • | •        | • |   |
| 20. 77 | 3. 3083 | 0. 87 Q            | • | •        | • | • |
| 20. 95 | 3. 3208 | 0. 85 Q            | • | •        | • | • |
| 21. 12 | 3. 3331 | 0. 83 Q            | • | •        | • | • |
| 21. 30 | 3. 3450 | 0. 81 Q            | • | •        | • | • |
| 21. 48 | 3. 3568 | 0. 79 Q            | • | •        | • | • |
| 21. 65 | 3. 3682 | 0. 78 Q            | • | •        | • | • |
| 21. 83 | 3. 3795 | 0. 76   Q          | • | •        | • | • |
| 22. 01 | 3. 3905 | 0. 75 Q            | • | •        | • | • |
| 22. 18 | 3. 4013 | 0. 73   Q          | • | •        | • | • |
| 22. 36 | 3. 4119 | 0. 73              | • | •        | • | • |
| 22. 54 | 3. 4224 | 0. 72              | • | •        | • | • |
| 22. 71 | 3. 4326 | 0. 70 Q            | • | •        | • | • |
| 22. 71 | 3. 4427 | 0. 70              | • | •        | • | • |
| 23. 07 | 3. 4526 | 0. 67 Q            | • | •        | • | • |
| 23. 07 | 3. 4623 | 0.66 Q             | • | •        | • | • |
| 23. 42 | 3. 4719 | 0.65 Q             | • | •        | • | • |
| 23. 42 | 3. 4719 | 0. 63              | • | •        | • | • |
| 23. 77 | 3. 4907 | 0. 64 Q<br>0. 63 Q | • | •        | • | • |
| 23. 77 |         |                    | • | •        | • | • |
|        | 3. 4998 | 0.62 Q             | • | •        | • | • |
| 24. 13 | 3. 5089 | 0. 61 Q            | • | •        | • | • |
| 24. 30 | 3. 5134 | 0. 00 Q            | • | •        | • | • |

Page 3

### Drainage E

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Problem Descriptions:

.\_\_\_\_\_

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 97.20
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.090
LOW LOSS FRACTION = 0.170
TIME OF CONCENTRATION (MIN.) = 27.94
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

\_\_\_\_\_\_

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 27.80 TOTAL CATCHMENT SOIL-LOSS VOLUME (ACRE-FEET) = 8.57

| *****                                          | *****                                    | *****                                | *****                    | ***** | *****       | *****  | *****       |
|------------------------------------------------|------------------------------------------|--------------------------------------|--------------------------|-------|-------------|--------|-------------|
| TI ME<br>(HOURS)                               | VOLUME<br>(AF)                           | Q<br>(CFS)                           | 0.                       | 40.0  | 80.0        | 120. 0 | 160. 0      |
|                                                |                                          |                                      |                          |       |             | 120.0  |             |
| 12. 27<br>12. 74<br>13. 21<br>13. 67<br>14. 14 | 7. 5548<br>8. 2161<br>8. 9322<br>9. 7127 | 16. 78<br>17. 59<br>19. 62<br>20. 94 | . Q<br>. Q<br>. Q<br>. Q |       | :<br>:<br>: |        | ·<br>·<br>· |

Page 1

|        |              |         |     |   | X100EV E |   |    |  |
|--------|--------------|---------|-----|---|----------|---|----|--|
| 14. 60 | 10. 5834     | 24. 31  | . Q |   | . –      |   |    |  |
| 15. 07 | 11. 5710     | 27. 02  | . Q |   | •        |   |    |  |
| 15. 53 | 12. 7835     | 35. 99  | . Q |   | •        |   |    |  |
| 16. 00 | 14. 3149     | 43. 59  |     | Q | •        |   |    |  |
| 16. 47 | 18. 0517     | 150. 60 |     |   | •        |   | Q. |  |
| 16. 93 | 21. 5433     | 30. 85  | . О |   | •        | • | •  |  |
| 17. 40 | 22. 5685     | 22. 43  | . Q |   | •        | • | •  |  |
| 17. 86 | 23. 3565     | 18. 52  | . Q |   |          |   |    |  |
| 18. 33 | 24. 0136     | 15. 62  | . Q |   | •        |   |    |  |
| 18. 79 | 24. 5186     | 10. 62  | . Q |   | •        |   |    |  |
| 19. 26 | 24. 9056     | 9. 49   | . Q |   | •        |   |    |  |
| 19. 73 | 25. 2542     | 8. 63   | Q   |   | •        |   |    |  |
| 20. 19 | 25. 5730     | 7. 94   | . Q |   | •        |   | •  |  |
| 20. 66 | 25. 8677     | 7. 38   | . Q |   | •        |   |    |  |
| 21. 12 | 26. 1425     | 6. 91   | . Q |   | •        | • | •  |  |
| 21. 59 | 26. 4006     | 6. 51   | . Q |   | •        | • | •  |  |
| 22. 05 | 26. 6444     | 6. 16   | . Q |   | •        | • | •  |  |
| 22. 52 | 26. 8757     | 5. 86   | . Q |   | •        |   | •  |  |
| 22. 98 | 27. 0960     | 5. 59   | . Q |   | •        |   | •  |  |
| 23. 45 | 27. 3067     | 5. 36   | . Q | • | •        |   |    |  |
| 23. 92 | 27. 5087     | 5. 14   | . Q |   | •        | • | •  |  |
| 24. 38 | 27. 7032     | 4. 96   | . Q | • | •        |   |    |  |
| 24. 85 | 27. 7987<br> | 0. 00   | Q   |   |          |   |    |  |

### Drainage F

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Problem Descriptions:

.-----

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 5.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 7.97
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

-----

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 1.60 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.57

| *****            | *****              | *****          | ****   | **** | ***** | ***** | ***** |
|------------------|--------------------|----------------|--------|------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 5.0  | 10. 0 | 15.0  | 20. 0 |
| 0. 06            | 0. 0000            | 0. 00          | Q      |      |       |       |       |
| 0. 19            | 0. 0015            | 0. 27          | Q      |      |       |       |       |
| 0. 33            | 0.0045             | 0. 27          | Q      |      |       |       |       |
| 0. 46            | 0.0075             | 0. 27          | Q      |      |       |       |       |
| 0. 59            | 0. 0105            | 0. 28          | Q      |      |       |       |       |
| 0. 72            | 0. 0135            | 0. 28          | Q      |      |       | •     | •     |
| 0. 86            | 0. 0166            | 0. 28          | Q      |      |       |       |       |
| 0. 99            | 0. 0196            | 0. 28          | Q      |      |       |       |       |
| 1. 12            | 0. 0227            | 0. 28          | Q      |      |       |       |       |
| 1. 26            | 0. 0258            | 0. 28          | Q      |      | •     | •     | •     |
| 1. 39            | 0. 0290            | 0. 28          | Q      |      |       |       |       |
| 1. 52            | 0. 0321            | 0. 29          | Q      |      |       |       |       |
| 1. 65            | 0. 0352            | 0. 29          | Q      | •    | •     | •     | •     |
| 1. 79<br>1. 92   | 0. 0384<br>0. 0416 | 0. 29<br>0. 29 | Q      | •    | •     | •     | •     |
| 1. 92<br>2. 05   | 0. 0418            | 0. 29          | Q<br>Q | •    |       | •     | •     |
| 2. 03            | 0. 0446            | 0. 29          | Q      | •    |       | •     | •     |
| 2. 32            | 0. 0513            | 0. 29          | Q      | •    | •     | •     | •     |
| 2. 45            | 0. 0516            | 0. 30          | Q      | •    | •     | •     | •     |
| 2. 58            | 0. 0579            | 0. 30          | Q      |      | •     | •     | •     |
| 2. 72            | 0.0612             | 0.30           | Q      | •    | •     | •     | •     |
| 2. 85            | 0. 0645            | 0.30           | Q      | •    |       | •     | •     |
| 2. 98            | 0. 0679            | 0. 31          | Q      |      |       |       |       |
| 3. 12            | 0. 0712            | 0. 31          | ã      |      | · ·   |       |       |
| 3. 25            | 0. 0746            | 0. 31          | Q      |      |       |       |       |
| 3. 38            | 0. 0781            | 0. 31          | Q      |      |       |       |       |
| 3. 51            | 0. 0815            | 0. 31          | Q      |      |       |       |       |
| 3. 65            | 0. 0850            | 0. 32          | Q      |      |       |       |       |
| 3. 78            | 0. 0885            | 0. 32          | Q      |      |       |       |       |
| 3. 91            | 0.0920             | 0. 32          | Q      |      |       |       |       |
| 4. 05            | 0. 0955            | 0. 32          | Q      |      |       |       |       |
|                  |                    |                |        |      |       |       |       |

Page 1

|                  |                    |                |            |   | V4.00 | F    |  |
|------------------|--------------------|----------------|------------|---|-------|------|--|
| 4. 18            | 0. 0991            | 0. 33          | Q          |   | X100I | EV_F |  |
| 4. 31            | 0. 1027            | 0. 33          | Q          |   | •     |      |  |
| 4. 44<br>4. 58   | 0. 1063<br>0. 1099 | 0. 33<br>0. 33 | Q<br>Q     | • | •     |      |  |
| 4. 71            | 0. 1136            | 0. 34          | Q          |   |       |      |  |
| 4. 84<br>4. 97   | 0. 1173<br>0. 1210 | 0. 34<br>0. 34 | Q          |   |       |      |  |
| 4. 97<br>5. 11   | 0. 1210            | 0. 34          | Q<br>Q     |   |       |      |  |
| 5. 24            | 0. 1285            | 0. 35          | Q          |   |       |      |  |
| 5. 37<br>5. 51   | 0. 1324<br>0. 1362 | 0. 35<br>0. 35 | Q<br>Q     | • | •     |      |  |
| 5. 64            | 0. 1401            | 0. 35          | Q          |   |       |      |  |
| 5. 77<br>5. 90   | 0. 1440<br>0. 1479 | 0. 36<br>0. 36 | Q<br>Q     |   | •     |      |  |
| 6. 04            | 0. 1519            | 0. 36          | Q          |   |       |      |  |
| 6. 17            | 0. 1559            | 0. 37          | Q          |   |       |      |  |
| 6. 30<br>6. 44   | 0. 1599<br>0. 1640 | 0. 37<br>0. 37 | Q<br>Q     |   |       |      |  |
| 6. 57            | 0. 1681            | 0. 38          | Q          |   | •     |      |  |
| 6. 70<br>6. 83   | 0. 1722<br>0. 1764 | 0. 38<br>0. 38 | Q<br>Q     | • | •     |      |  |
| 6. 97            | 0. 1806            | 0. 39          | Q          |   |       |      |  |
| 7. 10<br>7. 23   | 0. 1849<br>0. 1892 | 0. 39<br>0. 39 | Q<br>Q     | • | •     |      |  |
| 7. 23<br>7. 37   | 0. 1935            | 0. 40          | Q          |   |       |      |  |
| 7. 50<br>7. 63   | 0. 1979<br>0. 2023 | 0.40           | Q          | • | •     |      |  |
| 7. 03<br>7. 76   | 0. 2023            | 0. 41<br>0. 41 | Q<br>Q     |   |       |      |  |
| 7. 90            | 0. 2113            | 0. 41          | Q          |   |       |      |  |
| 8. 03<br>8. 16   | 0. 2158<br>0. 2204 | 0. 42<br>0. 42 | Q<br>Q     |   | •     |      |  |
| 8. 30            | 0. 2251            | 0.43           | Q          |   |       |      |  |
| 8. 43<br>8. 56   | 0. 2298<br>0. 2345 | 0. 43<br>0. 43 | Q<br>Q     | • | •     |      |  |
| 8. 69            | 0. 2394            | 0.44           | Q          |   |       |      |  |
| 8. 83<br>8. 96   | 0. 2442<br>0. 2491 | 0. 44<br>0. 45 | Q<br>Q     | • | •     |      |  |
| 9. 09            | 0. 2541            | 0. 43          | Q          |   |       |      |  |
| 9. 23            | 0. 2592            | 0.46           | Q          |   |       |      |  |
| 9. 36<br>9. 49   | 0. 2643<br>0. 2694 | 0. 47<br>0. 47 | Q<br>Q     |   |       |      |  |
| 9. 62            | 0. 2747            | 0. 48          | Q          |   | •     |      |  |
| 9. 76<br>9. 89   | 0. 2800<br>0. 2854 | 0. 49<br>0. 49 | Q<br>Q     | • | •     |      |  |
| 10. 02           | 0. 2908            | 0. 50          | . Q        |   |       |      |  |
| 10. 16<br>10. 29 | 0. 2963<br>0. 3019 | 0. 51<br>0. 52 | . Q<br>. Q | • | •     |      |  |
| 10. 42           | 0. 3076            | 0. 52          | . Q        |   |       |      |  |
| 10. 55<br>10. 69 | 0. 3134<br>0. 3192 | 0. 53<br>0. 54 | . Q<br>. Q | • | •     |      |  |
| 10. 89           | 0. 3192            | 0. 54          | . Q<br>. Q |   |       |      |  |
| 10. 95           | 0. 3312            | 0. 55          | . Q        |   |       |      |  |
| 11. 09<br>11. 22 | 0. 3374<br>0. 3436 | 0. 57<br>0. 57 | . Q<br>. Q |   |       |      |  |
| 11. 35           | 0. 3500            | 0. 59          | . Q        |   |       |      |  |
| 11. 48<br>11. 62 | 0. 3565<br>0. 3631 | 0. 59<br>0. 61 | . Q<br>. Q | • | •     |      |  |
| 11. 75           | 0. 3698            | 0. 62          | . Q        |   |       |      |  |
| 11. 88           | 0. 3766            | 0.63           | . Q        |   |       |      |  |
| 12. 02<br>12. 15 | 0. 3836<br>0. 3919 | 0. 64<br>0. 87 | . Q<br>. Q |   |       |      |  |
| 12. 28           | 0. 4015            | 0.88           | . Q        |   |       |      |  |
| 12. 41<br>12. 55 | 0. 4113<br>0. 4213 | 0. 90<br>0. 91 | . Q<br>. Q |   |       |      |  |
| 12. 68           | 0. 4315            | 0. 94          | . Q        |   |       |      |  |
| 12. 81<br>12. 94 | 0. 4418<br>0. 4524 | 0. 95<br>0. 98 | . Q<br>. Q | • | •     |      |  |
| 13. 08           | 0. 4633            | 0. 99          | . Q        |   |       |      |  |
| 13. 21<br>13. 34 | 0. 4744<br>0. 4859 | 1. 04<br>1. 06 | . Q<br>. Q | • |       |      |  |
| 13. 48           | 0. 4639            | 1. 10          | . Q        |   |       |      |  |
| 13. 61           | 0. 5100            | 1. 13          | . Q        |   |       |      |  |
| 13. 74<br>13. 87 | 0. 5227<br>0. 5359 | 1. 19<br>1. 22 | . Q<br>. Q |   |       |      |  |
| 14. 01           | 0. 5496            | 1. 28          | . Q        |   |       |      |  |
| 14. 14<br>14. 27 | 0. 5638<br>0. 5785 | 1. 31<br>1. 38 | . Q<br>. Q | • | •     |      |  |
| 14. 41           | 0. 5939            | 1. 42          | . Q        |   |       |      |  |
| 14. 54           | 0. 6101            | 1. 52          | . Q        |   |       |      |  |

| 44.7                                 | 0 (074                                   | 4 50                              | 0                        | X10         | OOEV_F      |             |  |
|--------------------------------------|------------------------------------------|-----------------------------------|--------------------------|-------------|-------------|-------------|--|
| 14. 67<br>14. 80<br>14. 94<br>15. 07 | 0. 6271<br>0. 6452<br>0. 6644<br>0. 6851 | 1. 58<br>1. 71<br>1. 79<br>1. 98  | . Q<br>. Q<br>. Q        |             | ·<br>·<br>· | ·<br>·<br>· |  |
| 15. 20<br>15. 34<br>15. 47           | 0. 7074<br>0. 7319<br>0. 7576            | 2. 09<br>2. 37<br>2. 32           | . Q<br>. Q<br>. Q        |             |             |             |  |
| 15. 60<br>15. 73<br>15. 87           | 0. 7846<br>0. 8153<br>0. 8574            | 2. 61<br>2. 98<br>4. 68           | . Q<br>. Q<br>. Q        |             |             |             |  |
| 16. 00<br>16. 13<br>16. 27<br>16. 40 | 0. 9184<br>1. 0576<br>1. 1820<br>1. 2153 | 6. 43<br>18. 93<br>3. 74<br>2. 33 | . Q                      | . Q         | ·<br>·      | . Q         |  |
| 16. 53<br>16. 66<br>16. 80           | 1. 2402<br>1. 2627<br>1. 2820            | 2. 22<br>1. 88<br>1. 64           | . Q<br>. Q<br>. Q        | •           |             | •           |  |
| 16. 93<br>17. 06<br>17. 20           | 1. 2991<br>1. 3145<br>1. 3287            | 1. 47<br>1. 34<br>1. 25           | . Q<br>. Q<br>. Q        | ·<br>·<br>· | ·<br>·      | ·<br>·<br>· |  |
| 17. 33<br>17. 46<br>17. 59           | 1. 3419<br>1. 3542<br>1. 3657            | 1. 16<br>1. 08<br>1. 01           | . Q<br>. Q<br>. Q        |             | ·<br>·      |             |  |
| 17. 73<br>17. 86<br>17. 99           | 1. 3766<br>1. 3869<br>1. 3969            | 0. 96<br>0. 93<br>0. 89           | . Q<br>. Q<br>. Q        |             | ·<br>·      | •<br>•      |  |
| 18. 13<br>18. 26<br>18. 39<br>18. 52 | 1. 4056<br>1. 4128<br>1. 4195<br>1. 4260 | 0. 69<br>0. 62<br>0. 60<br>0. 58  | . Q<br>. Q<br>. Q<br>. Q | •<br>•      |             | •<br>•      |  |
| 18. 66<br>18. 79<br>18. 92           | 1. 4322<br>1. 4383<br>1. 4441            | 0. 56<br>0. 54<br>0. 53           | . Q<br>. Q<br>. Q        |             |             |             |  |
| 19. 06<br>19. 19<br>19. 32           | 1. 4498<br>1. 4553<br>1. 4607            | 0. 51<br>0. 50<br>0. 48           | . Q<br>Q<br>Q            | ·<br>·      |             | ·<br>·      |  |
| 19. 45<br>19. 59<br>19. 72           | 1. 4659<br>1. 4710<br>1. 4760            | 0. 47<br>0. 46<br>0. 45           | Q<br>Q<br>Q              | •<br>•      | ·<br>·      | •<br>•      |  |
| 19. 85<br>19. 98<br>20. 12<br>20. 25 | 1. 4809<br>1. 4856<br>1. 4903<br>1. 4949 | 0. 44<br>0. 43<br>0. 42<br>0. 41  | Q<br>Q<br>Q<br>Q         | ·<br>·      | ·<br>·      | ·<br>·      |  |
| 20. 23<br>20. 38<br>20. 52<br>20. 65 | 1. 4993<br>1. 5037<br>1. 5080            | 0. 40<br>0. 39<br>0. 39           | Q<br>Q<br>Q              |             | ·<br>·      | ·<br>·<br>· |  |
| 20. 78<br>20. 91<br>21. 05           | 1. 5122<br>1. 5164<br>1. 5204            | 0. 38<br>0. 37<br>0. 37           | Q<br>Q<br>Q              | ·<br>·      |             | ·<br>·      |  |
| 21. 18<br>21. 31<br>21. 45           | 1. 5244<br>1. 5284<br>1. 5322            | 0. 36<br>0. 36<br>0. 35           | Q<br>Q<br>Q              | •<br>•      | · .         | •<br>•      |  |
| 21. 58<br>21. 71<br>21. 84<br>21. 98 | 1. 5360<br>1. 5398<br>1. 5435<br>1. 5471 | 0. 34<br>0. 34<br>0. 33<br>0. 33  | Q<br>Q<br>Q<br>Q         |             | ·<br>·      | •<br>•<br>• |  |
| 22. 11<br>22. 24<br>22. 38           | 1. 5507<br>1. 5543<br>1. 5577            | 0. 32<br>0. 32<br>0. 32           | Q<br>Q<br>Q              |             | ·<br>·      |             |  |
| 22. 51<br>22. 64<br>22. 77           | 1. 5612<br>1. 5646<br>1. 5679            | 0. 31<br>0. 31<br>0. 30           | Q<br>Q<br>Q              | ·<br>·      |             | ·<br>·      |  |
| 22. 91<br>23. 04<br>23. 17           | 1. 5713<br>1. 5745<br>1. 5778            | 0. 30<br>0. 30<br>0. 29           | Q<br>Q<br>Q              | •<br>•      | ·<br>·      | •<br>•      |  |
| 23. 31<br>23. 44<br>23. 57<br>23. 70 | 1. 5810<br>1. 5841<br>1. 5872            | 0. 29<br>0. 29<br>0. 28           | Q<br>Q<br>Q              |             |             |             |  |
| 23. 70<br>23. 84<br>23. 97<br>24. 10 | 1. 5903<br>1. 5934<br>1. 5964<br>1. 5994 | 0. 28<br>0. 28<br>0. 27<br>0. 27  | Q<br>Q<br>Q<br>Q         | ·<br>·      | ·<br>·      | ·<br>·      |  |
| 24. 10                               | 1. 6009                                  | 0. 00                             | Q                        |             | ·<br>·      |             |  |

## Drainage G

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355 .\_\_\_\_

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 1.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 8.11
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =

| *******         | ******             | ******         | ****   | ***** | ******* | ****** | ****** | - 1 |
|-----------------|--------------------|----------------|--------|-------|---------|--------|--------|-----|
| TIME<br>(HOURS) | VOLUME<br>(AF)     |                | 0.     | 2. 5  | 5. 0    | 7.5    | 10. 0  |     |
| 0. 05<br>0. 19  | 0. 0000<br>0. 0005 | 0. 00<br>0. 08 | Q<br>Q |       |         |        |        |     |
| 0. 17           | 0. 0003            | 0.08           | Q      | •     | •       | •      | •      |     |
| 0. 46           | 0.0024             | 0. 09          | Q      |       |         |        | •      |     |
| 0. 59           | 0.0033             | 0. 09          | Q      |       |         |        |        |     |
| 0. 73           | 0.0043             | 0. 09          | Q      |       |         |        |        |     |
| 0. 86           | 0. 0052            | 0. 09          | Q      |       |         |        |        |     |
| 1.00            | 0. 0062            | 0. 09          | Q      |       |         |        |        |     |
| 1. 13<br>1. 27  | 0. 0072<br>0. 0082 | 0. 09<br>0. 09 | Q<br>Q | •     | •       | •      | •      |     |
| 1. 40           | 0. 0082            | 0. 09          | Q      | •     | •       | •      | •      |     |
| 1. 54           | 0. 0101            | 0.09           | Q      | •     | •       | •      | •      |     |
| 1. 67           | 0. 0111            | 0. 09          | Q      |       |         |        |        |     |
| 1. 81           | 0. 0121            | 0. 09          | Q      |       |         |        |        |     |
| 1. 94           | 0. 0131            | 0. 09          | Q      |       |         |        |        |     |
| 2. 08           | 0. 0142            | 0. 09          | Q      |       |         | •      | •      |     |
| 2. 21<br>2. 35  | 0. 0152<br>0. 0162 | 0. 09<br>0. 09 | Q<br>Q | •     | •       | •      | •      |     |
| 2. 33           | 0.0162             | 0. 09          | Q      | •     | •       | •      | •      |     |
| 2. 62           | 0. 0172            | 0.09           | Q      | •     | •       | •      | •      |     |
| 2. 75           | 0. 0193            | 0. 09          | Q      |       |         |        |        |     |
| 2.89            | 0. 0204            | 0. 09          | Q      |       |         |        |        |     |
| 3. 02           | 0. 0214            | 0. 10          | Q      |       |         |        |        |     |
| 3. 16           | 0. 0225            | 0. 10          | Q      |       |         |        |        |     |
| 3. 29<br>3. 43  | 0. 0236<br>0. 0247 | 0. 10<br>0. 10 | Q<br>Q | •     | •       | •      | •      |     |
| 3. 43<br>3. 56  | 0. 0247            | 0. 10          | Q      | •     | •       | •      | •      |     |
| 3. 70           | 0. 0269            | 0. 10          | Q      | •     |         |        |        |     |
| 3. 84           | 0. 0280            | 0. 10          | ã      |       |         |        |        |     |
| 3. 97           | 0. 0291            | 0. 10          | Q      |       |         |        |        |     |
| 4. 11           | 0. 0302            | 0. 10          | Q      | •     |         | •      | ·      |     |
|                 |                    |                |        |       |         |        |        |     |

Page 1

| 4 0 4            | 0.0040             | 0.40           | _          |   | X100EV_G |   |   |
|------------------|--------------------|----------------|------------|---|----------|---|---|
| 4. 24<br>4. 38   | 0. 0313<br>0. 0325 |                | Q<br>Q     | • | •        | • |   |
| 4. 51            | 0. 0325            |                | Q          |   |          |   |   |
| 4. 65            | 0. 0348            | 0. 10          | Q          |   |          |   |   |
| 4. 78            | 0. 0359            |                | Q          |   | •        | • |   |
| 4. 92<br>5. 05   | 0. 0371<br>0. 0383 |                | Q<br>Q     | • | •        | • |   |
| 5. 19            | 0. 0303            |                | Q          |   |          |   |   |
| 5. 32            | 0.0407             |                | Q          | • | •        |   |   |
| 5. 46            | 0. 0419            |                | Q          | • | •        | • |   |
| 5. 59<br>5. 73   | 0. 0431<br>0. 0443 |                | Q<br>Q     | • | •        | • |   |
| 5. 86            | 0. 0456            |                | Q          |   |          |   |   |
| 6. 00            | 0. 0468            |                | Q          |   |          |   |   |
| 6. 13<br>6. 27   | 0. 0481<br>0. 0493 |                | Q<br>Q     | • | •        | • |   |
| 6. 40            | 0. 0506            |                | Q          | • | •        | • | • |
| 6. 54            | 0.0519             | 0. 12          | Q          |   |          |   |   |
| 6. 67            | 0. 0532            |                | Q          | • | •        |   |   |
| 6. 81<br>6. 94   | 0. 0545<br>0. 0559 |                | Q<br>Q     | • | •        | • |   |
| 7. 08            | 0.0572             |                | Q          |   |          |   |   |
| 7. 21            | 0. 0586            |                | Q          |   |          |   |   |
| 7. 35            | 0.0599             |                | Q          |   |          |   |   |
| 7. 48<br>7. 62   | 0. 0613<br>0. 0627 |                | Q<br>Q     | • | •        | • | • |
| 7. 75            | 0. 0641            |                | Q          | · |          |   |   |
| 7. 89            | 0. 0655            |                | Q          |   |          |   |   |
| 8. 03<br>8. 16   | 0. 0670<br>0. 0684 |                | Q<br>Q     | • | •        | • | • |
| 8. 30            | 0.0699             |                | Q          |   |          |   |   |
| 8. 43            | 0. 0714            |                | Q          | • | •        |   |   |
| 8. 57            | 0.0729             |                | Q          |   |          |   |   |
| 8. 70<br>8. 84   | 0. 0744<br>0. 0759 |                | Q<br>Q     | • | •        | • |   |
| 8. 97            | 0. 0775            |                | Q          |   |          |   |   |
| 9. 11            | 0. 0791            |                | Q          |   |          |   |   |
| 9. 24<br>9. 38   | 0. 0807<br>0. 0823 |                | Q<br>Q     | • | •        | • |   |
| 9. 51            | 0. 0839            |                | Q          | • |          | • |   |
| 9. 65            | 0. 0856            |                | Q          |   |          | • |   |
| 9. 78<br>9. 92   | 0. 0873<br>0. 0890 |                | Q<br>Q     |   | •        |   |   |
| 10. 05           | 0. 0890            |                | Q          |   | •        |   |   |
| 10. 19           | 0.0924             | 0. 16          | Q          |   |          |   |   |
| 10. 32<br>10. 46 | 0. 0942<br>0. 0960 |                | Q          |   |          |   |   |
| 10. 46           | 0. 0980            |                | Q<br>Q     | • | •        | • | • |
| 10. 73           | 0. 0997            |                | Q          |   |          |   |   |
| 10. 86           | 0. 1016            |                | Q          | • |          |   |   |
| 11. 00<br>11. 13 | 0. 1035<br>0. 1055 |                | Q<br>Q     | • | •        | • | • |
| 11. 27           | 0. 1074            |                | Q          | • |          |   |   |
| 11. 40           | 0. 1095            |                | Q          |   |          | • |   |
| 11. 54<br>11. 67 | 0. 1115<br>0. 1136 |                | Q<br>Q     | • | •        | • |   |
| 11. 81           | 0. 1158            |                | Q          |   |          | • |   |
| 11. 95           | 0. 1179            | 0. 20          | Q          | • | •        |   |   |
| 12. 08           | 0. 1203            |                | Q          |   | •        |   |   |
| 12. 22<br>12. 35 | 0. 1231<br>0. 1262 | 0. 27<br>0. 28 | . Q<br>. Q | • | •        | • | • |
| 12. 49           | 0. 1293            |                | . Q        |   |          |   | : |
| 12. 62           | 0. 1325            |                | . Q        |   |          |   |   |
| 12. 76           | 0. 1357<br>0. 1390 | 0. 29<br>0. 30 | . Q<br>. Q | • | •        | • |   |
| 12. 89<br>13. 03 | 0. 1390            |                | . Q<br>. Q | • | •        | • | • |
| 13. 16           | 0. 1459            | 0. 32          | . Q        |   |          |   |   |
| 13. 30           | 0. 1495            |                | . Q        |   |          |   |   |
| 13. 43<br>13. 57 | 0. 1532<br>0. 1570 | 0. 34<br>0. 35 | . Q<br>. Q |   | •        | • |   |
| 13. 70           | 0. 1610            |                | . Q        |   | •        |   |   |
| 13. 84           | 0. 1651            | 0. 37          | . Q        | • |          |   |   |
| 13. 97<br>14. 11 | 0. 1694            | 0. 39          | . Q        |   | •        |   |   |
| 14. 11<br>14. 24 | 0. 1738<br>0. 1784 |                | . Q<br>. Q | • |          |   | • |
| 14. 38           | 0. 1832            | 0.44           | . Q        |   |          |   |   |
| 14. 51           | 0. 1883            |                | . Q        |   | •        |   |   |
| 14. 65<br>14. 78 | 0. 1936<br>0. 1993 | 0. 49<br>0. 53 | . Q<br>. Q | • | •        | • |   |
| 17.70            | 0. 1773            | 0. 55          | . u        | • |          | • |   |

|                  |                    |                |            | X10 | OOEV_G |        |   |
|------------------|--------------------|----------------|------------|-----|--------|--------|---|
| 14. 92<br>15. 05 | 0. 2053<br>0. 2117 | 0. 55<br>0. 61 | . Q<br>. Q | •   | •      | •      | • |
| 15. 19           | 0. 2187            | 0.64           | . Q        |     |        |        |   |
| 15. 32<br>15. 46 | 0. 2264<br>0. 2345 | 0. 73<br>0. 73 | . Q<br>. Q | •   | •      |        | • |
| 15. 40           | 0. 2430            | 0. 73          | . Q<br>. Q |     |        |        |   |
| 15. 73           | 0. 2526            | 0. 91          | . Q        |     |        |        |   |
| 15. 86<br>16. 00 | 0. 2657<br>0. 2848 | 1. 44<br>1. 98 | . Q<br>. Q | •   | •      | •      | • |
| 16. 14           | 0. 3283            | 5. 82          |            |     | . Q    |        | • |
| 16. 27<br>16. 41 | 0. 3672<br>0. 3775 | 1. 14<br>0. 71 | . Q<br>. Q | •   | •      |        |   |
| 16. 54           | 0. 3853            | 0. 71          | . Q<br>. Q |     |        |        |   |
| 16. 68           | 0. 3924            | 0. 58          | . Q        |     |        |        |   |
| 16. 81<br>16. 95 | 0. 3984<br>0. 4037 | 0. 50<br>0. 45 | . Q<br>. Q | •   | •      |        | • |
| 17. 08           | 0. 4086            | 0.41           | . Q        |     |        |        |   |
| 17. 22<br>17. 35 | 0. 4130<br>0. 4171 | 0. 38<br>0. 35 | . Q<br>. Q | •   | •      |        | • |
| 17. 49           | 0. 4209            | 0. 33          | . Q<br>. Q |     |        |        |   |
| 17. 62           | 0. 4245            | 0. 31          | . Q        |     | •      |        |   |
| 17. 76<br>17. 89 | 0. 4279<br>0. 4312 | 0. 30<br>0. 28 | . Q<br>. Q |     |        |        |   |
| 18. 03           | 0. 4343            | 0. 27          | . Q        |     |        |        |   |
| 18. 16<br>18. 30 | 0. 4369<br>0. 4391 | 0. 20<br>0. 19 | Q<br>Q     | •   | •      |        | • |
| 18. 43           | 0. 4412            | 0. 18          | Q          |     |        | •      |   |
| 18. 57<br>18. 70 | 0. 4432<br>0. 4452 | 0. 18<br>0. 17 | Q<br>Q     |     | •      |        |   |
| 18. 84           | 0. 4471            | 0. 17          | Q          |     |        |        |   |
| 18. 97<br>19. 11 | 0. 4489            | 0. 16          | Q          |     | •      |        |   |
| 19. 11<br>19. 24 | 0. 4507<br>0. 4524 | 0. 16<br>0. 15 | Q<br>Q     |     |        | ·      |   |
| 19. 38           | 0. 4541            | 0. 15          | Q          |     |        |        |   |
| 19. 51<br>19. 65 | 0. 4557<br>0. 4573 | 0. 14<br>0. 14 | Q<br>Q     |     |        |        |   |
| 19. 78           | 0. 4589            | 0. 14          | Q          |     | •      | •      | • |
| 19. 92<br>20. 06 | 0. 4604<br>0. 4619 | 0. 13<br>0. 13 | Q<br>Q     | •   | •      |        | • |
| 20. 19           | 0. 4633            | 0. 13          | Q          |     |        |        |   |
| 20. 33<br>20. 46 | 0. 4648<br>0. 4662 | 0. 13<br>0. 12 | Q<br>Q     | •   | •      |        | • |
| 20. 60           | 0. 4675            | 0. 12          | Q          |     |        |        |   |
| 20. 73<br>20. 87 | 0. 4689<br>0. 4702 | 0. 12<br>0. 12 | Q          |     | •      |        |   |
| 21. 00           | 0. 4715            | 0. 12          | Q<br>Q     |     |        |        |   |
| 21. 14           | 0. 4727            | 0. 11          | Q          |     |        |        |   |
| 21. 27<br>21. 41 | 0. 4740<br>0. 4752 | 0. 11<br>0. 11 | Q<br>Q     |     |        |        |   |
| 21. 54           | 0. 4764            | 0. 11          | Q          |     |        | •      | • |
| 21. 68<br>21. 81 | 0. 4776<br>0. 4788 | 0. 11<br>0. 10 | Q<br>Q     |     | •      | •      |   |
| 21. 95           | 0. 4799            | 0. 10          | Q          |     |        |        |   |
| 22. 08<br>22. 22 | 0. 4811<br>0. 4822 | 0. 10<br>0. 10 | Q<br>Q     |     | •      |        | • |
| 22. 35           | 0. 4833            | 0. 10          | Q          |     |        |        |   |
| 22. 49           | 0. 4844            | 0. 10          | Q          |     | •      |        |   |
| 22. 62<br>22. 76 | 0. 4855<br>0. 4865 | 0. 10<br>0. 09 | Q<br>Q     |     |        |        |   |
| 22.89            | 0. 4876            | 0.09           | Q          |     | •      | •      |   |
| 23. 03<br>23. 16 | 0. 4886<br>0. 4896 | 0. 09<br>0. 09 | Q<br>Q     | •   |        | •      | • |
| 23. 30           | 0. 4906            | 0.09           | Q          |     |        | ·<br>· |   |
| 23. 43<br>23. 57 | 0. 4916            | 0.09           | Q          |     |        |        |   |
| 23. 57<br>23. 70 | 0. 4926<br>0. 4936 | 0. 09<br>0. 09 | Q<br>Q     |     |        |        |   |
| 23.84            | 0. 4946            | 0.09           | Q          |     |        |        |   |
| 23. 97<br>24. 11 | 0. 4955<br>0. 4965 | 0. 08<br>0. 08 | Q<br>Q     |     |        |        |   |
| 24. 25           | 0. 4969            | 0. 00          | Q          |     |        |        |   |
|                  |                    |                |            |     |        |        |   |

## Drainage H

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355 .\_\_\_\_

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 7.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 8.31
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.69

| *****            | *****              | *****          | ****   | ***** | ***** | ***** | ***** |
|------------------|--------------------|----------------|--------|-------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 7. 5  | 15.0  | 22. 5 | 30.0  |
| 0. 07            | 0. 0010            | 0. 33          | Q      |       |       |       |       |
| 0. 21            | 0.0047             | 0. 33          | Q      |       |       |       |       |
| 0. 35            | 0. 0085            | 0. 33          | Q      |       |       |       |       |
| 0. 49            | 0. 0123            | 0. 33          | Q      |       |       |       |       |
| 0. 63            | 0. 0161            | 0. 33          | Q      | •     | •     | •     |       |
| 0. 76<br>0. 90   | 0. 0199<br>0. 0237 | 0. 33<br>0. 34 | Q      | •     | •     | •     | •     |
| 0. 90<br>1. 04   | 0. 0237            | 0. 34          | Q<br>Q | •     | •     | •     |       |
| 1. 18            | 0. 0276            | 0. 34          | Q      | •     | •     | •     | •     |
| 1. 32            | 0. 0354            | 0. 34          | Q      | •     | •     | •     | •     |
| 1. 46            | 0. 0393            | 0. 35          | Q      |       |       |       |       |
| 1. 60            | 0.0433             | 0. 35          | Q      |       |       |       |       |
| 1. 73            | 0. 0473            | 0. 35          | Q      | •     | •     | •     |       |
| 1. 87            | 0. 0513            | 0. 35          | Q      |       |       |       |       |
| 2. 01            | 0. 0553            | 0. 35          | Q      |       |       | •     |       |
| 2. 15<br>2. 29   | 0. 0594<br>0. 0635 | 0. 36<br>0. 36 | Q<br>Q | •     | •     | •     | •     |
| 2. 43            | 0. 0635            | 0. 36          | Q      | •     | •     | •     | •     |
| 2. 57            | 0.0070             | 0. 36          | Q      | •     | •     | •     | •     |
| 2. 70            | 0. 0759            | 0. 36          | Q      | •     |       | •     | ·     |
| 2. 84            | 0. 0801            | 0. 37          | Q      |       |       |       |       |
| 2. 98            | 0.0843             | 0. 37          | Q      |       |       |       |       |
| 3. 12            | 0. 0885            | 0. 37          | Q      |       |       |       |       |
| 3. 26            | 0. 0928            | 0. 37          | Q      | •     |       | •     |       |
| 3. 40            | 0. 0971            | 0. 38          | Q      |       |       | •     |       |
| 3. 53<br>3. 67   | 0. 1015<br>0. 1058 | 0. 38<br>0. 38 | Q<br>Q | •     | •     | •     | •     |
| 3. 87<br>3. 81   | 0. 1038            | 0. 36          | Q      | •     | •     | •     | •     |
| 3. 95            | 0. 1102            | 0. 39          | Q      | •     | •     | •     | •     |
| 4. 09            | 0. 1191            | 0.39           | Q      | •     |       | •     | ·     |
| 4. 23            | 0. 1236            | 0. 39          | Q      |       |       |       |       |
|                  |                    |                |        |       |       |       |       |

Page 1

|        |                    |                |            |   | X100 | DEV_H |   |
|--------|--------------------|----------------|------------|---|------|-------|---|
|        | 0. 1281<br>0. 1327 | 0. 40<br>0. 40 | Q<br>Q     |   |      |       |   |
|        | 0. 1373<br>0. 1419 | 0. 40<br>0. 41 | Q<br>Q     |   |      |       |   |
| 4. 92  | 0. 1466            | 0. 41          | Q          |   |      |       |   |
|        | 0. 1513<br>0. 1560 | 0. 41<br>0. 42 | Q<br>Q     |   |      |       |   |
|        | D. 1608<br>D. 1656 | 0. 42<br>0. 42 | Q<br>Q     | • |      |       |   |
| 5. 61  | 0. 1705            | 0.43           | Q          |   |      |       |   |
|        | 0. 1754<br>0. 1803 | 0. 43<br>0. 43 | Q<br>Q     | • |      |       |   |
| 6. 03  | 0. 1853            | 0.44           | Q          |   |      |       |   |
|        | 0. 1904<br>0. 1954 | 0. 44<br>0. 44 | Q<br>Q     |   |      |       |   |
|        | 0. 2005<br>0. 2057 | 0. 45<br>0. 45 | Q<br>Q     |   |      |       |   |
| 6. 72  | 0. 2109            | 0.46           | Q          |   |      |       |   |
|        | 0. 2162<br>0. 2215 | 0. 46<br>0. 47 | Q<br>Q     |   |      |       |   |
| 7. 14  | 0. 2269            | 0. 47          | Q          |   |      |       |   |
|        | 0. 2323<br>0. 2378 | 0. 48<br>0. 48 | Q<br>Q     |   |      |       |   |
|        | 0. 2433<br>0. 2489 | 0. 49<br>0. 49 | Q<br>Q     |   |      |       |   |
| 7. 83  | 0. 2545            | 0.50           | Q          |   |      |       |   |
|        | 0. 2602<br>0. 2660 | 0. 50<br>0. 51 | Q<br>Q     | • |      |       | • |
| 8. 24  | 0. 2718            | 0. 51          | Q          |   |      |       |   |
| 8. 52  | 0. 2777<br>0. 2837 | 0. 52<br>0. 52 | Q<br>Q     |   |      |       |   |
|        | 0. 2897<br>0. 2958 | 0. 53<br>0. 54 | Q<br>Q     |   |      |       |   |
| 8. 94  | 0. 3020            | 0. 54          | Q          |   |      |       |   |
|        | 0. 3082<br>0. 3146 | 0. 55<br>0. 56 | Q<br>Q     |   |      |       |   |
|        | 0. 3210<br>0. 3275 | 0. 56<br>0. 57 | Q<br>Q     | • |      |       |   |
| 9. 63  | 0. 3341            | 0. 58          | Q          |   |      |       |   |
|        | 0. 3408<br>0. 3475 | 0. 59<br>0. 59 | Q<br>Q     | • |      |       |   |
| 10.04  | 0. 3544            | 0. 61          | Q          |   |      |       |   |
|        | 0. 3614<br>0. 3684 | 0. 61<br>0. 62 | Q<br>Q     |   |      |       |   |
|        | 0. 3756<br>0. 3829 | 0. 63<br>0. 64 | Q<br>Q     |   |      |       |   |
| 10.74  | 0. 3903            | 0.65           | Q          |   |      |       |   |
|        | 0. 3978<br>0. 4055 | 0. 67<br>0. 67 | Q<br>Q     |   |      |       |   |
| 11. 15 | 0. 4133<br>0. 4212 | 0. 69<br>0. 70 | Q          |   |      |       |   |
| 11. 43 | 0. 4293            | 0. 70          | Q<br>Q     |   |      |       |   |
|        | 0. 4375<br>0. 4459 | 0. 72<br>0. 74 | Q<br>Q     |   |      |       |   |
| 11.85  | 0. 4545            | 0. 75          | . Q        |   |      |       |   |
|        | 0. 4632<br>0. 4726 | 0. 77<br>0. 87 | . Q<br>. Q |   |      |       |   |
| 12. 26 | 0. 4837            | 1. 07<br>1. 08 | . Q<br>. Q |   |      |       |   |
|        | 0. 4960<br>0. 5085 | 1. 11          | . Q<br>. Q |   |      |       |   |
|        | 0. 5213<br>0. 5343 | 1. 12<br>1. 16 | . Q<br>. Q |   |      |       |   |
| 12. 95 | 0. 5477            | 1. 17          | . Q        |   |      |       |   |
|        | 0. 5613<br>0. 5754 | 1. 21<br>1. 24 | . Q<br>. Q |   |      |       |   |
| 13. 37 | 0. 5899            | 1. 30          | . Q        |   |      |       |   |
|        | 0. 6049<br>0. 6205 | 1. 33<br>1. 39 | . Q<br>. Q |   |      |       |   |
|        | 0. 6366<br>0. 6534 | 1. 43<br>1. 51 | . Q<br>. Q |   |      |       |   |
| 14.06  | 0. 6709            | 1. 55          | . Q        |   |      |       |   |
|        | 0. 6890<br>0. 7078 | 1. 62<br>1. 67 | . Q<br>. Q |   |      |       |   |
| 14. 48 | 0. 7276            | 1. 79          | . Q        |   |      |       |   |
|        | 0. 7485<br>0. 7707 | 1. 86<br>2. 02 | . Q<br>. Q |   |      |       |   |
|        | 0. 7943<br>0. 8196 | 2. 11<br>2. 32 | . Q<br>. Q |   |      |       |   |
|        | 0. 8470            | 2. 46          | . Q        |   |      |       |   |

. Page 2

|                  |                    |                |            |   | X100EV_F | 1  |   |
|------------------|--------------------|----------------|------------|---|----------|----|---|
| 15. 31<br>15. 45 | 0. 8770<br>0. 9095 | 2. 79<br>2. 89 | . Q<br>. Q | • | . –      |    | • |
| 15. 58           | 0. 9435            | 3. 06          | . Q<br>. Q |   |          |    | • |
| 15. 72<br>15. 86 | 0. 9811<br>1. 0326 | 3. 50<br>5. 51 | . Q<br>. Q |   |          |    |   |
| 16. 00           | 1. 1075            | 7. 57          | . Q        | Q |          |    | • |
| 16. 14           | 1. 2785            | 22. 30         |            |   |          | Q. | • |
| 16. 28<br>16. 42 | 1. 4310<br>1. 4715 | 4. 34<br>2. 73 | . Q<br>. Q |   |          | :  |   |
| 16. 55           | 1. 5020            | 2. 61          | . Q        | • |          |    |   |
| 16. 69<br>16. 83 | 1. 5296<br>1. 5533 | 2. 21<br>1. 93 | . Q<br>. Q | • | •        | •  | • |
| 16. 97           | 1. 5743            | 1. 73          | . Q        |   |          |    | • |
| 17. 11<br>17. 25 | 1. 5932<br>1. 6106 | 1. 58<br>1. 47 | . Q<br>. Q | • | •        | •  | • |
| 17. 39           | 1. 6268            | 1. 36          | . Q        |   | ÷.       |    | • |
| 17. 52<br>17. 66 | 1. 6418<br>1. 6559 | 1. 27<br>1. 19 | . Q<br>. Q |   |          |    |   |
| 17. 80           | 1. 6692            | 1. 14          | . Q<br>. Q |   |          |    | • |
| 17. 94           | 1. 6820            | 1.09           | . Q        |   |          |    | • |
| 18. 08<br>18. 22 | 1. 6943<br>1. 7047 | 1. 05<br>0. 76 | . Q<br>. Q |   |          | :  |   |
| 18. 35           | 1. 7132            | 0. 73          | Q          | • | •        |    |   |
| 18. 49<br>18. 63 | 1. 7215<br>1. 7294 | 0. 71<br>0. 68 | Q<br>Q     | • | •        | •  | • |
| 18. 77           | 1. 7371            | 0. 66          | Q          |   |          |    |   |
| 18. 91<br>19. 05 | 1. 7445<br>1. 7517 | 0. 64<br>0. 62 | Q          |   |          |    | • |
| 19. 05           | 1. 7586            | 0. 62          | Q<br>Q     |   |          |    | • |
| 19. 32           | 1. 7654            | 0. 58          | Q          |   |          |    |   |
| 19. 46<br>19. 60 | 1. 7720<br>1. 7784 | 0. 57<br>0. 55 | Q<br>Q     | • | •        | •  | • |
| 19. 74           | 1. 7847            | 0. 54          | Q          |   |          |    | • |
| 19. 88<br>20. 02 | 1. 7908<br>1. 7967 | 0. 53<br>0. 52 | Q<br>Q     | • | •        | •  | • |
| 20. 16           | 1. 8026            | 0. 50          | Q          |   | :        |    |   |
| 20. 29<br>20. 43 | 1.8083             | 0.49           | Q          |   |          |    |   |
| 20. 43           | 1. 8138<br>1. 8193 | 0. 48<br>0. 47 | Q<br>Q     |   |          |    |   |
| 20. 71           | 1. 8247            | 0.46           | Q          |   |          |    |   |
| 20. 85<br>20. 99 | 1. 8300<br>1. 8351 | 0. 46<br>0. 45 | Q<br>Q     | • | •        | •  | • |
| 21. 12           | 1. 8402            | 0.44           | Q          |   |          |    | • |
| 21. 26<br>21. 40 | 1. 8452<br>1. 8501 | 0. 43<br>0. 42 | Q<br>Q     |   | •        | •  | • |
| 21. 54           | 1. 8549            | 0. 42          | Q          |   | :        |    |   |
| 21. 68<br>21. 82 | 1.8596             | 0. 41          | Q          |   |          |    | • |
| 21. 02           | 1. 8643<br>1. 8689 | 0. 40<br>0. 40 | Q<br>Q     |   |          |    |   |
| 22. 09           | 1.8734             | 0. 39          | Q          |   |          |    |   |
| 22. 23<br>22. 37 | 1. 8779<br>1. 8823 | 0. 39<br>0. 38 | Q<br>Q     |   |          | •  | • |
| 22. 51           | 1. 8866            | 0. 38          | Q          |   |          |    |   |
| 22. 65<br>22. 70 | 1. 8909            | 0. 37<br>0. 37 | Q          |   |          |    | • |
| 22. 79<br>22. 92 | 1. 8951<br>1. 8993 | 0. 36          | Q<br>Q     |   |          |    | • |
| 23. 06           | 1. 9034            | 0.36           | Q          |   |          |    |   |
| 23. 20<br>23. 34 | 1. 9075<br>1. 9115 | 0. 35<br>0. 35 | Q<br>Q     |   | •        |    |   |
| 23. 48           | 1. 9154            | 0.34           | Q          |   |          |    | • |
| 23. 62<br>23. 76 | 1. 9193<br>1. 9232 | 0. 34<br>0. 34 | Q<br>Q     |   |          |    | • |
| 23. 89           | 1. 9270            | 0. 33          | Q          |   |          |    | • |
| 24. 03           | 1. 9308            | 0. 33          | Q          |   |          |    | • |
| 24. 17           | 1. 9327            | 0. 00          | Q          |   |          |    |   |

## Drainage I

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355 .\_\_\_\_

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 1.10
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 9.62
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =

| ******          | *****              | *****          | ****   | ****** | ***** | ****** | ***** |
|-----------------|--------------------|----------------|--------|--------|-------|--------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 2. 5   | 5. 0  | 7. 5   | 10.0  |
| 0. 13           | 0. 0003            | 0. 05          | Q      |        |       |        |       |
| 0. 29           | 0.0010             | 0. 05          | Q      |        |       |        |       |
| 0. 45           | 0. 0016            | 0. 05          | Q      |        |       |        |       |
| 0. 61           | 0. 0023            | 0. 05          | Q      | •      | •     | •      |       |
| 0. 77           | 0.0030             | 0. 05          | Q      |        | •     | •      |       |
| 0. 93           | 0.0037             | 0.05           | Q      | •      | •     | •      | •     |
| 1. 09<br>1. 25  | 0. 0044<br>0. 0051 | 0. 05<br>0. 05 | Q<br>Q | •      | •     | •      | •     |
| 1. 41           | 0. 0051            | 0. 05          | Q      | •      | •     | •      | •     |
| 1. 57           | 0. 0036            | 0.05           | Q      | •      | •     | •      | •     |
| 1. 73           | 0.0073             | 0.05           | Q      | •      | •     | •      | •     |
| 1. 89           | 0.0080             | 0. 06          | Q      |        |       |        |       |
| 2. 05           | 0.0088             | 0.06           | Q      |        |       |        |       |
| 2. 21           | 0. 0095            | 0. 06          | Q      | •      | •     | •      |       |
| 2. 37           | 0. 0102            | 0. 06          | Q      |        |       |        |       |
| 2. 53           | 0. 0110            | 0. 06          | Q      |        |       |        |       |
| 2. 69           | 0. 0117            | 0. 06          | Q      |        | •     | •      |       |
| 2. 85           | 0. 0125            | 0.06           | Q      | •      | •     | •      | •     |
| 3. 01<br>3. 17  | 0. 0133<br>0. 0140 | 0. 06<br>0. 06 | Q<br>Q | •      | •     | •      | •     |
| 3. 17           | 0. 0140            | 0.06           | Q      | •      | •     | •      | •     |
| 3. 49           | 0. 0156            | 0.06           | Q      | •      | •     | •      |       |
| 3. 65           | 0. 0164            | 0. 06          | Q      | •      | •     | •      | •     |
| 3. 81           | 0. 0172            | 0.06           | Q      | ·      | · ·   |        | · ·   |
| 3. 98           | 0. 0180            | 0.06           | Q      |        |       |        |       |
| 4. 14           | 0. 0188            | 0.06           | Q      |        |       |        |       |
| 4. 30           | 0. 0196            | 0. 06          | Q      | •      | •     | •      |       |
| 4. 46           | 0. 0205            | 0. 06          | Q      |        |       |        |       |
| 4. 62           | 0. 0213            | 0. 06          | Q      | •      |       | •      |       |
| 4. 78           | 0. 0221            | 0.06           | Q      |        |       |        |       |
| 4. 94           | 0. 0230            | 0. 06          | Q      | •      |       | •      |       |
|                 |                    |                |        |        |       |        |       |

Page 1

|                   |                  |     | X100EV_I |   |
|-------------------|------------------|-----|----------|---|
|                   | 06 Q<br>07 Q     |     |          |   |
|                   | 07 Q<br>07 Q     | •   |          |   |
| 5. 74 0. 0274 0.  | 07 Q             |     |          |   |
|                   | 07 Q<br>07 Q     | •   | •        | • |
|                   | 07 Q<br>07 Q     | •   |          | • |
| 6. 54 0. 0319 0.  | 07 Q             |     |          |   |
| 6. 86 0. 0338 0.  | 07 Q<br>07 Q     | •   | •        |   |
|                   | 07 Q<br>07 Q     | •   | •        | • |
| 7. 34 0. 0368 0.  | 07 Q<br>08 Q     |     |          |   |
| 7. 66 0. 0388 0.  | 08 Q             |     |          |   |
|                   | 08 Q<br>08 Q     |     |          |   |
| 8. 14 0. 0419 0.  | 08 Q<br>08 Q     | •   | •        |   |
| 8. 46 0. 0440 0.  | 08 Q             |     | •        |   |
|                   | 08 Q<br>08 Q     |     |          |   |
| 8. 95 0. 0474 0.  | 09 Q<br>09 Q     |     |          |   |
| 9. 27 0. 0496 0.  | 09 Q             | •   |          |   |
|                   | 09 Q<br>09 Q     |     |          |   |
|                   | 09 Q<br>09 Q     | •   | •        |   |
| 10. 07 0. 0557 0. | 10 Q             |     |          |   |
|                   | 10 Q<br>10 Q     |     |          |   |
|                   | 10 Q<br>10 Q     |     |          | • |
| 10. 87 0. 0623 0. | 10 Q             |     |          | • |
| 11. 19 0. 0651 0. | 11 Q<br>11 Q     |     | •        |   |
|                   | 11 Q<br>11 Q     | •   |          |   |
| 11. 67 0. 0695 0. | 12 Q             |     |          |   |
| 11. 99 0. 0727 0. | 12 0             |     | •        |   |
|                   | 14 Q<br>17 Q     |     |          |   |
|                   | 17 Q<br>18 Q     | •   | •        |   |
| 12. 79 0. 0833 0. | 18 Q             |     |          | • |
|                   | 19 Q<br>19 Q     |     |          |   |
|                   | 20 Q<br>20 Q     | •   | •        |   |
| 13. 60 0. 0962 0. | 21 Q             |     |          |   |
| 13. 92 0. 1022 0. | 22 Q<br>24 Q     |     |          |   |
|                   | 24 Q<br>26 . Q   | •   |          |   |
| 14. 40 0. 1121 0. | 27 . Q           |     |          |   |
|                   | 29 . Q<br>30 . Q |     |          |   |
|                   | 33 . Q<br>35 . Q | •   |          |   |
| 15. 20 0. 1335 0. | 40 . Q           | •   | •        |   |
|                   | 43 . Q<br>44 . Q |     |          |   |
|                   | 50 . Q<br>79 . Q | •   |          |   |
| 16. 00 0. 1720 1. | 09 . (           |     |          |   |
| 16. 32 0. 2258 0. | 22 .<br>60 . Q   | . Q |          |   |
|                   | 45 . Q<br>38 . Q | •   |          | • |
| 16. 80 0. 2428 0. | 32 . Q           |     |          | • |
| 17. 12 0. 2502 0. | 28 . Q<br>25 Q   | •   |          |   |
|                   | 23 Q<br>21 Q     | •   |          |   |
|                   | 19 0             |     |          |   |

Page 2

|                  |                    |                |        |   | X100EV_I |   |   |
|------------------|--------------------|----------------|--------|---|----------|---|---|
| 17. 76           | 0. 2614            | 0. 18          | Q      |   |          |   |   |
| 17. 92           | 0. 2638            | 0. 17          | Q      |   |          |   |   |
| 18. 08           | 0. 2660            | 0. 17          | Q      |   |          |   |   |
| 18. 24           | 0. 2679            | 0. 12<br>0. 11 | Q      |   |          |   |   |
| 18. 41<br>18. 57 | 0. 2695<br>0. 2710 | 0. 11          | Q<br>Q | • | •        | • | • |
| 18. 73           | 0. 2710            | 0. 10          | Q      | • | •        | • | • |
| 18. 89           | 0. 2738            | 0. 10          | Q      |   |          |   |   |
| 19. 05           | 0. 2751            | 0. 10          | Q      |   |          | • | • |
| 19. 21           | 0. 2763            | 0.09           | Q      | • |          |   | • |
| 19. 37<br>19. 53 | 0. 2776<br>0. 2788 | 0. 09<br>0. 09 | Q      |   | •        |   |   |
| 19. 53<br>19. 69 | 0. 2766            | 0.09           | Q<br>Q | • | •        | • | • |
| 19. 85           | 0. 2810            | 0.08           | Q      | • | •        | • | • |
| 20. 01           | 0. 2821            | 0. 08          | Q      |   |          |   |   |
| 20. 17           | 0. 2832            | 0.08           | Q      |   |          | • | • |
| 20. 33           | 0. 2842            | 0.08           | Q      |   |          |   |   |
| 20. 49           | 0. 2852<br>0. 2862 | 0. 08<br>0. 07 | Q      | • | •        | • | • |
| 20. 65<br>20. 81 | 0. 2862            | 0.07           | Q<br>Q | • | •        | • | • |
| 20. 97           | 0. 2881            | 0. 07          | Q      | • | •        | • | • |
| 21. 13           | 0. 2891            | 0. 07          | Q      |   |          |   |   |
| 21. 29           | 0. 2900            | 0. 07          | Q      |   |          | • | • |
| 21. 45           | 0. 2909            | 0. 07          | Q      | • |          |   | • |
| 21. 61<br>21. 77 | 0. 2917<br>0. 2926 | 0. 07<br>0. 06 | Q      | • | •        | • | • |
| 21. 77           | 0. 2926            | 0.06           | Q<br>Q | • | •        | • | • |
| 22. 09           | 0. 2943            | 0.06           | Q      | • | •        | • | • |
| 22. 25           | 0. 2951            | 0.06           | Q      |   |          |   |   |
| 22. 41           | 0. 2959            | 0.06           | Q      |   |          |   |   |
| 22. 57           | 0. 2967            | 0.06           | Q      | • |          |   | • |
| 22. 73           | 0. 2974<br>0. 2982 | 0.06           | Q      |   |          |   |   |
| 22. 89<br>23. 05 | 0. 2982<br>0. 2989 | 0. 06<br>0. 06 | Q<br>Q | • | •        | • | • |
| 23. 22           | 0. 2997            | 0.06           | Q      | • | •        | • | • |
| 23. 38           | 0. 3004            | 0.05           | Q      |   |          |   |   |
| 23. 54           | 0. 3011            | 0.05           | Q      |   |          |   |   |
| 23. 70           | 0. 3018            | 0.05           | Q      |   |          |   |   |
| 23. 86           | 0. 3025            | 0.05           | Q      | • | •        | • | • |
| 24. 02<br>24. 18 | 0. 3032<br>0. 3036 | 0. 05<br>0. 00 | Q<br>Q | • | •        | • |   |
| 24. 18           | 0. 3036            | 0.00           | u      | • | •        | • | • |

## Drainage J

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355 -----

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 11.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 13.68
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 3. 04 1. 07

| *****            | *****              | *****          | ***    | ***** | ***** | ***** | ***** |
|------------------|--------------------|----------------|--------|-------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 7. 5  | 15. 0 | 22. 5 | 30. 0 |
| 0. 04            | 0. 0000            | 0. 00          | Q      |       |       |       |       |
| 0. 27            | 0.0049             | 0. 52          | Q      |       |       |       |       |
| 0. 50            | 0. 0146            | 0. 52          | Q      |       |       |       |       |
| 0. 72            | 0. 0244            | 0. 52          | Q      |       |       |       |       |
| 0. 95            | 0. 0343            | 0. 53          | Q      | •     | •     | •     | •     |
| 1. 18            | 0. 0443            | 0. 53          | Q      | •     | •     |       |       |
| 1. 41<br>1. 64   | 0. 0545<br>0. 0647 | 0. 54<br>0. 55 | Q<br>Q | •     | •     | •     | •     |
| 1. 86            | 0. 0750            | 0. 55          | Q      | •     | •     | •     | •     |
| 2. 09            | 0. 0750            | 0. 55          | Q      | •     | •     | •     | •     |
| 2. 32            | 0. 0959            | 0. 56          | Q      | •     | •     | •     | •     |
| 2. 55            | 0. 1065            | 0. 57          | Q      | •     | •     |       |       |
| 2. 78            | 0. 1173            | 0. 57          | ã      | •     |       |       |       |
| 3.00             | 0. 1282            | 0. 58          | Q      |       |       |       |       |
| 3. 23            | 0. 1391            | 0. 59          | Q      | •     |       |       |       |
| 3. 46            | 0. 1503            | 0. 59          | Q      |       |       |       |       |
| 3. 69            | 0. 1615            | 0. 60          | Q      |       |       |       |       |
| 3. 92            | 0. 1729            | 0. 61          | Q      | •     | •     | •     | •     |
| 4. 14            | 0. 1844            | 0. 61          | Q      | •     | •     |       |       |
| 4. 37<br>4. 60   | 0. 1960<br>0. 2078 | 0. 62<br>0. 63 | Q<br>Q | •     | •     | •     | •     |
| 4. 83            | 0. 2076<br>0. 2197 | 0. 63          | Q      | •     | •     | •     | •     |
| 5. 06            | 0. 2318            | 0. 64          | Q      | •     | •     | •     | •     |
| 5. 28            | 0. 2441            | 0. 66          | Q      | •     | •     | •     | •     |
| 5. 51            | 0. 2565            | 0. 66          | ã      |       |       |       |       |
| 5. 74            | 0. 2690            | 0. 67          | Q      |       |       |       |       |
| 5. 97            | 0. 2818            | 0. 68          | Q      |       |       |       |       |
| 6. 20            | 0. 2947            | 0. 69          | Q      | •     |       |       |       |
| 6. 42            | 0. 3079            | 0. 70          | Q      |       |       |       |       |
| 6. 65            | 0. 3212            | 0. 71          | Q      | •     | •     |       |       |
| 6. 88            | 0. 3347            | 0. 72          | Q      | •     |       |       |       |
|                  |                    |                |        |       |       |       |       |

Page 1

|                  |                    |                 |            | X10 | 00EV_J |   |   |
|------------------|--------------------|-----------------|------------|-----|--------|---|---|
| 7. 11<br>7. 34   | 0. 3485<br>0. 3624 | 0. 74<br>0. 74  | Q<br>Q     |     | . – .  |   |   |
| 7. 56            | 0. 3766            | 0.76            | . Q        | •   |        |   | • |
| 7. 79<br>8. 02   | 0. 3910<br>0. 4057 | 0. 77<br>0. 79  | . Q<br>. Q |     | <br>   |   |   |
| 8. 25<br>8. 48   | 0. 4207<br>0. 4359 | 0. 80<br>0. 82  | . Q<br>. Q | •   |        |   |   |
| 8. 70            | 0. 4514            | 0.83            | . Q        |     |        |   |   |
| 8. 93<br>9. 16   | 0. 4672<br>0. 4833 | 0. 85<br>0. 86  | . Q<br>. Q |     | <br>   |   |   |
| 9. 39<br>9. 62   | 0. 4998<br>0. 5166 | 0.89            | . Q        |     |        |   |   |
| 9. 84            | 0. 5338            | 0. 90<br>0. 93  | . Q<br>. Q | •   | · .    |   |   |
| 10. 07<br>10. 30 | 0. 5514<br>0. 5694 | 0. 94<br>0. 97  | . Q<br>. Q | •   |        |   |   |
| 10. 53           | 0. 5879            | 0. 99           | . Q        | •   |        |   | • |
| 10. 76<br>10. 98 | 0. 6069<br>0. 6263 | 1. 02<br>1. 04  | . Q<br>. Q |     | <br>   |   |   |
| 11. 21<br>11. 44 | 0. 6463<br>0. 6669 | 1. 08<br>1. 10  | . Q<br>. Q |     |        |   |   |
| 11. 67           | 0. 6882            | 1. 15           | . Q        | •   |        |   |   |
| 11. 90<br>12. 12 | 0. 7101<br>0. 7340 | 1. 18<br>1. 36  | . Q<br>. Q | •   | <br>   |   |   |
| 12. 35<br>12. 58 | 0. 7625<br>0. 7946 | 1. 67<br>1. 74  | . Q<br>. Q |     |        |   |   |
| 12. 81           | 0. 8277            | 1. 78           | . Q        | •   |        |   |   |
| 13. 04<br>13. 26 | 0. 8620<br>0. 8977 | 1. 87<br>1. 92  | . Q<br>. Q |     |        |   |   |
| 13. 49<br>13. 72 | 0. 9353<br>0. 9751 | 2. 07<br>2. 15  | . Q<br>. Q |     |        |   |   |
| 13. 95           | 1. 0175            | 2.34            | . Q        | •   | · .    |   |   |
| 14. 18<br>14. 40 | 1. 0626<br>1. 1109 | 2. 45<br>2. 68  | . Q<br>. Q | •   |        |   |   |
| 14. 63           | 1. 1628            | 2.84            | . Q        |     |        |   |   |
| 14. 86<br>15. 09 | 1. 2200<br>1. 2835 | 3. 24<br>3. 50  | . Q<br>. Q |     | <br>   |   |   |
| 15. 32<br>15. 54 | 1. 3563<br>1. 4379 | 4. 22<br>4. 44  | . Q<br>. Q | •   |        |   |   |
| 15. 77           | 1. 5359            | 5. 96           | . Q        |     |        |   |   |
| 16. 00<br>16. 23 | 1. 6753<br>2. 0061 | 8. 83<br>26. 28 |            | . Q | <br>   | Q |   |
| 16. 46<br>16. 68 | 2. 2976<br>2. 3776 | 4. 67<br>3. 82  | . Q<br>. Q |     |        |   |   |
| 16. 91           | 2. 4420            | 3. 02           | . Q        | •   |        |   |   |
| 17. 14<br>17. 37 | 2. 4944<br>2. 5394 | 2. 54<br>2. 24  | . Q<br>. Q |     | <br>   |   |   |
| 17. 60<br>17. 82 | 2. 5794<br>2. 6153 | 1. 99<br>1. 82  | . Q<br>. Q | •   |        |   |   |
| 18. 05           | 2. 6485            | 1. 70           | . Q        | •   |        |   |   |
| 18. 28<br>18. 51 | 2. 6758<br>2. 6978 | 1. 20<br>1. 13  | . Q<br>. Q |     | <br>   |   |   |
| 18. 74           | 2. 7184            | 1. 06           | . Q        | •   |        |   |   |
| 18. 96<br>19. 19 | 2. 7379<br>2. 7563 | 1. 01<br>0. 96  | . Q<br>. Q | •   | · .    |   |   |
| 19. 42<br>19. 65 | 2. 7740<br>2. 7908 | 0. 91<br>0. 87  | . Q<br>. Q |     |        |   |   |
| 19. 88           | 2. 8069            | 0.84            | . Q        | •   |        |   | • |
| 20. 10<br>20. 33 | 2. 8224<br>2. 8374 | 0. 81<br>0. 78  | . Q<br>. Q |     | <br>   |   |   |
| 20. 56<br>20. 79 | 2. 8518<br>2. 8658 | 0. 75<br>0. 73  | . Q<br>Q   | •   |        |   |   |
| 21. 02           | 2. 8793            | 0.71            | Q          | •   |        |   |   |
| 21. 24<br>21. 47 | 2. 8924<br>2. 9052 | 0. 69<br>0. 67  | Q<br>Q     |     | <br>   |   |   |
| 21. 70<br>21. 93 | 2. 9176<br>2. 9297 | 0. 65<br>0. 63  | Q<br>Q     | •   |        |   |   |
| 22. 16           | 2. 9415            | 0.62            | Q          |     | · .    |   |   |
| 22. 38<br>22. 61 | 2. 9530<br>2. 9642 | 0. 60<br>0. 59  | Q<br>Q     |     |        |   |   |
| 22. 84           | 2. 9752            | 0. 58           | Q          |     |        |   |   |
| 23. 07<br>23. 30 | 2. 9860<br>2. 9965 | 0. 56<br>0. 55  | Q<br>Q     | •   | <br>   |   |   |
| 23. 52<br>23. 75 | 3. 0068<br>3. 0169 | 0. 54<br>0. 53  | Q<br>Q     | •   |        |   |   |
| 23. 98           | 3. 0268            | 0. 52           | Q          |     | · .    |   |   |
| 24. 21<br>24. 44 | 3. 0366<br>3. 0414 | 0. 51<br>0. 00  | Q<br>Q     |     | <br>   |   |   |
|                  |                    |                 |            |     |        |   |   |

## Drainage K

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Problem Descriptions:

.-----

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 6.30
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060
LOW LOSS FRACTION = 0.240
TIME OF CONCENTRATION (MIN.) = 11.30
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

-----

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 1.74
TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.62

| *****                                     | *****                                               | *****                                     | ****             | *****       | *****       | *****            | *****            |
|-------------------------------------------|-----------------------------------------------------|-------------------------------------------|------------------|-------------|-------------|------------------|------------------|
| TI ME<br>(HOURS)                          | VOLUME<br>(AF)                                      | Q<br>(CFS)                                | 0.               | 5.0         | 10.0        | 15.0             | 20. 0            |
| 0. 18<br>0. 37<br>0. 56<br>0. 74          | 0. 0023<br>0. 0069<br>0. 0115<br>0. 0162            | 0. 29<br>0. 30<br>0. 30<br>0. 30          | Q<br>Q<br>Q<br>Q |             |             |                  |                  |
| 0. 93<br>1. 12<br>1. 31<br>1. 50<br>1. 69 | 0. 0209<br>0. 0256<br>0. 0304<br>0. 0352<br>0. 0400 | 0. 30<br>0. 31<br>0. 31<br>0. 31<br>0. 31 | Q<br>Q<br>Q<br>Q | ·           |             | ·<br>·<br>·<br>· | :<br>:<br>:      |
| 1. 87<br>2. 06<br>2. 25<br>2. 44<br>2. 63 | 0. 0449<br>0. 0499<br>0. 0548<br>0. 0599<br>0. 0649 | 0. 32<br>0. 32<br>0. 32<br>0. 32<br>0. 33 | Q<br>Q<br>Q<br>Q | · · · ·     | :<br>:<br>: |                  |                  |
| 2. 82<br>3. 00<br>3. 19<br>3. 38          | 0. 0700<br>0. 0752<br>0. 0804<br>0. 0856            | 0. 33<br>0. 33<br>0. 34<br>0. 34          | Q<br>Q<br>Q<br>Q | ·<br>·<br>· | :<br>:<br>: | :<br>:<br>:<br>: | :<br>:<br>:      |
| 3. 57<br>3. 76<br>3. 95<br>4. 13<br>4. 32 | 0. 0909<br>0. 0963<br>0. 1017<br>0. 1071<br>0. 1126 | 0. 34<br>0. 35<br>0. 35<br>0. 35<br>0. 36 | Q<br>Q<br>Q<br>Q |             |             |                  | :<br>:<br>:<br>: |
| 4. 51<br>4. 70<br>4. 89<br>5. 08<br>5. 26 | 0. 1182<br>0. 1238<br>0. 1295<br>0. 1353<br>0. 1411 | 0. 36<br>0. 36<br>0. 37<br>0. 37<br>0. 38 | Q<br>Q<br>Q<br>Q |             |             |                  |                  |
| 5. 45<br>5. 64<br>5. 83                   | 0. 1469<br>0. 1529<br>0. 1589                       | 0. 38<br>0. 38<br>0. 39                   | Q<br>Q<br>Q      |             |             |                  |                  |

Page 1

|                  |                    |                |               |            | X100EV_K |     |   |
|------------------|--------------------|----------------|---------------|------------|----------|-----|---|
| 6. 02<br>6. 21   | 0. 1649<br>0. 1711 | 0. 39<br>0. 40 | Q<br>Q        | •          | •        | •   | • |
| 6. 39            | 0. 1773            | 0.40           | Q             |            |          | •   |   |
| 6. 58<br>6. 77   | 0. 1836<br>0. 1900 | 0. 41<br>0. 41 | Q<br>Q        |            | •        |     |   |
| 6. 96            | 0. 1964            | 0. 41          | Q             |            | •        | •   |   |
| 7. 15            | 0. 2030            | 0. 42          | Q             |            |          |     |   |
| 7. 34<br>7. 53   | 0. 2096<br>0. 2163 | 0. 43<br>0. 44 | Q<br>Q        | •          | •        | •   |   |
| 7. 71            | 0. 2231            | 0. 44          | Q             | •          |          |     |   |
| 7. 90            | 0. 2300            | 0. 45          | Q             |            |          | •   |   |
| 8. 09<br>8. 28   | 0. 2371<br>0. 2442 | 0. 45<br>0. 46 | Q<br>Q        |            |          |     |   |
| 8. 47            | 0. 2514            | 0. 47          | Q             |            |          |     |   |
| 8. 65<br>8. 84   | 0. 2587<br>0. 2662 | 0. 48<br>0. 48 | Q<br>Q        | •          | •        | •   | • |
| 9. 03            | 0. 2738            | 0. 49          | Q             | ·          |          |     |   |
| 9. 22            | 0. 2815            | 0. 50          | Q             |            |          |     |   |
| 9. 41<br>9. 60   | 0. 2893<br>0. 2973 | 0. 51<br>0. 52 | . Q<br>. Q    | •          | •        | •   | • |
| 9. 78            | 0. 3054            | 0. 53          | . Q           |            |          |     |   |
| 9. 97<br>10. 16  | 0. 3137<br>0. 3222 | 0. 54<br>0. 55 | . Q<br>. Q    | •          | •        | •   | • |
| 10. 35           | 0. 3308            | 0. 56          | . Q           |            |          |     |   |
| 10. 54           | 0. 3396            | 0. 57          | . Q           |            |          |     |   |
| 10. 73<br>10. 91 | 0. 3486<br>0. 3578 | 0. 58<br>0. 60 | . Q<br>. Q    |            |          | •   | • |
| 11. 10           | 0. 3672            | 0. 61          | . Q           |            |          |     |   |
| 11. 29<br>11. 48 | 0. 3768<br>0. 3867 | 0. 63<br>0. 64 | . Q<br>. Q    | •          | •        | •   | • |
| 11. 67           | 0. 3968            | 0. 66          | . Q<br>. Q    |            |          |     |   |
| 11. 86           | 0. 4072            | 0.67           | . Q           |            |          | •   |   |
| 12. 05<br>12. 23 | 0. 4179<br>0. 4304 | 0. 70<br>0. 91 | . Q<br>. Q    |            |          | •   | • |
| 12. 42           | 0. 4451            | 0. 98          | . Q           |            |          |     |   |
| 12. 61<br>12. 80 | 0. 4605<br>0. 4762 | 0. 99<br>1. 03 | . Q<br>.    Q | •          | •        | •   | • |
| 12. 99           | 0. 4925            | 1. 05          | . Q           | •          |          | •   |   |
| 13. 18           | 0. 5093            | 1. 11          | . Q           | •          | •        | •   |   |
| 13. 36<br>13. 55 | 0. 5267<br>0. 5450 | 1. 14<br>1. 21 | . Q<br>. Q    |            |          |     |   |
| 13. 74           | 0. 5642            | 1. 25          | . Q           |            |          |     |   |
| 13. 93<br>14. 12 | 0. 5844<br>0. 6057 | 1. 34<br>1. 40 | . Q<br>. Q    | •          | •        | •   | • |
| 14. 30           | 0. 6282            | 1. 49          | . Q           | ·          |          |     |   |
| 14. 49           | 0. 6520            | 1. 56          | . Q           |            |          | •   |   |
| 14. 68<br>14. 87 | 0. 6776<br>0. 7054 | 1. 73<br>1. 83 | . Q<br>. Q    |            |          |     |   |
| 15. 06           | 0. 7359            | 2. 09          | . Q           |            |          |     |   |
| 15. 25<br>15. 43 | 0. 7696<br>0. 8071 | 2. 25<br>2. 56 | . Q<br>. Q    | •          | •        | •   |   |
| 15. 62           | 0.8469             | 2. 56          | . Q           |            |          |     |   |
| 15. 81<br>16. 00 | 0. 8981<br>0. 9734 | 4. 01<br>5. 67 | •             | Q .<br>. Q |          | •   |   |
| 16. 19           | 1. 1484            | 16. 81         |               | . Q        |          | . Q |   |
| 16. 38           | 1. 3029            | 3. 04          | . (           | ) .        | •        | •   |   |
| 16. 57<br>16. 75 | 1. 3456<br>1. 3799 | 2. 45<br>1. 95 | . Q<br>. Q    |            |          | •   | • |
| 16. 94           | 1. 4078            | 1. 64          | . Q           |            |          |     |   |
| 17. 13<br>17. 32 | 1. 4317<br>1. 4530 | 1. 43<br>1. 30 | . Q<br>. Q    |            |          | •   |   |
| 17. 32<br>17. 51 | 1. 4722            | 1. 30          | . Q<br>. Q    |            |          |     | : |
| 17. 69           | 1. 4897            | 1.08           | . Q           |            |          |     |   |
| 17. 88<br>18. 07 | 1. 5060<br>1. 5213 | 1. 01<br>0. 96 | . Q<br>. Q    | •          | •        | •   | • |
| 18. 26           | 1. 5341            | 0. 69          | . Q           |            |          |     |   |
| 18. 45           | 1.5445             | 0.65           | . Q           |            | •        |     |   |
| 18. 64<br>18. 83 | 1. 5544<br>1. 5638 | 0. 62<br>0. 59 | . Q<br>. Q    |            | •        |     |   |
| 19. 01           | 1. 5728            | 0. 57          | . Q           |            |          |     |   |
| 19. 20<br>19. 39 | 1. 5814<br>1. 5897 | 0. 54<br>0. 52 | . Q<br>. Q    | •          | •        | •   |   |
| 19. 58           | 1. 5977            | 0. 50          | . Q           |            |          |     |   |
| 19. 77<br>10. 05 | 1. 6054            | 0.49           | Q             |            | •        | •   |   |
| 19. 95<br>20. 14 | 1. 6129<br>1. 6201 | 0. 47<br>0. 46 | Q<br>Q        |            |          |     |   |
| 20. 33           | 1. 6271            | 0.44           | Q             |            |          | •   |   |
| 20. 52<br>20. 71 | 1. 6339<br>1. 6405 | 0. 43<br>0. 42 | Q<br>Q        |            |          | •   |   |
| ZU. / I          | 1. 0400            | 0.42           | Q             | •          | Dogo 2   | •   | • |

Page 2

|        |         |       |   |   | X100EV_K |   |   |
|--------|---------|-------|---|---|----------|---|---|
| 20. 90 | 1. 6470 | 0. 41 | Q |   |          |   |   |
| 21. 08 | 1. 6533 | 0. 40 | Q |   |          |   |   |
| 21. 27 | 1. 6594 | 0. 39 | Q |   |          |   |   |
| 21. 46 | 1. 6655 | 0. 38 | Q |   |          |   |   |
| 21. 65 | 1. 6713 | 0. 37 | Q |   |          |   |   |
| 21. 84 | 1. 6771 | 0. 37 | 0 |   |          |   |   |
| 22. 03 | 1. 6827 | 0. 36 | Ō |   |          |   |   |
| 22. 22 | 1. 6882 | 0. 35 | Õ | • | •        |   | • |
| 22. 40 | 1. 6936 | 0. 34 | Õ | • | •        | • | • |
| 22. 59 | 1. 6989 | 0. 34 | Ô | • | •        | • | • |
| 22. 78 | 1. 7041 | 0. 33 | Õ | • | •        | • | • |
| 22. 70 | 1. 7092 | 0. 33 | Ô | • | •        | • | • |
| 23. 16 | 1. 7142 | 0. 33 | Ô | • | •        | • | • |
| 23. 10 | 1. 7192 | 0. 32 | _ | • | •        | • | • |
|        |         | 0.0.  | Q | • | •        | • | • |
| 23. 53 | 1. 7240 | 0. 31 | Q | • | •        | • | • |
| 23. 72 | 1. 7288 | 0. 30 | Q |   | •        |   | • |
| 23. 91 | 1. 7335 | 0. 30 | Q | • | •        | • | • |
| 24. 10 | 1. 7381 | 0. 29 | Q |   | •        |   |   |
| 24. 29 | 1. 7404 | 0. 00 | Q |   |          |   |   |
|        |         |       |   |   |          |   |   |

iii. EV 2-Year Storm Event

## Drainage A

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 349.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.380

LOW LOSS FRACTION = 0.540

TIME OF CONCENTRATION(MIN.) = 37.45

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

USER SPECIFIED RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37 3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62 6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85

24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 17.29 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 24.66

| *****           | * * * * * * * * * * * | *****      | ****   | ***** | ***** | ***** | ***** |
|-----------------|-----------------------|------------|--------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF)        | Q<br>(CFS) | 0.     | 20.0  | 40.0  | 60.0  | 80.0  |
| 0.40            | 0.0542                | 3.31       | <br>.Q |       |       |       |       |
| 1.02            | 0.2262                | 3.35       | . Q    |       | •     | •     |       |
| 1.64            | 0.4022                | 3.47       | . Q    |       |       |       |       |
| 2.27            | 0.5828                | 3.53       | .Q     |       |       | •     | •     |
| 2.89            | 0.7684                | 3.67       | .Q     |       |       | •     | •     |
| 3.52            | 0.9593                | 3.74       | .Q     |       |       |       |       |
| 4.14            | 1.1561                | 3.89       | .Q     |       |       |       |       |
| 4.76            | 1.3590                | 3.98       | .Q     |       |       |       |       |
| 5.39            | 1.5688                | 4.16       | . Q    |       | •     | •     | •     |
| 6.01            | 1.7860                | 4.26       | . Q    |       | •     | •     | •     |
| 6.64            | 2.0114                | 4.48       | . Q    |       | •     | •     | •     |
| 7.26            | 2.2457                | 4.60       | . Q    |       | •     | •     | •     |
| 7.89            | 2.4902                | 4.88       | . Q    |       | •     | •     | •     |
| 8.51            | 2.7458                | 5.03       | . Q    |       | •     | •     |       |
| 9.13            | 3.0143                | 5.38       | . Q    |       | •     | •     | •     |
| 9.76            | 3.2969                | 5.58       | . Q    |       | •     | •     | •     |
| 10.38           | 3.5967                | 6.04       | . Q    |       | •     | •     |       |
| 11.01           | 3.9156                | 6.32       | . Q    |       | •     | •     |       |
| 11.63           | 4.2586                | 6.98       | . Q    | •     |       | •     | •     |

| 12.26 | 4.6291  | 7.38  | . Q |     | • | •   |     |  |
|-------|---------|-------|-----|-----|---|-----|-----|--|
| 12.88 | 5.0771  | 9.99  | . Q |     | • | •   | •   |  |
| 13.50 | 5.6104  | 10.69 | . Q | •   | • |     |     |  |
| 14.13 | 6.2128  | 12.67 | . ( | Q . |   |     |     |  |
| 14.75 | 6.9133  | 14.49 |     | Q.  |   |     |     |  |
| 15.38 | 7.8026  | 19.99 |     | Q.  | • | •   | •   |  |
| 16.00 | 8.9432  | 24.24 |     | . Q | • | •   | •   |  |
| 16.62 | 11.3992 | 70.98 |     |     | • | . 0 | ) . |  |
| 17.25 | 13.6601 | 16.67 |     | Q.  | • | •   | •   |  |
| 17.87 | 14.3883 | 11.56 | . Q |     | • | •   | •   |  |
| 18.50 | 14.9136 | 8.80  | . Q |     | • |     |     |  |
| 19.12 | 15.3116 | 6.63  | . Q |     | • | •   | •   |  |
| 19.74 | 15.6321 | 5.80  | . Q |     | • | •   | •   |  |
| 20.37 | 15.9158 | 5.20  | . Q |     | • |     |     |  |
| 20.99 | 16.1719 | 4.73  | . Q |     | • | •   | •   |  |
| 21.62 | 16.4067 | 4.37  | . Q |     | • | •   | •   |  |
| 22.24 | 16.6242 | 4.06  | . Q |     | • | •   | •   |  |
| 22.87 | 16.8273 | 3.81  | .Q  |     | • | •   | •   |  |
| 23.49 | 17.0184 | 3.60  | .Q  |     | • | •   | •   |  |
| 24.11 | 17.1992 | 3.41  | .Q  |     | • | •   | •   |  |
| 24.74 | 17.2871 | 0.00  | Q   | •   | • | •   | •   |  |
|       |         |       |     |     |   |     |     |  |

## Drainage B

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 135.10

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.220

LOW LOSS FRACTION = 0.360

TIME OF CONCENTRATION(MIN.) = 37.48

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

USER SPECIFIED RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37 3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62 6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85

24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 9.30 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 6.92

| *****           | ****           | *****         | ***** | ***** | ***** | ***** |
|-----------------|----------------|---------------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q 0.<br>(CFS) | 10.0  | 20.0  | 30.0  | 40.0  |
| 0.38            | 0.0282         | 1.78 .Ç       | ·     |       |       |       |
| 1.01            | 0.1207         | 1.80 .0       |       | •     | •     | •     |
| 1.63            | 0.2154         | 1.86 .0       |       |       | •     | •     |
| 2.26            | 0.3125         | 1.90 .0       |       |       | •     | •     |
| 2.88            | 0.4123         | 1.97 .0       |       |       | •     | •     |
| 3.51            | 0.5150         | 2.01 .        | Q .   | •     | •     | •     |
| 4.13            | 0.6208         | 2.09 .        | Q .   | •     | •     | •     |
| 4.76            | 0.7300         | 2.14 .        | Q .   | •     | •     | •     |
| 5.38            | 0.8428         | 2.24 .        | Q .   | •     | •     | •     |
| 6.01            | 0.9596         | 2.29 .        | Q .   | •     | •     | •     |
| 6.63            | 1.0809         | 2.41 .        | Q .   | •     |       |       |
| 7.25            | 1.2069         | 2.47 .        | Q .   | •     | •     | •     |
| 7.88            | 1.3384         | 2.62 .        | Q .   | •     | •     | •     |
| 8.50            | 1.4758         | 2.70 .        | Q .   | •     |       |       |
| 9.13            | 1.6202         | 2.89 .        | Q .   | •     | •     | •     |
| 9.75            | 1.7722         | 3.00 .        | Q .   | •     | •     | •     |
| 10.38           | 1.9335         | 3.25 .        | Q .   | •     |       |       |
| 11.00           | 2.1050         | 3.40 .        | Q .   | •     |       |       |
| 11.63           | 2.2894         | 3.75 .        | Q .   | •     | •     | •     |

| 12.25 | 2.4887 | 3.97  |     | Q |     |   | • | • |    |   |
|-------|--------|-------|-----|---|-----|---|---|---|----|---|
| 12.88 | 2.7296 | 5.37  |     | Q |     |   | • | • | •  |   |
| 13.50 | 3.0165 | 5.75  |     | Q |     |   | • |   |    |   |
| 14.13 | 3.3405 | 6.81  |     | Q |     |   | • | • | •  |   |
| 14.75 | 3.7173 | 7.79  |     | Q |     |   | • | • | •  |   |
| 15.38 | 4.1955 | 10.74 |     |   | Q   |   |   |   |    |   |
| 16.00 | 4.8091 | 13.03 |     |   |     | Q | • | ě | •  |   |
| 16.62 | 6.1300 | 38.15 |     |   |     |   | • | ě | Q. |   |
| 17.25 | 7.3460 | 8.96  |     | Ç | ) . |   |   |   |    |   |
| 17.87 | 7.7377 | 6.21  |     | Q |     |   |   |   |    |   |
| 18.50 | 8.0201 | 4.73  |     | Q |     |   | • | ě | •  |   |
| 19.12 | 8.2340 | 3.56  |     | Q |     |   |   |   |    |   |
| 19.75 | 8.4064 | 3.12  |     | Q |     |   |   |   |    |   |
| 20.37 | 8.5589 | 2.79  | . Q |   |     |   |   |   |    |   |
| 21.00 | 8.6967 | 2.54  | . Q |   |     |   |   |   |    |   |
| 21.62 | 8.8229 | 2.35  | . Q |   |     |   |   |   |    |   |
| 22.25 | 8.9399 | 2.18  | . Q |   |     |   |   |   |    |   |
| 22.87 | 9.0492 | 2.05  | . Q |   |     |   |   |   |    |   |
| 23.50 | 9.1519 | 1.93  | .Q  |   |     |   |   |   |    |   |
| 24.12 | 9.2492 | 1.83  | .Q  |   |     |   | • | • |    |   |
| 24.75 | 9.2965 | 0.00  | Q   |   |     |   | • | • | •  |   |
|       |        |       |     |   |     |   |   |   |    | - |

## Drainage C

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 63.60

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.600

LOW LOSS FRACTION = 0.670

TIME OF CONCENTRATION(MIN.) = 20.15

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

USER SPECIFIED RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37 3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62 6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85

24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 2.25 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 5.38

| ****            | *****          | *****      | *** | ***** | ***** | ***** | ***** |
|-----------------|----------------|------------|-----|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.  | 5.0   | 10.0  | 15.0  | 20.0  |
| 0.22            | 0.0039         | 0.43       | Q   |       |       |       | ·     |
| 0.55            | 0.0159         | 0.43       | Q   |       |       |       |       |
| 0.89            | 0.0280         | 0.44       | Q   | •     | •     | •     | •     |
| 1.22            | 0.0404         | 0.45       | Q   | •     |       | •     |       |
| 1.56            | 0.0529         | 0.45       | Q   | •     | •     | •     | •     |
| 1.90            | 0.0656         | 0.46       | Q   |       |       |       |       |
| 2.23            | 0.0785         | 0.47       | Q   |       |       |       |       |
| 2.57            | 0.0915         | 0.47       | Q   |       |       |       |       |
| 2.90            | 0.1048         | 0.48       | Q   | •     | •     | •     |       |
| 3.24            | 0.1182         | 0.49       | Q   |       |       |       |       |
| 3.57            | 0.1319         | 0.50       | Q   | •     | •     | •     |       |
| 3.91            | 0.1459         | 0.50       | .Q  | •     | •     | •     |       |
| 4.25            | 0.1600         | 0.52       | .Q  | •     | •     | •     |       |
| 4.58            | 0.1744         | 0.52       | .Q  | •     | •     | •     |       |
| 4.92            | 0.1891         | 0.53       | .Q  | •     | •     | •     |       |
| 5.25            | 0.2040         | 0.54       | .Q  | •     | •     | •     |       |
| 5.59            | 0.2192         | 0.56       | .Q  | •     | •     | •     | •     |
| 5.93            | 0.2347         | 0.56       | .Q  | •     | •     | •     |       |
| 6.26            | 0.2505         | 0.58       | .Q  | •     | •     | •     | •     |

| 6.60   | 0.2667 | 0.59  | .Q  |   |     |   |   |
|--------|--------|-------|-----|---|-----|---|---|
|        |        |       |     | • | •   | • | • |
| 6.93   | 0.2832 | 0.60  | .Q  | • | •   | • | • |
| 7.27   | 0.3001 | 0.61  | .Q  | • | •   | • | • |
| 7.60   | 0.3174 | 0.63  | .Q  |   |     |   |   |
| 7.94   | 0.3351 | 0.64  | .Q  |   |     |   |   |
|        | 0.3532 | 0.66  |     | • | •   | • | • |
| 8.28   |        |       | .Q  | • | •   | • | • |
| 8.61   | 0.3718 | 0.68  | .Q  | • | •   | • | • |
| 8.95   | 0.3910 | 0.70  | .Q  | • |     |   |   |
| 9.28   | 0.4106 | 0.72  | .Q  |   |     |   |   |
|        |        |       |     | • | •   | • | • |
| 9.62   | 0.4309 | 0.75  | .Q  | • | •   | • | • |
| 9.95   | 0.4519 | 0.76  | .Q  | • |     | • | • |
| 10.29  | 0.4735 | 0.80  | .Q  | • |     |   |   |
| 10.63  | 0.4959 | 0.82  | . Q |   |     |   |   |
|        |        |       |     | • | •   | • | • |
| 10.96  | 0.5191 | 0.86  | . Q | • | •   | • | • |
| 11.30  | 0.5433 | 0.88  | .Q  | • | •   | • | • |
| 11.63  | 0.5685 | 0.93  | .Q  |   |     |   |   |
| 11.97  | 0.5948 | 0.96  | .Q  |   |     |   |   |
| 12.31  | 0.6249 | 1.21  |     | • | •   | • | • |
|        |        |       | . Q | • | •   | • | • |
| 12.64  | 0.6593 | 1.27  | . Q | • | •   | • | • |
| 12.98  | 0.6959 | 1.37  | . Q | • | •   | • |   |
| 13.31  | 0.7346 | 1.42  | . Q | _ | _   |   | _ |
| 13.65  | 0.7758 | 1.55  | •   |   |     |   |   |
|        |        |       |     | • | •   | • | • |
| 13.98  | 0.8198 | 1.63  | . Q | • | •   | • | • |
| 14.32  | 0.8685 | 1.88  | . Q | • | •   | • | • |
| 14.66  | 0.9226 | 2.01  | . Q |   |     |   |   |
| 14.99  | 0.9835 | 2.37  | . Q | _ | _   |   | _ |
| 15.33  | 1.0531 | 2.64  |     | • | •   | • | • |
|        |        |       | . Q | • | •   | • | • |
| 15.66  | 1.1335 | 3.15  | . Q | • | •   | • | • |
| 16.00  | 1.2390 | 4.45  | . Q | • | •   | • | • |
| 16.34  | 1.4851 | 13.28 |     | • | . Q |   |   |
| 16.67  | 1.7113 | 3.02  | . Q |   | ~   |   |   |
|        | 1.7834 | 2.17  |     | • | •   | • | • |
| 17.01  |        |       | . Q | • | •   | • | • |
| 17.34  | 1.8375 | 1.72  | . Q | • | •   | • | • |
| 17.68  | 1.8818 | 1.48  | . Q | • | •   | • |   |
| 18.02  | 1.9207 | 1.32  | . Q | _ | _   |   | _ |
| 18.35  | 1.9527 | 1.00  | . Q |   |     |   |   |
|        |        |       |     | • | •   | • | • |
| 18.69  | 1.9792 | 0.91  | .Q  | • | •   | • | • |
| 19.02  | 2.0034 | 0.84  | .Q  | • | •   | • | • |
| 19.36  | 2.0258 | 0.78  | .Q  |   |     |   |   |
| 19.69  | 2.0467 | 0.73  | .Q  | _ | _   |   | _ |
| 20.03  | 2.0664 | 0.69  |     | • | •   | • | • |
|        |        |       | . Q | • | •   | • | • |
| 20.37  | 2.0851 | 0.65  | .Q  | • | •   | • | • |
| 20.70  | 2.1028 | 0.62  | .Q  | • | •   | • | • |
| 21.04  | 2.1197 | 0.59  | .Q  |   |     |   |   |
| 21.37  | 2.1358 | 0.57  | .Q  |   |     |   |   |
|        |        |       |     | • | •   | • | • |
| 21.71  | 2.1513 | 0.55  | .Q  | • | •   | • | • |
| 22.05  | 2.1663 | 0.53  | .Q  | • |     | • |   |
| 22.38  | 2.1807 | 0.51  | .Q  |   | •   |   |   |
| 22.72  | 2.1946 | 0.49  | Q   |   |     |   |   |
|        |        |       |     | • | •   | • | • |
| 23.05  | 2.2081 | 0.48  | Q   | • | •   | • | • |
| 23.39  | 2.2211 | 0.46  | Q   | • | •   | • | • |
| 23.72  | 2.2338 | 0.45  | Q   | • | •   | • | • |
| 24.06  | 2.2462 | 0.44  | Q   |   | _   | _ |   |
| 24.40  | 2.2523 | 0.00  | Q   | - | -   | • | • |
| 74 411 |        | 0.00  | Ų.  |   | •   |   | • |

## Drainage D

NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)
AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

| *****                                                                                                                                                                                                                         | *****                                                                                                                                                                                                                           | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ****                      | ******                                         | ******                                         | *****    | ***** |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------|------------------------------------------------|----------|-------|
| Problem                                                                                                                                                                                                                       | Descriptions                                                                                                                                                                                                                    | S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                |                                                |          |       |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                |                                                |          |       |
| TOTAL SOI L- LOW L TIME SMALL USER RETUR 5- 30- 1- 3- 6-                                                                                                                                                                      | CATCHMENT /<br>LOSS RATE, I<br>OSS FRACTIOI<br>OF CONCENTR/<br>AREA PEAK (<br>SPECIFIED R/<br>N FREQUENCY/<br>MINUTE POINT<br>HOUR POINT<br>HOUR POINT<br>HOUR POINT                                                            | AREA(ACRE FM, (INCH/ N = 0.580 ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION(MIN ATION | S) = HR)                  | = 0.410<br>12.72<br>ING PEAK FLO<br>S ARE USED | N RATE FORM = 0.13 = 0.28 = 0.37 = 0.62 = 0.85 | IULA     |       |
| TOTAL                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 | SOI L-LOSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VOL                       | UME(ACRE-FEETUME(ACRE-FEET                     | T) = 1.                                        | 67<br>04 |       |
| TI ME<br>(HOURS)                                                                                                                                                                                                              | VOLUME<br>(AF)                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                        | 2.5                                            |                                                |          |       |
| 0. 10<br>0. 31<br>0. 32<br>0. 74<br>0. 95<br>1. 16<br>1. 37<br>1. 58<br>1. 80<br>2. 01<br>2. 22<br>2. 64<br>2. 86<br>3. 07<br>3. 28<br>3. 49<br>3. 70<br>3. 92<br>4. 13<br>4. 55<br>4. 76<br>4. 98<br>5. 40<br>5. 61<br>5. 82 | 0. 0005 0. 0027 0. 0049 0. 0071 0. 0093 0. 0115 0. 0138 0. 0160 0. 0183 0. 0207 0. 0230 0. 0254 0. 0277 0. 0301 0. 0326 0. 0350 0. 0375 0. 0400 0. 0426 0. 0451 0. 0451 0. 0477 0. 0503 0. 0556 0. 0584 0. 0611 0. 0639 0. 0667 | 0. 12<br>0. 12<br>0. 13<br>0. 13<br>0. 13<br>0. 13<br>0. 13<br>0. 13<br>0. 13<br>0. 14<br>0. 14<br>0. 14<br>0. 14<br>0. 15<br>0. 15<br>0. 15<br>0. 15<br>0. 16<br>0. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9999999999999999999999999 |                                                |                                                |          |       |
| 6. 04<br>6. 25                                                                                                                                                                                                                | 0. 0695<br>0. 0724                                                                                                                                                                                                              | 0. 16<br>0. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q<br>Q                    |                                                |                                                |          |       |

Page 1

|                  |                    |                |            |   | X002_D | ) |      |
|------------------|--------------------|----------------|------------|---|--------|---|------|
| 6. 46<br>6. 67   | 0. 0753<br>0. 0783 | 0. 17<br>0. 17 | Q<br>Q     |   |        |   |      |
| 6. 88            | 0. 0813            | 0. 17          | Q          |   |        |   |      |
| 7. 10<br>7. 31   | 0. 0843<br>0. 0874 | 0. 17<br>0. 18 | Q<br>Q     |   |        |   | ·    |
| 7. 52<br>7. 73   | 0. 0906<br>0. 0938 | 0. 18<br>0. 18 | Q<br>Q     |   | •      |   |      |
| 7. 94            | 0. 0970            | 0. 19          | Q          |   |        |   | · .  |
| 8. 16<br>8. 37   | 0. 1003<br>0. 1036 | 0. 19<br>0. 19 | Q<br>Q     |   |        |   | <br> |
| 8. 58<br>8. 79   | 0. 1070<br>0. 1105 | 0. 20<br>0. 20 | Q          |   |        |   |      |
| 9. 00            | 0. 1140            | 0. 20          | Q<br>Q     |   |        |   | · .  |
| 9. 22<br>9. 43   | 0. 1176<br>0. 1212 | 0. 21<br>0. 21 | Q<br>Q     |   |        |   |      |
| 9. 64            | 0. 1249            | 0. 21          | Q          |   |        |   |      |
| 9. 85<br>10. 06  | 0. 1287<br>0. 1326 | 0. 22<br>0. 22 | Q<br>Q     |   |        |   | · .  |
| 10. 28<br>10. 49 | 0. 1366<br>0. 1406 | 0. 23<br>0. 23 | Q<br>Q     |   |        |   |      |
| 10. 70           | 0. 1448            | 0. 24          | Q          |   |        |   |      |
| 10. 91<br>11. 12 | 0. 1490<br>0. 1534 | 0. 24<br>0. 25 | Q<br>. Q   |   |        |   | · .  |
| 11. 34<br>11. 55 | 0. 1579<br>0. 1625 | 0. 26<br>0. 27 | . Q<br>. Q |   |        |   |      |
| 11. 76           | 0. 1672            | 0. 27          | . Q        |   |        |   |      |
| 11. 97<br>12. 18 | 0. 1721<br>0. 1772 | 0. 28<br>0. 31 | . Q<br>. Q |   |        |   | · .  |
| 12. 40<br>12. 61 | 0. 1831<br>0. 1895 | 0. 36<br>0. 37 | . Q<br>. Q |   |        |   |      |
| 12. 82           | 0. 1961            | 0. 39          | . Q        |   |        |   |      |
| 13. 03<br>13. 24 | 0. 2029<br>0. 2100 | 0. 39<br>0. 42 | . Q<br>. Q |   |        |   | · .  |
| 13. 46<br>13. 67 | 0. 2174<br>0. 2251 | 0. 43<br>0. 45 | . Q<br>. Q |   | •      |   |      |
| 13.88            | 0. 2332            | 0. 47          | . Q        |   |        |   |      |
| 14. 09<br>14. 30 | 0. 2417<br>0. 2508 | 0. 50<br>0. 54 | . Q<br>. Q |   |        |   | · .  |
| 14. 52<br>14. 73 | 0. 2606<br>0. 2711 | 0. 59<br>0. 61 | . Q<br>. Q |   |        |   |      |
| 14. 94           | 0. 2826            | 0. 69          | . Q        |   |        |   |      |
| 15. 15<br>15. 36 | 0. 2950<br>0. 3090 | 0. 73<br>0. 87 | . Q<br>. Q |   |        |   | · .  |
| 15. 58<br>15. 79 | 0. 3242<br>0. 3424 | 0. 87<br>1. 21 | . Q<br>. Q |   |        |   | <br> |
| 16. 00<br>16. 21 | 0. 3680<br>0. 4398 | 1. 71<br>6. 49 | . Q        |   |        | 0 |      |
| 16. 42           | 0. 5051            | 0. 96          | . Q        |   |        | Q | · .  |
| 16. 64<br>16. 85 | 0. 5205<br>0. 5331 | 0. 79<br>0. 65 | . Q<br>. Q |   |        |   | <br> |
| 17. 06<br>17. 27 | 0. 5437<br>0. 5529 | 0. 56          | . Q<br>. Q |   |        |   |      |
| 17. 48           | 0. 5609            | 0. 48<br>0. 44 | . Q        |   |        |   | · .  |
| 17. 70<br>17. 91 | 0. 5683<br>0. 5752 | 0. 40<br>0. 38 | . Q<br>. Q |   |        |   | <br> |
| 18. 12<br>18. 33 | 0. 5816<br>0. 5871 | 0. 35<br>0. 28 | . Q<br>. Q |   |        |   |      |
| 18. 54           | 0. 5918            | 0. 26          | . Q        |   |        |   | · .  |
| 18. 76<br>18. 97 | 0. 5963<br>0. 6006 | 0. 25<br>0. 24 | Q<br>Q     |   |        |   | <br> |
| 19. 18<br>19. 39 | 0. 6046<br>0. 6085 | 0. 23<br>0. 22 | Q<br>Q     |   | •      |   |      |
| 19. 60           | 0. 6122            | 0. 21          | Q          |   |        |   | · .  |
| 19. 82<br>20. 03 | 0. 6158<br>0. 6193 | 0. 20<br>0. 19 | Q<br>Q     |   |        |   | <br> |
| 20. 24           | 0. 6226            | 0. 19          | Q          |   |        |   |      |
| 20. 45<br>20. 66 | 0. 6258<br>0. 6290 | 0. 18<br>0. 18 | Q<br>Q     |   |        |   | · .  |
| 20. 88<br>21. 09 | 0. 6320<br>0. 6350 | 0. 17<br>0. 17 | Q<br>Q     |   | :      |   |      |
| 21. 30           | 0. 6379            | 0. 16          | Q          | • |        |   |      |
| 21. 51<br>21. 72 | 0. 6407<br>0. 6434 | 0. 16<br>0. 15 | Q<br>Q     |   |        |   | · .  |
| 21. 94<br>22. 15 | 0. 6461<br>0. 6487 | 0. 15<br>0. 15 | Q<br>Q     |   |        |   |      |
| 22. 36           | 0. 6513            | 0. 14          | Q          |   |        |   |      |
| 22. 57<br>22. 78 | 0. 6538<br>0. 6562 | 0. 14<br>0. 14 | Q<br>Q     |   |        |   | <br> |
| 23. 00           | 0. 6587            | 0. 14          | Q          | • | Dogo 2 | , |      |

|        |         |       |   | X002_D |  |
|--------|---------|-------|---|--------|--|
| 23. 21 | 0. 6610 | 0. 13 | Q |        |  |
| 23. 42 | 0. 6633 | 0. 13 | Q |        |  |
| 23. 63 | 0. 6656 | 0. 13 | Q |        |  |
| 23. 84 | 0. 6678 | 0. 13 | Q |        |  |
| 24. 06 | 0. 6700 | 0. 12 | Q |        |  |
| 24. 27 | 0. 6711 | 0.00  | Q |        |  |
|        |         |       |   |        |  |

## Drainage E

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

#### AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 97.20
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.180
LOW LOSS FRACTION = 0.350
TIME OF CONCENTRATION(MIN.) = 34.68
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 2
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 6. 79 4.88

| ******                                                                                                                                                                                                                                                                         | *****                                                                                                                                                                                                                                                                                                                                  | *****        | **** | ***** | *****  | ***** | ***** |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------|--------|-------|-------|
| TIME<br>(HOURS)                                                                                                                                                                                                                                                                | VOLUME<br>(AF)                                                                                                                                                                                                                                                                                                                         | Q O<br>(CFS) | ).   | 7.5   | 15. 0  | 22. 5 | 30.0  |
| 0. 39<br>0. 397<br>1. 55<br>2. 13<br>2. 71<br>3. 28<br>3. 86<br>4. 44<br>5. 02<br>5. 60<br>6. 17<br>6. 75<br>7. 33<br>7. 91<br>8. 49<br>9. 06<br>9. 64<br>10. 22<br>10. 80<br>11. 38<br>11. 95<br>12. 53<br>13. 11<br>13. 69<br>14. 84<br>15. 42<br>16. 00<br>16. 58<br>17. 16 | 0. 0212<br>0. 0838<br>0. 1477<br>0. 2132<br>0. 2804<br>0. 3493<br>0. 4201<br>0. 4929<br>0. 5680<br>0. 6454<br>0. 7255<br>0. 8084<br>0. 8944<br>0. 9838<br>1. 0771<br>1. 1746<br>1. 2770<br>1. 3849<br>1. 4993<br>1. 6209<br>1. 7518<br>1. 8987<br>2. 0745<br>2. 2769<br>2. 5062<br>2. 7734<br>3. 1112<br>3. 5398<br>4. 4705<br>5. 3308 |              |      |       |        |       |       |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                        |              |      |       | Dana 1 |       |       |

Page 1

|        |         |           |     | X002 E |      |
|--------|---------|-----------|-----|--------|------|
| 17. 73 | 5. 6069 | 4.74 . 0  | ) . |        |      |
| 18. 31 | 5. 8120 | 3.85 . Q  |     |        |      |
| 18. 89 | 5. 9692 | 2.73 . Q  |     |        |      |
| 19. 47 | 6. 0915 | 2.39 . Q  |     |        |      |
| 20. 05 | 6. 1997 | 2.14 . Q  |     |        |      |
| 20. 62 | 6. 2974 | 1. 95 . Q |     |        |      |
| 21. 20 | 6. 3870 | 1.80 . Q  |     |        |      |
| 21. 78 | 6. 4700 | 1.67 . Q  | •   |        | •    |
| 22. 36 | 6. 5475 | 1.57 . Q  | •   |        | •    |
| 22. 94 | 6. 6204 | 1.48 .Q   |     |        |      |
| 23. 51 | 6. 6894 | 1. 41 . Q | •   |        | •    |
| 24. 09 | 6. 7549 | 1. 34 . Q |     |        |      |
| 24. 67 | 6. 7869 | 0. 00 Q   |     |        |      |
|        |         |           |     |        | <br> |

# Drainage F

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 5.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION(MIN.) = 7.97
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 2
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

0.47

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.23

| *****           | *****              | ****           | ***    | ***** | *****  | ***** | ****  |
|-----------------|--------------------|----------------|--------|-------|--------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 2.5   | 5.0    | 7. 5  | 10. 0 |
| 0. 06           | 0. 0000            | 0. 00          | Q      |       |        |       |       |
| 0. 19           | 0.0005             | 0.09           | Q      |       |        |       |       |
| 0. 33           | 0.0015             | 0.09           | Q      |       |        |       |       |
| 0.46            | 0.0024             | 0.09           | Q      |       |        |       |       |
| 0. 59           | 0.0034             | 0. 09          | Q      |       |        |       |       |
| 0. 72           | 0. 0044            | 0. 09          | Q      | •     |        | •     | •     |
| 0. 86           | 0. 0054            | 0. 09          | Q      |       |        | •     |       |
| 0. 99           | 0. 0064            | 0. 09          | Q      |       |        | •     |       |
| 1. 12           | 0. 0074            | 0. 09          | Q      |       |        |       |       |
| 1. 26           | 0. 0084            | 0. 09          | Q      |       |        |       |       |
| 1. 39           | 0. 0094            | 0. 09          | Q      |       |        |       |       |
| 1. 52           | 0. 0105            | 0. 09          | Q      |       |        | •     |       |
| 1. 65           | 0. 0115            | 0. 09          | Q      | •     |        | •     | •     |
| 1. 79           | 0. 0125            | 0. 09          | Q      |       | •      | •     |       |
| 1. 92           | 0. 0136            | 0. 09          | Q      |       | •      | •     |       |
| 2. 05           | 0. 0146            | 0. 10          | Q      | •     |        | •     | •     |
| 2. 19           | 0. 0157            | 0. 10          | Q      | •     | •      | •     | •     |
| 2. 32           | 0. 0167            | 0. 10          | Q      | •     | •      | •     | •     |
| 2. 45<br>2. 58  | 0. 0178            | 0. 10          | Q      | •     | •      | •     | •     |
| 2. 58<br>2. 72  | 0. 0188<br>0. 0199 | 0. 10<br>0. 10 | Q<br>Q | •     | •      | •     | •     |
| 2. 72           | 0. 0199            | 0. 10          | Q      | •     | •      | •     | •     |
| 2. 98           | 0. 0210            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 12           | 0. 0221            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 25           | 0. 0232            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 38           | 0. 0243            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 51           | 0. 0265            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 65           | 0. 0203            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 78           | 0. 0277            | 0. 10          | Q      | •     | •      | •     | •     |
| 3. 76<br>3. 91  | 0. 0200            | 0. 10          | Ŏ      | •     | •      | •     | •     |
| J. / I          | 0.0277             | 0. 10          | Q      | •     | Dana 1 | •     | •     |

Page 1

|                  |                    |                |            |   | ΧO | 02_F |   |   |
|------------------|--------------------|----------------|------------|---|----|------|---|---|
| 4. 05<br>4. 18   | 0. 0311<br>0. 0322 | 0. 10<br>0. 11 | Q<br>Q     |   |    |      |   |   |
| 4. 31            | 0. 0322            | 0. 11          | Q          |   |    |      |   |   |
| 4. 44<br>4. 58   | 0. 0346<br>0. 0357 | 0. 11<br>0. 11 | Q<br>Q     |   |    |      |   |   |
| 4. 71            | 0. 0369            | 0. 11          | Q          |   |    |      | • | : |
| 4. 84<br>4. 97   | 0. 0381            | 0. 11          | Q          |   |    |      |   |   |
| 4. 97<br>5. 11   | 0. 0393<br>0. 0406 | 0. 11<br>0. 11 | Q<br>Q     |   |    |      |   | : |
| 5. 24            | 0. 0418            | 0. 11          | Q          |   |    |      |   |   |
| 5. 37<br>5. 51   | 0. 0430<br>0. 0443 | 0. 11<br>0. 11 | Q<br>Q     |   |    |      |   | : |
| 5. 64            | 0. 0455            | 0. 11          | Q          |   |    |      |   |   |
| 5. 77<br>5. 90   | 0. 0468<br>0. 0481 | 0. 12<br>0. 12 | Q<br>Q     |   |    |      |   | : |
| 6.04             | 0. 0493            | 0. 12          | Q          |   |    |      |   |   |
| 6. 17<br>6. 30   | 0. 0506<br>0. 0519 | 0. 12<br>0. 12 | Q<br>Q     |   |    |      |   | : |
| 6. 44            | 0. 0532            | 0. 12          | Q          |   |    |      |   |   |
| 6. 57<br>6. 70   | 0. 0546<br>0. 0559 | 0. 12<br>0. 12 | Q<br>Q     |   |    |      |   |   |
| 6. 83            | 0.0573             | 0. 12          | Q          |   |    |      |   |   |
| 6. 97<br>7. 10   | 0. 0586<br>0. 0600 | 0. 12<br>0. 13 | Q<br>Q     | • |    |      | • | • |
| 7. 23            | 0.0614             | 0. 13          | Q          |   |    |      | • |   |
| 7. 37<br>7. 50   | 0. 0628<br>0. 0642 | 0. 13<br>0. 13 | Q<br>Q     |   | •  |      |   | • |
| 7. 63            | 0.0656             | 0. 13          | Q          |   |    |      |   |   |
| 7. 76<br>7. 90   | 0. 0671<br>0. 0685 | 0. 13<br>0. 13 | Q<br>Q     | • |    |      | • | ٠ |
| 8. 03            | 0.0700             | 0. 13          | Q          |   |    |      |   |   |
| 8. 16<br>8. 30   | 0. 0715<br>0. 0730 | 0. 14<br>0. 14 | Q<br>Q     | • |    |      | • | • |
| 8. 43            | 0. 0745            | 0. 14          | Q          |   |    |      |   |   |
| 8. 56<br>8. 69   | 0. 0760<br>0. 0776 | 0. 14<br>0. 14 | Q<br>Q     | • |    |      | • | ٠ |
| 8. 83            | 0. 0791            | 0. 14          | Q          |   |    |      |   |   |
| 8. 96<br>9. 09   | 0. 0807<br>0. 0823 | 0. 15<br>0. 15 | Q<br>Q     | • |    |      | • | • |
| 9. 23            | 0.0840             | 0. 15          | Q          |   |    |      |   | : |
| 9. 36<br>9. 49   | 0. 0856<br>0. 0873 | 0. 15<br>0. 15 | Q<br>Q     | • | •  |      | • | ٠ |
| 9. 62            | 0. 0889            | 0. 15          | Q          |   |    |      |   | : |
| 9. 76<br>9. 89   | 0. 0906<br>0. 0924 | 0. 16<br>0. 16 | Q<br>Q     | • | •  |      | • | ٠ |
| 10. 02           | 0. 0941            | 0. 16          | Q          |   |    |      |   |   |
| 10. 16<br>10. 29 | 0. 0959<br>0. 0977 | 0. 16<br>0. 17 | Q<br>Q     | • | •  |      | • | ٠ |
| 10. 42           | 0. 0995            | 0. 17          | Q          |   |    |      |   | : |
| 10. 55<br>10. 69 | 0. 1014<br>0. 1032 | 0. 17<br>0. 17 | Q<br>Q     | • |    |      | • | ٠ |
| 10. 82           | 0. 1052            | 0. 18          | Q          |   |    |      |   |   |
| 10. 95<br>11. 09 | 0. 1071<br>0. 1091 | 0. 18<br>0. 18 | Q<br>Q     | • | •  |      | • | ٠ |
| 11. 22           | 0. 1111            | 0. 18          | Q          |   |    |      |   |   |
| 11. 35<br>11. 48 | 0. 1131<br>0. 1152 | 0. 19<br>0. 19 | Q<br>Q     | • |    |      | • | ٠ |
| 11. 62           | 0. 1173            | 0. 19          | Q          |   |    |      |   |   |
| 11. 75<br>11. 88 | 0. 1194<br>0. 1216 | 0. 20<br>0. 20 | Q<br>Q     | • | •  |      | • | ٠ |
| 12.02            | 0. 1238            | 0. 20          | Q          |   |    |      |   | : |
| 12. 15<br>12. 28 | 0. 1263<br>0. 1291 | 0. 25<br>0. 25 | . Q<br>. Q |   |    |      |   |   |
| 12. 41           | 0. 1319            | 0. 26          | . Q        |   |    |      |   |   |
| 12. 55<br>12. 68 | 0. 1348            | 0. 26<br>0. 27 | . Q<br>. Q |   |    |      |   |   |
| 12. 81           | 0. 1378<br>0. 1408 | 0. 27          | . Q        |   |    |      |   |   |
| 12. 94           | 0. 1438            | 0. 28          | . Q        | • |    |      | • |   |
| 13. 08<br>13. 21 | 0. 1470<br>0. 1502 | 0. 29<br>0. 30 | . Q<br>. Q |   |    |      |   | : |
| 13. 34           | 0. 1535            | 0. 30          | . Q        |   |    |      |   |   |
| 13. 48<br>13. 61 | 0. 1569<br>0. 1604 | 0. 31<br>0. 32 | . Q<br>. Q |   |    |      |   |   |
| 13. 74           | 0. 1639            | 0. 33          | . Q        |   |    |      |   |   |
| 13. 87<br>14. 01 | 0. 1676<br>0. 1715 | 0. 34<br>0. 36 | . Q<br>. Q |   |    |      |   |   |
| 14. 14           | 0. 1755            | 0. 37          | . Q        |   |    |      |   |   |
| 14. 27<br>14. 41 | 0. 1797<br>0. 1840 | 0. 39<br>0. 41 | . Q<br>. Q |   |    |      | • |   |
|                  |                    |                |            |   |    |      |   |   |

|                  |                    |                | •          |     | XO | 02_F |   |   |
|------------------|--------------------|----------------|------------|-----|----|------|---|---|
| 14. 54<br>14. 67 | 0. 1886<br>0. 1934 | 0. 43<br>0. 44 | . Q<br>. Q |     | •  |      | • |   |
| 14. 80           | 0. 1985            | 0. 47          | . Q        |     |    | •    |   |   |
| 14. 94<br>15. 07 | 0. 2038            | 0.49           | . Q        |     |    |      |   |   |
| 15. 07<br>15. 20 | 0. 2094<br>0. 2155 | 0. 54<br>0. 56 | . Q<br>. Q |     |    |      |   |   |
| 15. 34           | 0. 2220            | 0.63           | . Q        |     |    |      |   |   |
| 15. 47<br>15. 60 | 0. 2289<br>0. 2361 | 0. 62<br>0. 69 | . Q<br>. Q |     | •  | •    | • | • |
| 15. 73           | 0. 2442            | 0. 78          | . Q<br>. Q |     | •  | •    |   |   |
| 15. 87           | 0. 2550            | 1. 18          | . О        | _   |    | •    |   |   |
| 16. 00<br>16. 13 | 0. 2702<br>0. 3097 | 1. 60<br>5. 61 | •          | Q . |    | . Q  | • |   |
| 16. 27           | 0. 3458            | 0. 96          | . Q        |     |    |      |   |   |
| 16. 40           | 0. 3545            | 0.63           | . Q        |     |    |      |   |   |
| 16. 53<br>16. 66 | 0. 3612<br>0. 3673 | 0. 59<br>0. 51 | . Q<br>. Q |     |    |      |   |   |
| 16.80            | 0. 3726            | 0.46           | . Q        |     |    | •    |   |   |
| 16. 93<br>17. 06 | 0. 3774<br>0. 3818 | 0. 42<br>0. 39 | . Q<br>. Q |     |    |      | • |   |
| 17. 20           | 0. 3858            | 0. 35          | . Q        |     | •  |      |   |   |
| 17. 33<br>17. 46 | 0. 3895            | 0. 33          | . Q        |     |    |      |   |   |
| 17. 40           | 0. 3930<br>0. 3963 | 0. 31<br>0. 29 | . Q<br>. Q |     |    | •    |   |   |
| 17. 73           | 0. 3995            | 0. 28          | . Q        |     |    | •    |   |   |
| 17. 86<br>17. 99 | 0. 4025<br>0. 4054 | 0. 27<br>0. 26 | . Q<br>. Q |     | •  | •    | • | • |
| 18. 13           | 0. 4079            | 0. 21          | Q          |     |    |      |   |   |
| 18. 26           | 0. 4102            | 0. 20          | Q          |     |    | •    |   |   |
| 18. 39<br>18. 52 | 0. 4124<br>0. 4144 | 0. 19<br>0. 19 | Q<br>Q     |     |    |      |   |   |
| 18. 66           | 0. 4164            | 0. 18          | Q          |     |    | •    |   |   |
| 18. 79<br>18. 92 | 0. 4184<br>0. 4202 | 0. 17<br>0. 17 | Q<br>Q     |     |    |      |   |   |
| 19. 06           | 0. 4202            | 0. 17          | Q          |     | •  | •    |   |   |
| 19. 19           | 0. 4238            | 0. 16          | Q          |     |    |      |   |   |
| 19. 32<br>19. 45 | 0. 4256<br>0. 4272 | 0. 16<br>0. 15 | Q<br>Q     |     |    |      |   |   |
| 19. 59           | 0. 4289            | 0. 15          | Q          |     |    | •    |   |   |
| 19. 72<br>19. 85 | 0. 4305<br>0. 4321 | 0. 14<br>0. 14 | Q<br>Q     | •   |    | •    |   |   |
| 19. 98           | 0. 4336            | 0. 14          | Q          |     | •  | •    |   |   |
| 20. 12           | 0. 4351            | 0. 14          | Q          |     |    | •    |   |   |
| 20. 25<br>20. 38 | 0. 4366<br>0. 4380 | 0. 13<br>0. 13 | Q<br>Q     |     |    |      |   |   |
| 20. 52           | 0. 4394            | 0. 13          | Q          |     |    | •    |   |   |
| 20. 65<br>20. 78 | 0. 4408<br>0. 4422 | 0. 13<br>0. 12 | Q<br>Q     |     |    |      |   |   |
| 20. 70           | 0. 4422            | 0. 12          | Q          |     | •  | •    |   |   |
| 21. 05           | 0. 4448            | 0. 12          | Q          |     |    | •    |   |   |
| 21. 18<br>21. 31 | 0. 4461<br>0. 4474 | 0. 12<br>0. 12 | Q<br>Q     |     |    |      |   |   |
| 21. 45           | 0. 4486            | 0. 11          | Q          |     |    | •    |   |   |
| 21. 58<br>21. 71 | 0. 4499<br>0. 4511 | 0. 11<br>0. 11 | Q<br>Q     | •   |    | •    |   |   |
| 21. 71           | 0. 4523            | 0. 11          | Q          |     | •  | •    |   |   |
| 21. 98           | 0. 4535            | 0. 11          | Q          |     |    | •    |   |   |
| 22. 11<br>22. 24 | 0. 4546<br>0. 4558 | 0. 11<br>0. 10 | Q<br>Q     | •   |    | •    | • |   |
| 22. 38           | 0. 4569            | 0. 10          | Q          |     |    |      |   |   |
| 22. 51           | 0. 4580            | 0. 10          | Q          |     |    |      |   |   |
| 22. 64<br>22. 77 | 0. 4591<br>0. 4602 | 0. 10<br>0. 10 | Q<br>Q     |     | •  |      |   |   |
| 22. 91           | 0. 4613            | 0. 10          | Q          |     |    |      |   |   |
| 23. 04<br>23. 17 | 0. 4624<br>0. 4634 | 0. 10<br>0. 10 | Q<br>Q     |     | •  | •    | • | • |
| 23. 17           | 0. 4645            | 0. 10          | Q          |     | •  | •    |   |   |
| 23.44            | 0. 4655            | 0.09           | Q          |     | •  | •    |   |   |
| 23. 57<br>23. 70 | 0. 4665<br>0. 4675 | 0. 09<br>0. 09 | Q<br>Q     |     |    | •    |   |   |
| 23.84            | 0. 4685            | 0.09           | Q          |     |    |      |   |   |
| 23. 97<br>24. 10 | 0. 4695<br>0. 4705 | 0. 09<br>0. 09 | Q<br>Q     |     | •  | •    |   |   |
| 24. 10           | 0. 4709            | 0.09           | Q          |     |    | •    |   |   |
|                  |                    |                |            |     |    |      |   |   |

# Drainage G

## NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

## \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 1.80
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION(MIN.) = 8.11
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 2
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.15 0.07

| *****            | *****          | *****      | *** | ***** | ***** | ***** | ***** |
|------------------|----------------|------------|-----|-------|-------|-------|-------|
| TI ME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.  | 2. 5  | 5.0   | 7. 5  | 10. 0 |
| 0. 05            | 0. 0000        | 0. 00      | Q   |       |       |       |       |
| 0. 19            | 0.0002         | 0. 03      | Q   |       |       |       |       |
| 0. 32            | 0.0005         | 0. 03      | Q   |       |       |       |       |
| 0. 46            | 0.0008         | 0. 03      | Q   |       |       |       |       |
| 0. 59            | 0. 0011        | 0. 03      | Q   |       |       |       |       |
| 0. 73            | 0.0014         | 0. 03      | Q   |       |       |       |       |
| 0.86             | 0. 0017        | 0. 03      | Q   |       |       |       |       |
| 1. 00            | 0.0020         | 0. 03      | Q   |       |       |       |       |
| 1. 13            | 0.0023         | 0. 03      | Q   |       |       |       |       |
| 1. 27            | 0. 0027        | 0. 03      | Q   |       |       |       |       |
| 1. 40            | 0.0030         | 0. 03      | Q   |       |       |       |       |
| 1. 54            | 0.0033         | 0. 03      | Q   |       |       |       |       |
| 1. 67            | 0. 0036        | 0. 03      | Q   | •     | •     | •     |       |
| 1. 81            | 0. 0040        | 0. 03      | Q   | •     |       |       |       |
| 1. 94            | 0. 0043        | 0. 03      | Q   | •     | •     | •     |       |
| 2. 08            | 0. 0046        | 0. 03      | Q   |       |       |       |       |
| 2. 21            | 0. 0049        | 0. 03      | Q   |       |       |       |       |
| 2. 35            | 0. 0053        | 0. 03      | Q   |       |       |       |       |
| 2. 48            | 0. 0056        | 0. 03      | Q   |       |       |       |       |
| 2. 62            | 0.0060         | 0. 03      | Q   |       |       |       |       |
| 2. 75            | 0. 0063        | 0. 03      | Q   |       |       |       |       |
| 2. 89            | 0. 0066        | 0. 03      | Q   |       |       |       |       |
| 3. 02            | 0. 0070        | 0. 03      | Q   |       |       |       |       |
| 3. 16            | 0. 0073        | 0. 03      | Q   |       |       |       |       |
| 3. 29            | 0. 0077        | 0. 03      | Q   |       |       |       |       |
| 3. 43            | 0.0080         | 0. 03      | Q   |       |       |       |       |
| 3. 56            | 0.0084         | 0. 03      | Q   | •     | •     | •     | •     |
| 3. 70            | 0. 0087        | 0. 03      | Q   | •     | •     | •     | •     |
| 3. 84            | 0. 0091        | 0. 03      | Q   | •     | •     | •     | •     |
| 3. 97            | 0. 0095        | 0. 03      | Q   | •     | •     | •     | •     |
|                  |                |            |     |       | _ 4   |       |       |

Page 1

|                  |                    |                |        |   | V002 C |   |   |
|------------------|--------------------|----------------|--------|---|--------|---|---|
| 4. 11            | 0. 0098            | 0. 03          | Q      |   | X002_G |   |   |
| 4. 24            | 0. 0102            | 0.03           | Q      |   |        |   |   |
| 4. 38<br>4. 51   | 0. 0106<br>0. 0109 | 0. 03<br>0. 03 | Q<br>Q | • | •      | • | • |
| 4. 65            | 0. 0113            | 0.03           | Q      |   |        |   |   |
| 4. 78<br>4. 92   | 0. 0117<br>0. 0121 | 0. 03<br>0. 03 | Q      |   | •      |   | • |
| 4. 92<br>5. 05   | 0. 0121            | 0. 03          | Q<br>Q |   | •      |   |   |
| 5. 19            | 0. 0128            | 0.03           | Q      |   |        |   |   |
| 5. 32<br>5. 46   | 0. 0132<br>0. 0136 | 0. 03<br>0. 04 | Q<br>Q | • | •      |   |   |
| 5. 59            | 0. 0140            | 0. 04          | Q      |   | •      | • |   |
| 5. 73            | 0. 0144            | 0.04           | Q      |   | •      | • |   |
| 5. 86<br>6. 00   | 0. 0148<br>0. 0152 | 0. 04<br>0. 04 | Q<br>Q | • | •      | • | • |
| 6. 13            | 0. 0156            | 0. 04          | Q      | • |        |   |   |
| 6. 27            | 0.0160             | 0.04           | Q      |   | •      |   |   |
| 6. 40<br>6. 54   | 0. 0164<br>0. 0169 | 0. 04<br>0. 04 | Q<br>Q |   | •      |   |   |
| 6. 67            | 0. 0173            | 0.04           | Q      | • |        |   |   |
| 6. 81<br>6. 94   | 0. 0177<br>0. 0181 | 0. 04<br>0. 04 | Q<br>Q | • | •      |   |   |
| 7. 08            | 0. 0186            | 0. 04          | Q      |   | •      | • |   |
| 7. 21            | 0. 0190            | 0.04           | Q      |   |        |   |   |
| 7. 35<br>7. 48   | 0. 0194<br>0. 0199 | 0. 04<br>0. 04 | Q<br>Q | • | •      | • |   |
| 7. 62            | 0. 0203            | 0. 04          | Q      |   |        |   |   |
| 7. 75            | 0. 0208            | 0.04           | Q      |   | •      | • |   |
| 7. 89<br>8. 03   | 0. 0213<br>0. 0217 | 0. 04<br>0. 04 | Q<br>Q | • | •      | • | • |
| 8. 16            | 0. 0222            | 0.04           | Q      |   | •      |   |   |
| 8. 30<br>8. 43   | 0. 0227<br>0. 0231 | 0. 04<br>0. 04 | Q      |   | •      |   |   |
| 8. 57            | 0. 0231            | 0. 04          | Q<br>Q |   | •      | • |   |
| 8. 70            | 0. 0241            | 0. 04          | Q      |   |        |   |   |
| 8. 84<br>8. 97   | 0. 0246<br>0. 0251 | 0. 04<br>0. 05 | Q<br>Q | • | •      | • | • |
| 9. 11            | 0. 0256            | 0. 05          | Q      |   |        |   |   |
| 9. 24            | 0. 0261            | 0.05           | Q      |   |        |   |   |
| 9. 38<br>9. 51   | 0. 0267<br>0. 0272 | 0. 05<br>0. 05 | Q<br>Q | • | •      | • |   |
| 9. 65            | 0. 0277            | 0. 05          | Q      |   |        |   |   |
| 9. 78            | 0. 0283            | 0.05           | Q      |   | ·      | • |   |
| 9. 92<br>10. 05  | 0. 0288<br>0. 0294 | 0. 05<br>0. 05 | Q<br>Q |   | •      |   | : |
| 10. 19           | 0. 0299            | 0.05           | Q      |   | •      | • |   |
| 10. 32<br>10. 46 | 0. 0305<br>0. 0311 | 0. 05<br>0. 05 | Q<br>Q | • | •      | • | • |
| 10. 59           | 0. 0311            | 0. 05          | Q      |   | •      | • |   |
| 10. 73           | 0. 0322            | 0.05           | Q      |   |        |   |   |
| 10. 86<br>11. 00 | 0. 0328<br>0. 0335 | 0. 05<br>0. 06 | Q<br>Q | • | •      | • | • |
| 11. 13           | 0. 0341            | 0. 06          | Q      |   |        |   |   |
| 11. 27           | 0. 0347            | 0.06           | Q      |   | •      | • |   |
| 11. 40<br>11. 54 | 0. 0354<br>0. 0360 | 0. 06<br>0. 06 | Q<br>Q |   |        |   | : |
| 11. 67           | 0. 0367            | 0.06           | Q      |   | •      | • |   |
| 11. 81<br>11. 95 | 0. 0374<br>0. 0381 | 0. 06<br>0. 06 | Q<br>Q | • | •      |   |   |
| 12. 08           | 0. 0388            | 0. 07          | Q      |   | •      | • | : |
| 12. 22           | 0. 0396            | 0.08           | Q      |   | •      |   |   |
| 12. 35<br>12. 49 | 0. 0405<br>0. 0414 | 0. 08<br>0. 08 | Q<br>Q | • | •      | • | ٠ |
| 12. 62           | 0.0423             | 0. 08          | Q      |   |        |   |   |
| 12. 76           | 0. 0433            | 0.08           | Q      |   |        |   |   |
| 12. 89<br>13. 03 | 0. 0442<br>0. 0452 | 0. 09<br>0. 09 | Q<br>Q | • | •      | • |   |
| 13. 16           | 0. 0462            | 0.09           | Q      | • |        |   |   |
| 13. 30           | 0. 0473            | 0.09           | 0      |   |        |   |   |
| 13. 43<br>13. 57 | 0. 0483<br>0. 0494 | 0. 10<br>0. 10 | Q<br>Q |   |        |   | • |
| 13. 70           | 0. 0505            | 0. 10          | Q      |   | •      | • |   |
| 13.84            | 0. 0517<br>0. 0529 | 0. 10<br>0. 11 | Q      | • |        |   |   |
| 13. 97<br>14. 11 | 0. 0529            | 0. 11          | Q<br>Q |   | ·<br>· | • | : |
| 14. 24           | 0. 0554            | 0. 12          | Q      | • |        |   |   |
| 14. 38<br>14. 51 | 0. 0568<br>0. 0582 | 0. 12<br>0. 13 | Q<br>Q | • |        |   | ٠ |
| 14. 51           | 0. 0582            | 0. 13          | Q      |   | ·<br>· | • |   |
|                  |                    |                |        |   | D 0    |   |   |

|                  |                    |                |          |   | X     | 002_G |       |       |
|------------------|--------------------|----------------|----------|---|-------|-------|-------|-------|
| 14. 78<br>14. 92 | 0. 0613<br>0. 0630 | 0. 15<br>0. 15 | Q<br>Q   |   | •     | •     | •     | •     |
| 15. 05           | 0. 0648            | 0. 17          | Q        |   |       |       |       |       |
| 15. 19           | 0.0666             | 0. 17          | Q        |   | •     |       | •     |       |
| 15. 32<br>15. 46 | 0. 0687<br>0. 0709 | 0. 19<br>0. 20 | Q<br>Q   |   |       |       |       |       |
| 15. 59           | 0. 0731            | 0. 21          | Q        |   |       |       |       |       |
| 15. 73<br>15. 86 | 0. 0757<br>0. 0790 | 0. 24<br>0. 36 | Q<br>. Q |   | •     | •     | •     | •     |
| 16. 00           | 0. 0838            | 0. 49          | . Q      |   |       |       |       |       |
| 16. 14           | 0.0962             | 1. 72          |          | Q |       |       | •     |       |
| 16. 27<br>16. 41 | 0. 1074<br>0. 1101 | 0. 29<br>0. 19 | . Q<br>Q |   |       |       |       |       |
| 16. 54           | 0. 1122            | 0. 18          | Q        |   |       |       |       |       |
| 16. 68<br>16. 81 | 0. 1141<br>0. 1158 | 0. 16<br>0. 14 | Q<br>Q   |   | •     | •     | •     | •     |
| 16. 95           | 0. 1173            | 0. 13          | Q        |   |       |       |       |       |
| 17. 08           | 0. 1187            | 0. 12          | Q        |   | •     |       | •     |       |
| 17. 22<br>17. 35 | 0. 1199<br>0. 1211 | 0. 11<br>0. 10 | Q<br>Q   |   |       |       |       |       |
| 17. 49           | 0. 1222            | 0.09           | Q        |   |       |       |       |       |
| 17. 62<br>17. 76 | 0. 1232<br>0. 1242 | 0. 09<br>0. 09 | Q<br>Q   |   | •     | •     | •     | •     |
| 17. 89           | 0. 1251            | 0.08           | Q        |   |       |       |       |       |
| 18. 03<br>18. 16 | 0. 1260<br>0. 1268 | 0. 08<br>0. 06 | Q        |   |       |       | •     |       |
| 18. 30           | 0. 1200            | 0.06           | Q<br>Q   |   | •     |       |       |       |
| 18. 43           | 0. 1282            | 0.06           | Q        |   |       |       |       |       |
| 18. 57<br>18. 70 | 0. 1288<br>0. 1295 | 0. 06<br>0. 06 | Q<br>Q   |   | •     | •     | •     | •     |
| 18. 84           | 0. 1301            | 0. 05          | Q        |   |       |       |       |       |
| 18. 97<br>19. 11 | 0. 1307<br>0. 1312 | 0. 05<br>0. 05 | Q<br>Q   |   |       |       | •     |       |
| 19. 11           | 0. 1312            | 0.05           | Q        |   | •     |       |       |       |
| 19. 38           | 0. 1323            | 0.05           | Q        |   |       |       |       |       |
| 19. 51<br>19. 65 | 0. 1328<br>0. 1334 | 0. 05<br>0. 05 | Q<br>Q   |   | •     |       | •     | •     |
| 19. 78           | 0. 1339            | 0.04           | Q        |   |       |       |       |       |
| 19. 92<br>20. 06 | 0. 1344<br>0. 1348 | 0. 04<br>0. 04 | Q<br>Q   |   | •     | •     | •     | •     |
| 20. 19           | 0. 1353            | 0. 04          | Q        |   |       |       |       |       |
| 20. 33           | 0. 1358            | 0.04           | Q        |   |       |       | •     |       |
| 20. 46<br>20. 60 | 0. 1362<br>0. 1366 | 0. 04<br>0. 04 | Q<br>Q   |   |       |       |       |       |
| 20. 73           | 0. 1371            | 0.04           | Q        |   |       |       |       |       |
| 20. 87<br>21. 00 | 0. 1375<br>0. 1379 | 0. 04<br>0. 04 | Q<br>Q   |   | •     |       | •     | •     |
| 21. 14           | 0. 1383            | 0.04           | Q        |   |       |       | •     |       |
| 21. 27<br>21. 41 | 0. 1387<br>0. 1391 | 0. 04<br>0. 04 | Q<br>Q   |   |       |       | •     |       |
| 21. 54           | 0. 1395            | 0. 03          | Q        |   |       |       |       |       |
| 21. 68           | 0. 1399            | 0. 03          | Q        |   | •     |       | •     |       |
| 21. 81<br>21. 95 | 0. 1403<br>0. 1407 | 0. 03<br>0. 03 | Q<br>Q   |   |       |       |       |       |
| 22.08            | 0. 1410            | 0.03           | Q        |   |       |       |       |       |
| 22. 22<br>22. 35 | 0. 1414<br>0. 1418 | 0. 03<br>0. 03 | Q<br>Q   |   | •     | •     | •     | •     |
| 22. 49           | 0. 1410            | 0. 03          | Q        |   |       |       |       |       |
| 22. 62           | 0. 1425            | 0. 03          | Q        |   |       |       | •     |       |
| 22. 76<br>22. 89 | 0. 1428<br>0. 1432 | 0. 03<br>0. 03 | Q<br>Q   |   |       |       |       |       |
| 23. 03           | 0. 1435            | 0. 03          | Q        |   |       |       |       |       |
| 23. 16<br>23. 30 | 0. 1438<br>0. 1441 | 0. 03<br>0. 03 | Q<br>Q   |   | •     |       | •     | •     |
| 23. 43           | 0. 1445            | 0. 03          | Q        |   |       |       |       |       |
| 23. 57           | 0. 1448<br>0. 1451 | 0. 03          | Q        |   |       |       |       |       |
| 23. 70<br>23. 84 | 0. 1451<br>0. 1454 | 0. 03<br>0. 03 | Q<br>Q   |   |       |       |       |       |
| 23. 97           | 0. 1457            | 0.03           | Q        |   |       |       |       |       |
| 24. 11<br>24. 25 | 0. 1460<br>0. 1462 | 0. 03<br>0. 00 | Q<br>Q   |   | •     |       | •     | •     |
|                  |                    |                |          |   | ·<br> |       | ·<br> | ·<br> |

# Drainage H

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 7.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION(MIN.) = 9.37
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 2
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.57 0.27

| ******                  | +++++++++                     | ******                  | ++++        | *****       |      |      | *****  | 4 |
|-------------------------|-------------------------------|-------------------------|-------------|-------------|------|------|--------|---|
| TI ME<br>(HOURS)        | VOLUME<br>(AF)                |                         | 0.          | 2. 5        | 5. 0 | 7. 5 | 10. 0  |   |
|                         |                               |                         |             | 2.0         | 5.0  |      |        | _ |
| 4. 29<br>4. 44<br>4. 60 | 0. 0398<br>0. 0415<br>0. 0432 | 0. 13<br>0. 13<br>0. 13 | Q<br>Q<br>Q | ·<br>·<br>· |      |      | ·<br>· |   |

Page 1

|                  |                    |                |               |    | V000 II |   |   |
|------------------|--------------------|----------------|---------------|----|---------|---|---|
| 4. 76            | 0. 0448            | 0. 13          | Q             |    | X002_H  |   |   |
| 4. 91            | 0. 0466            | 0. 13          | Q             |    |         |   |   |
| 5. 07<br>5. 22   | 0. 0483<br>0. 0500 | 0. 13<br>0. 14 | Q<br>Q        | •  | •       | • |   |
| 5. 38            | 0. 0518            | 0. 14          | Q             |    |         |   |   |
| 5. 54<br>5. 69   | 0. 0535<br>0. 0553 | 0. 14<br>0. 14 | Q<br>Q        |    |         |   |   |
| 5. 85            | 0. 0533            | 0. 14          | Q             |    |         |   |   |
| 6. 01            | 0. 0589            | 0. 14          | Q             |    |         |   |   |
| 6. 16<br>6. 32   | 0. 0607<br>0. 0626 | 0. 14<br>0. 14 | Q<br>Q        |    |         | • |   |
| 6. 47            | 0.0645             | 0. 15          | Q             |    |         |   |   |
| 6. 63<br>6. 79   | 0. 0663<br>0. 0683 | 0. 15<br>0. 15 | Q<br>Q        | •  |         | • |   |
| 6. 94            | 0.0702             | 0. 15          | Q             |    |         | • |   |
| 7. 10<br>7. 25   | 0. 0721<br>0. 0741 | 0. 15<br>0. 15 | Q<br>Q        |    |         |   |   |
| 7. 23<br>7. 41   | 0. 0741            | 0. 15          | Q             |    |         |   |   |
| 7. 57            | 0. 0781            | 0. 16          | Q             |    |         |   |   |
| 7. 72<br>7. 88   | 0. 0801<br>0. 0822 | 0. 16<br>0. 16 | Q<br>Q        |    | •       |   |   |
| 8. 04            | 0. 0843            | 0. 16          | Q             |    |         | • |   |
| 8. 19<br>8. 35   | 0. 0864<br>0. 0885 | 0. 16<br>0. 17 | Q<br>Q        | •  |         | • |   |
| 8. 50            | 0. 0907            | 0. 17          | Q             |    |         | • |   |
| 8. 66<br>8. 82   | 0. 0929<br>0. 0951 | 0. 17<br>0. 17 | Q<br>Q        |    |         |   |   |
| 8. 97            | 0. 0973            | 0. 17          | Q             |    |         |   |   |
| 9. 13            | 0. 0996            | 0. 18          | Q             |    |         |   |   |
| 9. 28<br>9. 44   | 0. 1019<br>0. 1042 | 0. 18<br>0. 18 | Q<br>Q        |    |         | • |   |
| 9. 60            | 0. 1066            | 0. 19          | Q             |    |         |   |   |
| 9. 75<br>9. 91   | 0. 1090<br>0. 1115 | 0. 19<br>0. 19 | Q<br>Q        | •  |         | • | • |
| 10. 07           | 0. 1140            | 0. 19          | Q             |    |         |   |   |
| 10. 22           | 0. 1165            | 0. 20          | Q             |    |         | • |   |
| 10. 38<br>10. 53 | 0. 1190<br>0. 1217 | 0. 20<br>0. 20 | Q<br>Q        |    | •       |   |   |
| 10. 69           | 0. 1243            | 0. 21          | Q             |    |         | • |   |
| 10. 85<br>11. 00 | 0. 1270<br>0. 1298 | 0. 21<br>0. 21 | Q<br>Q        | •  |         | • |   |
| 11. 16           | 0. 1326            | 0. 22          | Q             |    |         |   |   |
| 11. 32<br>11. 47 | 0. 1354<br>0. 1384 | 0. 22<br>0. 23 | Q<br>Q        | •  | •       | • | • |
| 11. 63           | 0. 1413            | 0. 23          | Q             |    |         |   |   |
| 11. 78           | 0. 1444            | 0. 24<br>0. 24 | Q             | •  |         | • | • |
| 11. 94<br>12. 10 | 0. 1475<br>0. 1508 | 0. 24          | Q<br>. Q      |    | •       |   |   |
| 12. 25           | 0. 1545            | 0.30           | . Q           |    |         |   |   |
| 12. 41<br>12. 56 | 0. 1585<br>0. 1626 | 0. 31<br>0. 32 | . Q<br>. Q    | •  | •       | • | • |
| 12. 72           | 0. 1668            | 0. 33          | . Q           |    |         |   |   |
| 12. 88<br>13. 03 | 0. 1711<br>0. 1755 | 0. 33<br>0. 35 | . Q<br>. Q    | •  | •       | • | • |
| 13. 19           | 0. 1800            | 0. 35          | . Q           |    |         | • |   |
| 13. 35<br>13. 50 | 0. 1847<br>0. 1895 | 0. 37<br>0. 38 | . Q<br>. Q    |    |         |   |   |
| 13. 66           | 0. 1944            | 0. 38          | . Q<br>. Q    |    |         |   |   |
| 13. 81           | 0. 1996            | 0.40           | . Q           |    |         |   |   |
| 13. 97<br>14. 13 | 0. 2049<br>0. 2104 | 0. 42<br>0. 44 | . Q<br>. Q    |    |         | • |   |
| 14. 28           | 0. 2163            | 0. 48          | . Q           |    |         | • |   |
| 14. 44<br>14. 59 | 0. 2226<br>0. 2291 | 0. 49<br>0. 53 | . Q<br>.    Q | •  |         | • |   |
| 14. 75           | 0. 2361            | 0. 55          | . Q           |    |         |   |   |
| 14. 91<br>15. 06 | 0. 2434<br>0. 2513 | 0. 59<br>0. 62 | . Q<br>. Q    |    |         | • |   |
| 15. 22           | 0. 2513            | 0. 02          | . Q<br>. Q    |    |         |   |   |
| 15. 38           | 0. 2691            | 0. 75          | . Q           |    |         |   |   |
| 15. 53<br>15. 69 | 0. 2788<br>0. 2893 | 0. 76<br>0. 86 | . Q<br>. Q    |    |         | • | • |
| 15. 84           | 0. 3032            | 1. 30          | . Q           |    |         | • | • |
| 16. 00<br>16. 16 | 0. 3229<br>0. 3736 | 1. 75<br>6. 11 | . (           | 1. | . Q     | • |   |
| 16. 31           | 0. 4195            | 1. 01          | . Q           |    |         |   |   |
| 16. 47           | 0. 4310<br>0. 4401 | 0. 76          | . Q           |    |         | • |   |
| 16. 62<br>16. 78 | 0. 4480            | 0. 66<br>0. 57 | . Q<br>. Q    |    |         |   |   |
| 16. 94           | 0. 4550            | 0. 51          | . Q           |    |         |   |   |
|                  |                    |                |               |    |         |   |   |

Page 2

|                  |                    |                |            |      | X002_H |   |   |
|------------------|--------------------|----------------|------------|------|--------|---|---|
| 17. 09           | 0. 4612            | 0. 46          | . Q        |      |        | • |   |
| 17. 25<br>17. 41 | 0. 4669<br>0. 4720 | 0. 41<br>0. 38 | . Q<br>. Q | •    | •      | • | • |
| 17. 41<br>17. 56 | 0. 4720            | 0. 36          | . Q<br>. Q | •    | •      | • | • |
| 17. 72           | 0. 4813            | 0. 34          | . Q        |      |        | • | • |
| 17. 87           | 0. 4856            | 0. 32          | . Q        |      |        |   |   |
| 18. 03           | 0. 4897            | 0. 31          | . Q        |      |        |   |   |
| 18. 19           | 0. 4933            | 0. 25          | Q          |      | •      | • | • |
| 18. 34<br>18. 50 | 0. 4964<br>0. 4994 | 0. 24<br>0. 23 | Q<br>Q     | •    | •      | • | • |
| 18. 65           | 0. 5023            | 0. 23          | Q          |      | •      | • | • |
| 18. 81           | 0. 5050            | 0. 21          | Q          |      | ·      |   |   |
| 18. 97           | 0. 5077            | 0. 20          | Q          |      |        |   |   |
| 19. 12           | 0. 5102            | 0. 20          | Q          |      |        |   |   |
| 19. 28           | 0. 5127            | 0. 19          | Q          | •    |        |   | • |
| 19. 44<br>19. 59 | 0. 5151<br>0. 5175 | 0. 18<br>0. 18 | Q<br>Q     | •    | •      | • | • |
| 19. 75           | 0. 5175            | 0. 18          | Q          |      | •      | • | • |
| 19. 90           | 0. 5220            | 0. 17          | Q          |      |        | • | • |
| 20.06            | 0. 5241            | 0. 17          | Q          |      |        |   |   |
| 20. 22           | 0. 5262            | 0. 16          | Q          |      |        |   |   |
| 20. 37           | 0. 5283            | 0. 16          | Q          |      |        |   |   |
| 20. 53<br>20. 68 | 0. 5303<br>0. 5323 | 0. 15<br>0. 15 | Q<br>Q     | •    | •      | • | • |
| 20. 84           | 0. 5342            | 0. 15          | Q          | •    | •      | • | • |
| 21. 00           | 0. 5361            | 0. 14          | ã          |      |        |   |   |
| 21. 15           | 0. 5379            | 0. 14          | Q          |      | •      | • |   |
| 21. 31           | 0. 5397            | 0. 14          | Q          |      |        |   |   |
| 21. 47<br>21. 62 | 0. 5415<br>0. 5433 | 0. 14<br>0. 13 | Q          | •    | •      |   |   |
| 21. 62           | 0. 5450            | 0. 13          | Q<br>Q     | •    | •      | • | • |
| 21. 93           | 0. 5467            | 0. 13          | Q          |      |        | • |   |
| 22. 09           | 0. 5483            | 0. 13          | Q          |      |        |   |   |
| 22. 25           | 0. 5500            | 0. 13          | Q          |      |        |   |   |
| 22. 40           | 0. 5516            | 0. 12          | Q          |      | •      | • | • |
| 22. 56<br>22. 72 | 0. 5532<br>0. 5547 | 0. 12<br>0. 12 | Q<br>Q     | •    | •      | • | • |
| 22. 72<br>22. 87 | 0. 5563            | 0. 12          | Q          | •    | •      | • | • |
| 23. 03           | 0. 5578            | 0. 12          | Q          |      |        | • |   |
| 23. 18           | 0. 5593            | 0. 12          | Q          |      |        |   |   |
| 23. 34           | 0. 5607            | 0. 11          | Q          |      | •      | • |   |
| 23. 50           | 0. 5622            | 0. 11          | Q          |      |        | • |   |
| 23. 65           | 0. 5636<br>0. 5651 | 0. 11          | Q          |      |        |   |   |
| 23. 81<br>23. 96 | 0. 5651<br>0. 5665 | 0. 11<br>0. 11 | Q<br>Q     | •    |        | • | • |
| 24. 12           | 0. 5678            | 0. 11          | Q          | •    | •      | • | • |
| 24. 28           | 0. 5685            | 0.00           | Q          |      |        |   | • |
|                  |                    |                |            | <br> |        |   |   |

# Drainage I

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

# AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions: RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 1.10
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION(MIN.) = 9.32
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 2
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.09 0.04

|         | 0,11.01 | 00.2 2000 |      | · · · · · · · · · · · · · · · · · · · | ,      | 0.    |       |
|---------|---------|-----------|------|---------------------------------------|--------|-------|-------|
| *****   | *****   | *****     | **** | *****                                 | *****  | ***** | ***** |
| TIME    | VOLUME  | Q         | 0.   | 2. 5                                  | 5.0    | 7.5   | 10.0  |
| (HOURS) | (AF)    | (CFS)     |      |                                       |        |       |       |
|         |         |           |      |                                       |        |       |       |
| 0.00    | 0.0000  | 0.00      | Q    |                                       |        |       |       |
| 0. 16   | 0. 0001 | 0. 02     | Q    |                                       |        |       |       |
| 0. 31   | 0.0003  | 0. 02     | Q    |                                       |        |       |       |
| 0. 47   | 0.0005  | 0. 02     | Q    |                                       |        |       |       |
| 0. 62   | 0.0008  | 0. 02     | Q    |                                       |        |       |       |
| 0. 78   | 0.0010  | 0. 02     | Q    |                                       |        |       |       |
| 0. 93   | 0.0012  | 0. 02     | Q    |                                       |        |       |       |
| 1. 09   | 0.0014  | 0. 02     | Q    |                                       |        |       |       |
| 1. 24   | 0.0016  | 0. 02     | Q    |                                       |        |       |       |
| 1. 40   | 0.0019  | 0. 02     | Q    |                                       |        |       |       |
| 1. 55   | 0. 0021 | 0. 02     | Q    |                                       |        |       |       |
| 1. 71   | 0.0023  | 0. 02     | Q    |                                       |        |       |       |
| 1. 86   | 0.0026  | 0. 02     | Q    |                                       |        |       |       |
| 2. 02   | 0. 0028 | 0. 02     | Q    |                                       |        |       |       |
| 2. 18   | 0.0030  | 0. 02     | Q    |                                       |        |       |       |
| 2. 33   | 0.0033  | 0. 02     | Q    |                                       |        |       |       |
| 2. 49   | 0.0035  | 0. 02     | Q    |                                       |        |       |       |
| 2.64    | 0.0037  | 0. 02     | Q    |                                       |        |       |       |
| 2.80    | 0.0040  | 0. 02     | Q    |                                       |        |       |       |
| 2. 95   | 0.0042  | 0. 02     | Q    |                                       |        |       |       |
| 3. 11   | 0.0044  | 0. 02     | Q    |                                       |        |       |       |
| 3. 26   | 0. 0047 | 0. 02     | Q    |                                       |        |       |       |
| 3. 42   | 0. 0049 | 0. 02     | Q    |                                       |        |       |       |
| 3. 57   | 0. 0052 | 0. 02     | Q    |                                       |        |       |       |
| 3. 73   | 0. 0054 | 0. 02     | Q    |                                       |        |       |       |
| 3. 88   | 0. 0057 | 0. 02     | Q    |                                       |        |       |       |
| 4. 04   | 0. 0059 | 0. 02     | Q    |                                       |        |       |       |
| 4. 19   | 0. 0062 | 0. 02     | Q    |                                       |        |       |       |
| 4. 35   | 0. 0065 | 0. 02     | Q    |                                       |        |       |       |
| 4. 51   | 0. 0067 | 0. 02     | Q    |                                       |        |       |       |
|         |         |           |      |                                       | Dogo 1 |       |       |

Page 1

|                  |                    |                |        |   |   | X002_I |   |   |
|------------------|--------------------|----------------|--------|---|---|--------|---|---|
| 4. 66            | 0.0070             | 0.02           | Q      |   | • |        | • |   |
| 4. 82<br>4. 97   | 0. 0072<br>0. 0075 | 0. 02<br>0. 02 | Q<br>Q |   |   | •      | • |   |
| 5. 13<br>5. 28   | 0. 0078<br>0. 0081 | 0. 02<br>0. 02 | Q<br>Q |   |   |        |   |   |
| 5. 44            | 0.0083             | 0.02           | Q      |   |   |        |   |   |
| 5. 59<br>5. 75   | 0. 0086<br>0. 0089 | 0. 02<br>0. 02 | Q<br>Q |   | • | •      | • | ٠ |
| 5. 90            | 0. 0092            | 0.02           | Q      |   | • |        |   |   |
| 6. 06<br>6. 21   | 0. 0095<br>0. 0097 | 0. 02<br>0. 02 | Q<br>Q |   |   |        |   |   |
| 6. 37<br>6. 52   | 0. 0100<br>0. 0103 | 0. 02<br>0. 02 | Q<br>Q |   | • |        | - |   |
| 6. 68            | 0. 0106            | 0. 02          | Q      |   | • |        |   |   |
| 6. 84<br>6. 99   | 0. 0109<br>0. 0112 | 0. 02<br>0. 02 | Q<br>Q |   | • |        | • | ٠ |
| 7. 15            | 0. 0115            | 0.02           | Q      |   |   |        |   |   |
| 7. 30<br>7. 46   | 0. 0118<br>0. 0121 | 0. 02<br>0. 02 | Q<br>Q |   |   |        |   |   |
| 7. 61            | 0. 0125            | 0. 02          | Q      |   |   |        | • |   |
| 7. 77<br>7. 92   | 0. 0128<br>0. 0131 | 0. 03<br>0. 03 | Q<br>Q |   |   | •      | • |   |
| 8. 08<br>8. 23   | 0. 0134<br>0. 0138 | 0. 03<br>0. 03 | Q<br>Q |   |   |        | • |   |
| 8. 39            | 0. 0141            | 0.03           | Q      |   |   |        |   |   |
| 8. 54<br>8. 70   | 0. 0144<br>0. 0148 | 0. 03<br>0. 03 | Q<br>Q |   |   |        |   | • |
| 8. 85            | 0. 0151            | 0.03           | Q      |   |   |        |   |   |
| 9. 01<br>9. 17   | 0. 0155<br>0. 0158 | 0. 03<br>0. 03 | Q<br>Q |   |   | •      | • |   |
| 9. 32<br>9. 48   | 0. 0162<br>0. 0166 | 0. 03<br>0. 03 | Q<br>Q |   | • | •      | • |   |
| 9. 63            | 0. 0169            | 0.03           | Q      |   |   |        | • |   |
| 9. 79<br>9. 94   | 0. 0173<br>0. 0177 | 0. 03<br>0. 03 | Q<br>Q |   |   |        | • |   |
| 10. 10<br>10. 25 | 0. 0181<br>0. 0185 | 0. 03<br>0. 03 | Q<br>Q |   | • | •      | • |   |
| 10. 41           | 0. 0189            | 0.03           | Q      |   |   |        | • |   |
| 10. 56<br>10. 72 | 0. 0193<br>0. 0197 | 0. 03<br>0. 03 | Q<br>Q |   | • |        | • | • |
| 10. 87           | 0. 0201            | 0.03           | Q      |   | • |        |   |   |
| 11. 03<br>11. 18 | 0. 0206<br>0. 0210 | 0. 03<br>0. 03 | Q<br>Q |   |   |        | • |   |
| 11. 34<br>11. 50 | 0. 0215<br>0. 0219 | 0. 04<br>0. 04 | Q<br>Q |   | • |        |   |   |
| 11. 65           | 0. 0224            | 0.04           | Q      |   |   |        |   |   |
| 11. 81<br>11. 96 | 0. 0229<br>0. 0233 | 0. 04<br>0. 04 | Q<br>Q |   |   |        |   |   |
| 12. 12<br>12. 27 | 0. 0239<br>0. 0245 | 0. 04<br>0. 05 | Q<br>Q |   |   |        | • |   |
| 12. 43           | 0. 0245            | 0.05           | Q      |   |   |        |   |   |
| 12. 58<br>12. 74 | 0. 0257<br>0. 0264 | 0. 05<br>0. 05 | Q<br>Q |   | • | •      | • |   |
| 12. 89           | 0. 0271            | 0.05           | Q      |   |   |        | • |   |
| 13. 05<br>13. 20 | 0. 0278<br>0. 0285 | 0. 05<br>0. 06 | Q<br>Q |   |   |        |   |   |
| 13. 36           | 0. 0292            | 0.06           | Q      |   |   |        | • |   |
| 13. 51<br>13. 67 | 0. 0299<br>0. 0307 | 0. 06<br>0. 06 | Q<br>Q |   | • |        | • |   |
| 13. 83<br>13. 98 | 0. 0315<br>0. 0324 | 0. 06<br>0. 07 | Q<br>Q |   |   |        |   |   |
| 14. 14           | 0. 0332            | 0. 07          | Q      |   |   |        | • |   |
| 14. 29<br>14. 45 | 0. 0342<br>0. 0351 | 0. 07<br>0. 08 | Q<br>Q |   |   |        |   |   |
| 14. 60           | 0. 0362            | 0.08           | Q      |   |   |        | • |   |
| 14. 76<br>14. 91 | 0. 0373<br>0. 0384 | 0. 09<br>0. 09 | Q<br>Q |   |   |        | • |   |
| 15. 07<br>15. 22 | 0. 0396<br>0. 0410 | 0. 10<br>0. 11 | Q<br>Q |   |   |        |   |   |
| 15. 38           | 0. 0424            | 0. 12          | Q      |   |   |        |   |   |
| 15. 53<br>15. 69 | 0. 0440<br>0. 0456 | 0. 12<br>0. 14 | Q<br>Q |   |   |        |   |   |
| 15. 84           | 0. 0478            | 0. 20          | Q      |   |   |        |   |   |
| 16. 00<br>16. 16 | 0. 0509<br>0. 0588 | 0. 28<br>0. 96 | . Q    | Q |   |        | • |   |
| 16. 31<br>16. 47 | 0. 0660<br>0. 0678 | 0. 16<br>0. 12 | Q<br>Q |   |   |        |   |   |
| 16. 62           | 0. 0692            | 0. 10          | Q      |   |   |        |   |   |
| 16. 78           | 0. 0705            | 0. 09          | Q      |   | • | Pago 2 | • | ٠ |

Page 2

|                  |                    |                |        |   | X002_I |   |   |
|------------------|--------------------|----------------|--------|---|--------|---|---|
| 16. 93           | 0. 0716            | 0.08           | Q      |   | . –    |   |   |
| 17. 09           | 0. 0725            | 0.07           | Q      |   | •      |   | • |
| 17. 24<br>17. 40 | 0. 0734<br>0. 0742 | 0. 07<br>0. 06 | Q<br>Q | • | •      | • | • |
| 17. 40           | 0.0742             | 0.06           | Q      | • | •      | • | • |
| 17. 71           | 0. 0757            | 0. 05          | Q      | • |        | • | • |
| 17. 86           | 0.0764             | 0.05           | Q      |   |        |   |   |
| 18. 02           | 0. 0770            | 0. 05          | Q      |   |        |   |   |
| 18. 17           | 0. 0776            | 0. 04          | Q      |   | •      |   |   |
| 18. 33<br>18. 49 | 0. 0781<br>0. 0785 | 0. 04<br>0. 04 | Q<br>Q | • | •      | • | • |
| 18. 64           | 0. 0790            | 0. 03          | Q      | • | •      |   | • |
| 18. 80           | 0. 0794            | 0. 03          | Q      |   |        |   |   |
| 18. 95           | 0. 0798            | 0. 03          | Q      |   |        |   | • |
| 19. 11           | 0. 0802            | 0.03           | Q      | • |        | • | • |
| 19. 26<br>19. 42 | 0. 0806<br>0. 0810 | 0. 03<br>0. 03 | Q<br>Q | • | •      | • | • |
| 19. 42<br>19. 57 | 0. 0810            | 0. 03          | Q      | • | •      | • | • |
| 19. 73           | 0. 0817            | 0. 03          | Q      | · |        |   |   |
| 19. 88           | 0. 0821            | 0. 03          | Q      |   |        |   |   |
| 20. 04           | 0. 0824            | 0. 03          | Q      |   |        |   |   |
| 20. 19           | 0. 0827            | 0.03           | Q      | • |        |   | • |
| 20. 35<br>20. 50 | 0. 0831<br>0. 0834 | 0. 02<br>0. 02 | Q<br>Q | • | •      | • | • |
| 20. 50           | 0. 0837            | 0. 02          | Q      | • | •      | • | • |
| 20. 82           | 0. 0840            | 0. 02          | Q      | • |        | • |   |
| 20. 97           | 0. 0843            | 0.02           | Q      |   |        |   |   |
| 21. 13           | 0. 0846            | 0. 02          | Q      |   |        |   |   |
| 21. 28<br>21. 44 | 0. 0849            | 0. 02          | Q      |   | •      |   |   |
| 21. 44           | 0. 0851<br>0. 0854 | 0. 02<br>0. 02 | Q<br>Q | • | •      | • | • |
| 21. 75           | 0. 0857            | 0. 02          | Q      | • | •      | • | • |
| 21. 90           | 0. 0860            | 0. 02          | Q      |   |        |   |   |
| 22. 06           | 0. 0862            | 0. 02          | Q      |   |        |   | • |
| 22. 21           | 0. 0865            | 0. 02          | Q      |   |        |   | • |
| 22. 37<br>22. 52 | 0. 0867<br>0. 0870 | 0. 02<br>0. 02 | Q<br>Q | • |        | • | • |
| 22. 52<br>22. 68 | 0. 0870            | 0. 02          | Q      | • | •      | • | • |
| 22. 83           | 0. 0875            | 0. 02          | Q      | • |        | • | • |
| 22. 99           | 0. 0877            | 0. 02          | Q      |   |        |   |   |
| 23. 15           | 0. 0879            | 0. 02          | Q      |   |        |   | • |
| 23. 30           | 0. 0882            | 0. 02          | Q      |   |        |   | • |
| 23. 46<br>23. 61 | 0. 0884<br>0. 0886 | 0. 02<br>0. 02 | Q<br>Q | • | •      | • | • |
| 23. 77           | 0. 0888            | 0. 02          | Q      | • | •      | • | • |
| 23. 77           | 0. 0891            | 0. 02          | Q      |   |        |   |   |
| 24. 08           | 0. 0893            | 0. 02          | Q      |   |        |   |   |
| 24. 23           | 0. 0894            | 0.00           | Q      |   |        |   |   |
|                  |                    |                |        |   |        |   |   |

# Drainage J

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* NON-HOMOGENEOUS WATERSHED AREA-AVERAGED LOSS RATE (Fm)

## AND LOW LOSS FRACTION ESTIMATIONS

(C) Copyright 1989-2003 Advanced Engineering Software (aes) Ver. 9.0 Release Date: 01/01/2003 License ID 1355

#### Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA(ACRES) = 11.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION(MIN.) = 15.25
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY(YEARS) = 2
5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 0.89 0.43

| *****           | *****              | *****          | ***    | ***** | ***** | ***** | ***** |
|-----------------|--------------------|----------------|--------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF)     | Q<br>(CFS)     | 0.     | 2. 5  | 5.0   | 7. 5  | 10. 0 |
| 0. 24           | 0. 0018            | 0. 17          | Q      |       |       |       |       |
| 0. 50           | 0. 0053            | 0. 17          | Q      |       | •     | •     |       |
| 0. 75           | 0. 0089            | 0. 17          | Q      |       | •     | •     | •     |
| 1.00            | 0. 0125            | 0. 17          | Q      |       | •     | •     | •     |
| 1. 26           | 0. 0161            | 0. 17          | Q      |       | •     | •     |       |
| 1. 51           | 0. 0198            | 0. 18          | Q      |       | •     | •     |       |
| 1. 77           | 0. 0235            | 0. 18          | Q      |       | •     | •     | •     |
| 2. 02           | 0. 0273            | 0. 18          | Q      |       | •     | •     |       |
| 2. 28           | 0. 0311            | 0. 18          | Q      | •     | •     | •     | •     |
| 2. 53           | 0. 0349            | 0. 18          | Q      | •     | •     | •     | •     |
| 2. 78           | 0. 0388            | 0. 19          | Q      | •     | •     | •     | •     |
| 3. 04<br>3. 29  | 0. 0428<br>0. 0467 | 0. 19<br>0. 19 | Q      | •     | •     | •     | •     |
| 3. 29<br>3. 55  | 0. 0467            | 0. 19          | Q<br>Q | •     | •     | •     | •     |
| 3. 80           | 0. 0508            | 0. 19          | Q      | •     | •     | •     | •     |
| 3. 60<br>4. 05  | 0. 0549            | 0. 20          | Q      | •     | •     | •     | •     |
| 4. 31           | 0. 0390            | 0. 20          | Q      | •     | •     | •     | •     |
| 4. 56           | 0. 0632            | 0. 20          | Q      | •     | •     | •     | •     |
| 4. 82           | 0. 0674            | 0. 20          | Q      | •     | •     | •     | •     |
| 5. 07           | 0. 0717            | 0. 21          | Q      | •     | •     | •     | •     |
| 5. 32           | 0. 0805            | 0. 21          | Q      | •     | •     | •     | •     |
| 5. 58           | 0. 0850            | 0. 21          | Q      | •     | •     | •     | •     |
| 5. 83           | 0. 0896            | 0. 22          | Q      | •     | •     | •     | •     |
| 6. 09           | 0. 0942            | 0. 22          | Q      | •     | •     | •     | •     |
| 6. 34           | 0. 0989            | 0. 22          | Q      | •     | •     | •     | •     |
| 6. 60           | 0. 1037            | 0. 22          | Q      | •     | •     | •     | •     |
| 6. 85           | 0. 1085            | 0. 23          | Q      | •     | •     | •     | •     |
| 7. 10           | 0. 1135            | 0. 24          | Q      | •     | •     | •     | •     |
| 7. 16           | 0. 1185            | 0. 24          | Q      | •     | •     | •     | •     |
| 7. 61           | 0. 1133            | 0. 25          | Õ      | •     | •     | •     | •     |
| 7.01            | 0. 1230            | 0. 23          | 4      | •     | •     | •     | •     |

Page 1

|                  |                    |                | _             |    | X002_ | J   |   |
|------------------|--------------------|----------------|---------------|----|-------|-----|---|
| 7. 87<br>8. 12   | 0. 1288<br>0. 1341 | 0. 25<br>0. 26 | Q<br>. Q      | •  | •     |     |   |
| 8. 38            | 0. 1395            | 0. 26          | . Q           | ·  |       |     |   |
| 8. 63            | 0. 1450            | 0. 27          | . Q           |    | •     | •   |   |
| 8. 88<br>9. 14   | 0. 1507<br>0. 1564 | 0. 27<br>0. 28 | . Q<br>. Q    | •  | •     | •   | • |
| 9. 39            | 0. 1623            | 0. 28          | . Q           |    |       |     |   |
| 9. 65            | 0. 1684            | 0. 29          | . Q           |    | •     |     |   |
| 9. 90<br>10. 15  | 0. 1745<br>0. 1809 | 0. 30<br>0. 31 | . Q<br>. Q    |    |       |     |   |
| 10. 41           | 0. 1874            | 0. 31          | . Q           |    |       |     |   |
| 10. 66<br>10. 92 | 0. 1940<br>0. 2009 | 0. 32<br>0. 33 | . Q<br>. Q    | •  | •     | •   | • |
| 11. 17           | 0. 2080            | 0. 34          | . Q           |    |       |     |   |
| 11. 43<br>11. 68 | 0. 2153            | 0. 35          | . Q           |    | •     |     |   |
| 11. 00           | 0. 2228<br>0. 2306 | 0. 37<br>0. 38 | . Q<br>. Q    |    |       |     |   |
| 12. 19           | 0. 2392            | 0.44           | . Q           |    |       |     |   |
| 12. 44<br>12. 70 | 0. 2490<br>0. 2594 | 0. 48<br>0. 51 | . Q<br>.    Q | •  | •     | •   |   |
| 12. 95           | 0. 2703            | 0. 52          | . Q           |    |       |     |   |
| 13. 20           | 0. 2816            | 0. 56          | . Q           |    | •     |     |   |
| 13. 46<br>13. 71 | 0. 2935<br>0. 3060 | 0. 57<br>0. 62 | . Q<br>. Q    |    |       |     |   |
| 13. 97           | 0. 3192            | 0. 64          | . Q           |    |       |     |   |
| 14. 22<br>14. 48 | 0. 3335<br>0. 3490 | 0. 72<br>0. 76 | . Q<br>. Q    | •  | •     | ٠   | • |
| 14. 73           | 0. 3658            | 0. 85          | . Q           | ·  |       |     |   |
| 14. 98           | 0. 3842            | 0. 91          | . Q<br>. Q    |    | •     |     |   |
| 15. 24<br>15. 49 | 0. 4049<br>0. 4286 | 1. 07<br>1. 19 | . Q           |    |       | •   |   |
| 15. 75           | 0. 4562            | 1. 44          | . Q           |    |       |     |   |
| 16. 00<br>16. 25 | 0. 4932<br>0. 5884 | 2. 08<br>6. 97 | •             | Q. | •     | Q . | • |
| 16. 51           | 0. 6741            | 1. 18          | . Q           | ·  |       |     |   |
| 16. 76<br>17. 02 | 0. 6968            | 0. 98          | . Q           |    | •     |     |   |
| 17. 02           | 0. 7154<br>0. 7308 | 0. 80<br>0. 67 | . Q<br>. Q    | •  |       |     | • |
| 17. 52           | 0. 7441            | 0. 59          | . Q           |    |       |     |   |
| 17. 78<br>18. 03 | 0. 7560<br>0. 7669 | 0. 54<br>0. 50 | . Q<br>. Q    | •  | •     | ٠   | • |
| 18. 29           | 0. 7761            | 0. 39          | . Q           | ·  |       |     | : |
| 18. 54           | 0. 7840            | 0. 36          | . Q           |    | •     | •   |   |
| 18. 80<br>19. 05 | 0. 7913<br>0. 7981 | 0. 34<br>0. 32 | . Q<br>. Q    |    |       | •   |   |
| 19. 30           | 0.8046             | 0.30           | . Q           |    |       |     |   |
| 19. 56<br>19. 81 | 0. 8108<br>0. 8167 | 0. 29<br>0. 27 | . Q<br>. Q    | •  | •     | •   |   |
| 20. 07           | 0. 8224            | 0. 26          | . Q           |    |       |     |   |
| 20. 32           | 0. 8278            | 0. 25          | . Q           |    | •     |     |   |
| 20. 58<br>20. 83 | 0. 8330<br>0. 8380 | 0. 24<br>0. 23 | Q<br>Q        | •  |       |     | • |
| 21. 08           | 0.8429             | 0. 23          | Q             |    |       |     |   |
| 21. 34<br>21. 59 | 0. 8476<br>0. 8521 | 0. 22<br>0. 21 | Q<br>Q        | •  | •     | ٠   | • |
| 21. 85           | 0. 8565            | 0. 21          | Q             | ·  |       |     |   |
| 22. 10           | 0.8608             | 0. 20          | Q             |    | •     |     |   |
| 22. 35<br>22. 61 | 0. 8650<br>0. 8691 | 0. 20<br>0. 19 | Q<br>Q        | :  |       |     |   |
| 22. 86           | 0. 8731            | 0. 19          | Q             |    | •     |     | • |
| 23. 12<br>23. 37 | 0. 8770<br>0. 8808 | 0. 18<br>0. 18 | Q<br>Q        | •  | •     | •   | • |
| 23. 62           | 0. 8845            | 0. 18          | Q             |    |       |     |   |
| 23. 88           | 0.8882             | 0. 17          | Q             |    | •     |     |   |
| 24. 13<br>24. 39 | 0. 8917<br>0. 8935 | 0. 17<br>0. 00 | Q<br>Q        | :  |       |     |   |
|                  |                    |                |               | ·  |       |     |   |

# Drainage K

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2003 Advanced Engineering Software (aes)
Ver. 9.0 Release Date: 01/01/2003 License ID 1355 -----

Analysis prepared by:

Fuscoe Engineering 16795 Von Karmon #100, Irvine, CA 92606

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 6.30
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION (MIN.) = 11.93
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA USER SPECIFIED RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 2
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.13
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.28
1-HOUR POINT RAINFALL VALUE (INCHES) = 0.37
3-HOUR POINT RAINFALL VALUE (INCHES) = 0.62
6-HOUR POINT RAINFALL VALUE (INCHES) = 0.85
24-HOUR POINT RAINFALL VALUE (INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =

| *****           | *****              | *****          | *****  | ***** | *****  | ***** | ***** |
|-----------------|--------------------|----------------|--------|-------|--------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF)     | Q (<br>(CFS)   | Ο.     | 2. 5  | 5. 0   | 7. 5  | 10.0  |
| 0. 09           | 0. 0000            | 0. 00          | Q      |       |        |       |       |
| 0. 29           | 0. 0008            | 0. 10          | Q      |       |        |       |       |
| 0. 49           | 0. 0024            | 0. 10          | Q      | •     |        | •     |       |
| 0. 69<br>0. 89  | 0. 0040<br>0. 0056 | 0. 10<br>0. 10 | Q<br>Q | •     | •      | •     | •     |
| 0. 89<br>1. 09  | 0.0056             | 0. 10<br>0. 10 | Q      | •     |        | •     |       |
| 1. 29           | 0.0072             | 0. 10          | Q      | •     | •      | •     | •     |
| 1. 49           | 0. 0105            | 0. 10          | Q      |       | •      | •     |       |
| 1. 68           | 0. 0122            | 0. 10          | Q      |       |        |       |       |
| 1. 88           | 0. 0139            | 0. 10          | Q      |       |        |       |       |
| 2. 08           | 0. 0155            | 0. 10          | Q      |       |        |       |       |
| 2. 28           | 0. 0173            | 0. 10          | Q      | •     | •      | •     | •     |
| 2. 48           | 0. 0190<br>0. 0207 | 0. 11<br>0. 11 | Q      |       |        | •     |       |
| 2. 68<br>2. 88  | 0. 0207            | 0. 11<br>0. 11 | Q<br>Q | •     |        | •     |       |
| 3. 08           | 0. 0223            | 0. 11          | Q      | •     | •      | •     | •     |
| 3. 27           | 0. 0240            | 0. 11          | Q      |       | •      | •     | •     |
| 3. 47           | 0. 0279            | 0. 11          | Q      |       |        |       |       |
| 3. 67           | 0. 0297            | 0. 11          | Q      |       |        |       |       |
| 3. 87           | 0. 0315            | 0. 11          | Q      |       |        |       |       |
| 4. 07           | 0. 0334            | 0. 11          | Q      | •     |        | •     |       |
| 4. 27<br>4. 47  | 0. 0353<br>0. 0372 | 0. 12<br>0. 12 | Q<br>Q | •     | •      | •     | •     |
| 4. 47<br>4. 67  | 0. 0372            | 0. 12<br>0. 12 | Q      | •     |        | •     |       |
| 4. 87           | 0. 0371            | 0. 12          | Q      | •     | •      | •     | •     |
| 5. 06           | 0. 0430            | 0. 12          | Q      | •     | •      | •     | •     |
| 5. 26           | 0. 0450            | 0. 12          | Q      |       |        |       |       |
| 5. 46           | 0.0470             | 0. 12          | Q      |       |        |       |       |
| 5. 66           | 0. 0490            | 0. 12          | Q      |       |        |       |       |
| 5. 86           | 0. 0511            | 0. 13          | Q      |       |        |       |       |
| 6. 06           | 0. 0531            | 0. 13          | Q      |       |        | •     |       |
|                 |                    |                |        |       | Dana 1 |       |       |

Page 1

|                  |                    |                |            |   |   | XΩ  | 02_K |   |   |
|------------------|--------------------|----------------|------------|---|---|-----|------|---|---|
| 6. 26            | 0. 0552            | 0. 13          | Q          |   |   | ΑΟ. |      |   |   |
| 6. 46<br>6. 65   | 0. 0574<br>0. 0595 | 0. 13<br>0. 13 | Q<br>Q     |   |   |     |      |   |   |
| 6. 85<br>7. 05   | 0. 0617<br>0. 0639 | 0. 13<br>0. 14 | Q<br>Q     |   |   |     | •    |   |   |
| 7. 25            | 0.0662             | 0. 14          | Q          |   |   |     | •    |   |   |
| 7. 45<br>7. 65   | 0. 0685<br>0. 0708 | 0. 14<br>0. 14 | Q<br>Q     |   | • |     | •    | • | ٠ |
| 7. 85            | 0. 0731            | 0. 14          | Q          |   |   |     | •    |   |   |
| 8. 05<br>8. 25   | 0. 0755<br>0. 0779 | 0. 15<br>0. 15 | Q<br>Q     |   |   |     |      |   | • |
| 8. 44<br>8. 64   | 0. 0803<br>0. 0828 | 0. 15<br>0. 15 | Q          |   |   |     | •    |   |   |
| 8. 84            | 0. 0854            | 0. 15          | Q<br>Q     |   |   |     |      |   |   |
| 9. 04<br>9. 24   | 0. 0879<br>0. 0906 | 0. 16<br>0. 16 | Q<br>Q     |   |   |     |      |   |   |
| 9. 44            | 0. 0932            | 0. 16          | Q          |   |   |     |      |   |   |
| 9. 64<br>9. 84   | 0. 0960<br>0. 0987 | 0. 17<br>0. 17 | Q<br>Q     |   |   | •   |      |   |   |
| 10. 03           | 0. 1015            | 0. 17          | Q          |   |   |     | •    |   |   |
| 10. 23<br>10. 43 | 0. 1044<br>0. 1074 | 0. 18<br>0. 18 | Q<br>Q     |   |   |     | •    | • |   |
| 10. 63<br>10. 83 | 0. 1104<br>0. 1134 | 0. 19<br>0. 19 | Q          |   |   |     | •    | • |   |
| 11. 03           | 0. 1166            | 0. 19          | Q<br>Q     |   |   |     | •    | • |   |
| 11. 23<br>11. 43 | 0. 1198<br>0. 1231 | 0. 20<br>0. 20 | Q<br>Q     |   |   | •   | •    | • |   |
| 11. 63           | 0. 1265            | 0. 21          | Q          |   |   |     | •    |   |   |
| 11. 82<br>12. 02 | 0. 1300<br>0. 1336 | 0. 22<br>0. 22 | Q<br>Q     |   |   |     |      | • |   |
| 12. 22<br>12. 42 | 0. 1376<br>0. 1422 | 0. 27<br>0. 28 | . Q<br>. Q |   |   |     | •    | • |   |
| 12. 62           | 0. 1468            | 0. 29          | . Q        |   |   |     | •    | • |   |
| 12. 82<br>13. 02 | 0. 1517<br>0. 1567 | 0. 30<br>0. 31 | . Q<br>. Q |   | • |     | •    | • |   |
| 13. 22           | 0. 1618            | 0. 32          | . Q        |   |   |     | •    |   |   |
| 13. 42<br>13. 61 | 0. 1672<br>0. 1727 | 0. 33<br>0. 34 | . Q<br>. Q |   |   |     |      |   |   |
| 13. 81<br>14. 01 | 0. 1785<br>0. 1846 | 0. 36<br>0. 38 | . Q<br>. Q |   |   |     | •    | • |   |
| 14. 21           | 0. 1911            | 0.42           | . Q        |   |   |     | •    |   |   |
| 14. 41<br>14. 61 | 0. 1981<br>0. 2055 | 0. 43<br>0. 47 | . Q<br>. Q |   | • |     | •    | • | • |
| 14. 81           | 0. 2134            | 0. 49<br>0. 55 | . Q        |   |   |     | •    |   |   |
| 15. 01<br>15. 20 | 0. 2220<br>0. 2314 | 0. 59          | . Q<br>. Q |   |   |     |      | • |   |
| 15. 40<br>15. 60 | 0. 2420<br>0. 2532 | 0. 69<br>0. 67 | . Q<br>. Q |   |   |     |      |   |   |
| 15. 80           | 0. 2668            | 0. 99          | . Q        |   |   |     |      |   |   |
| 16. 00<br>16. 20 | 0. 2862<br>0. 3361 | 1. 38<br>4. 70 |            | Q |   | Q . |      |   | • |
| 16. 40           | 0. 3811            | 0. 78          | . Q        |   |   |     | •    |   |   |
| 16. 60<br>16. 80 | 0. 3927<br>0. 4022 | 0. 64<br>0. 52 | . Q<br>. Q |   |   |     |      |   |   |
| 16. 99<br>17. 19 | 0. 4102<br>0. 4171 | 0. 45<br>0. 39 | . Q<br>. Q |   |   |     |      |   |   |
| 17. 39           | 0. 4232            | 0. 35          | . Q        |   |   |     | •    |   |   |
| 17. 59<br>17. 79 | 0. 4288<br>0. 4340 | 0. 33<br>0. 30 | . Q<br>. Q |   |   |     |      | • |   |
| 17. 99<br>18. 19 | 0. 4388<br>0. 4430 | 0. 28          | . Q        |   |   |     | •    | • |   |
| 18. 39           | 0. 4467            | 0. 23<br>0. 21 | Q<br>Q     |   |   |     | •    | • |   |
| 18. 58<br>18. 78 | 0. 4501<br>0. 4533 | 0. 20<br>0. 19 | Q<br>Q     |   | • |     | •    | • | • |
| 18. 98           | 0. 4564            | 0. 18          | Q          |   |   |     | •    |   |   |
| 19. 18<br>19. 38 | 0. 4593<br>0. 4621 | 0. 18<br>0. 17 | Q<br>Q     |   |   |     | •    | • |   |
| 19. 58<br>19. 78 | 0. 4649<br>0. 4675 | 0. 16<br>0. 16 | Q          |   |   |     | •    | • |   |
| 19. 98           | 0. 4700            | 0. 15          | Q<br>Q     |   |   |     | •    |   |   |
| 20. 18<br>20. 37 | 0. 4725<br>0. 4749 | 0. 15<br>0. 14 | Q<br>Q     |   |   | •   |      |   |   |
| 20. 57           | 0. 4772            | 0. 14          | Q          |   | • |     | •    |   |   |
| 20. 77<br>20. 97 | 0. 4794<br>0. 4816 | 0. 13<br>0. 13 | Q<br>Q     |   |   |     |      |   |   |
| 21. 17<br>21. 37 | 0. 4837<br>0. 4858 | 0. 13<br>0. 12 | Q<br>Q     |   | • |     |      | • |   |
| 21. 57           | 0. 4878            | 0. 12          | Q          |   |   |     | •    |   |   |
| 21. 77           | 0. 4898            | 0. 12          | Q          |   |   |     | •    | • |   |

. Page 2

|                  |                    |                              |   | X002 K |   |   |
|------------------|--------------------|------------------------------|---|--------|---|---|
| 21. 97           | 0. 4918            | 0. 12 Q                      |   |        |   |   |
| 22. 16           | 0. 4937            | 0. 11 Q                      |   |        |   |   |
| 22. 36           | 0. 4955            | 0. 11 Q                      | • |        | • | • |
| 22. 56           | 0. 4973            | 0. 11 Q                      |   |        |   |   |
| 22. 76           | 0. 4991            | 0. 11 Q                      | • | •      | • | • |
| 22. 96           | 0. 5009            | 0. 11 Q                      |   |        | • |   |
| 23. 16           | 0. 5026            | 0.10 0                       |   |        |   | • |
| 23. 36           | 0. 5043            | 0. 10 Q                      | • | •      | • | • |
| 23. 56<br>23. 75 | 0. 5060<br>0. 5076 | 0. 10      Q<br>0. 10      0 | • | •      | • | • |
| 23. 75<br>23. 95 | 0.5076             | 0.10 0                       | • | •      | • | • |
| 23. 95<br>24. 15 | 0. 5108            | 0. 10 0                      | • | •      | • | • |
| 24. 35           | 0. 5106            | 0. 10 0                      | • | •      | • | • |
|                  |                    |                              |   |        |   |   |

B4 Proposed Condition Small Area Unit Hydrograph Calculations

a) High Confidence Events

i. Infiltration Analysis

# INFILTRATION RATE CALCULATION SUMMARY PROPOSED NEWPORT BANNING RANCH PROJECT 100-YEAR HIGH-CONFIDENCE EVENT

|                        | Proposed | Condition |        |
|------------------------|----------|-----------|--------|
| Node                   | Α        | В         | С      |
| Total Area<br>(ac)     | 315.98   | 127.93    | 104.35 |
| Y                      | 0.88     | 0.96      | 0.94   |
| Ybar                   | 0.12     | 0.04      | 0.06   |
| Average a <sub>p</sub> | 0.47     | 0.32      | 0.61   |
| Total Fm<br>(in/hr)    | 0.12     | 0.06      | 0.12   |

## PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 315.98 0.88

ap - See Figure C-4

P24, 100-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y = 0.12

5.63

11.27

Fp - See Table C-2 Average a<sub>p</sub> = 0.47

Total Fm (in/hr) = 0.12

|     |                           |             |       |       |            |       |                    |         |      |                |            |            |                | Total                     | +m (in/nr) =              | <u>0.12</u>                               |
|-----|---------------------------|-------------|-------|-------|------------|-------|--------------------|---------|------|----------------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |             |       |       |            |       | Offsite Area       | 1       |      |                |            |            |                |                           |                           |                                           |
|     |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | $A_{j}$            | CN      |      | Low Loss       | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | l <sub>a</sub> | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%         | 7.57  | А     | Pervious   | 0.76  | 0.002              | 52      | 9.23 | 1.85           | 0.20       | 0.000      | 0.10           | 0.40                      | 0.04                      | 0.001                                     |
| '   | Olbail Covel - Roadway    | 1076        | 7.57  | ζ     | Impervious | 6.81  | 0.022              | 100     | 0.00 | 0.00           | 1.00       | 0.022      |                |                           |                           |                                           |
| 2   | Urban Cover - Roadway     | 10%         | 2.65  | D     | Pervious   | 0.27  | 0.001              | 91      | 0.99 | 0.20           | 0.82       | 0.001      | 0.10           | 0.20                      | 0.02                      | 0.000                                     |
| _   | Olbail Covel - Roadway    | 1076        | 2.03  | D     | Impervious | 2.39  | 0.008              | 100     | 0.00 | 0.00           | 1.00       | 0.008      |                |                           |                           |                                           |
| 3   | Single Family Residential | 20%         | 45.27 | Α     | Pervious   | 9.05  | 0.029              | 52      | 9.23 | 1.85           | 0.20       | 0.006      | 0.20           | 0.40                      | 0.08                      | 0.011                                     |
| 3   | (>10 dwellings/acre)      | 2076        | 45.27 | χ.    | Impervious | 36.22 | 0.115              | 100     | 0.00 | 0.00           | 1.00       | 0.115      |                |                           |                           |                                           |
| 4   | Single Family Residential | 20%         | 31.84 | В     | Pervious   | 6.37  | 0.020              | 76      | 3.16 | 0.63           | 0.54       | 0.011      | 0.20           | 0.30                      | 0.06                      | 0.006                                     |
| 7   | (>10 dwellings/acre)      | 2076        | 31.04 | Б     | Impervious | 25.47 | 0.081              | 100     | 0.00 | 0.00           | 1.00       | 0.081      |                |                           |                           |                                           |
| 5   | Single Family Residential | 20%         | 26.51 | D     | Pervious   | 5.30  | 0.017              | 91      | 0.99 | 0.20           | 0.82       | 0.014      | 0.20           | 0.20                      | 0.04                      | 0.003                                     |
| 3   | (>10 dwellings/acre)      | 2076        | 20.51 | ט     | Impervious | 21.21 | 0.067              | 100     | 0.00 | 0.00           | 1.00       | 0.067      |                |                           |                           |                                           |
| 6   | Commercial / Industrial   | 10%         | 31.91 | D     | Pervious   | 3.19  | 0.010              | 91      | 0.99 | 0.20           | 0.82       | 0.008      | 0.10           | 0.20                      | 0.02                      | 0.002                                     |
|     | Commercial / Industrial   | 1076        | 31.31 | D     | Impervious | 28.72 | 0.091              | 100     | 0.00 | 0.00           | 1.00       | 0.091      |                |                           |                           |                                           |
| 7   | Oil Operations            | 100%        | 4.70  | D     | Pervious   | 4.70  | 0.015              | 99      | 0.10 | 0.02           | 0.98       | 0.015      | 1.00           | 0.20                      | 0.20                      | 0.003                                     |
| ′   | Oil Operations            | 10076       | 4.70  | ט     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00           | 1.00       | 0.000      |                |                           |                           |                                           |
| 8   | Open Space / Habitat Area | 100%        | 16.64 | Α     | Pervious   | 16.64 | 0.053              | 66      | 5.15 | 1.03           | 0.39       | 0.020      | 1.00           | 0.40                      | 0.40                      | 0.021                                     |
| 0   | Open Space / Habitat Area | 10076       | 10.04 | Α     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00           | 1.00       | 0.000      |                |                           |                           |                                           |
| 9   | Oxbow Loop Channel        | 10%         | 6.55  | Α     | Pervious   | 0.66  | 0.002              | 93      | 0.75 | 0.15           | 0.86       | 0.002      | 0.10           | 0.40                      | 0.04                      | 0.001                                     |
| 9   | Oxbow Loop Channel        | 10%         | 0.33  | A     | Impervious | 5.90  | 0.019              | 100     | 0.00 | 0.00           | 1.00       | 0.019      | 1              |                           |                           |                                           |

# PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

|     |                           |             |       |       |            |       | Onsite Area        | 1       |      |          |                |            |                |                           |                           |                                           |
|-----|---------------------------|-------------|-------|-------|------------|-------|--------------------|---------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | $A_j$              | CN      |      | Low Loss | Rate, Ybar     |            |                | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%         | 15.02 | D     | Pervious   | 1.50  | 0.005              | 91      | 0.99 | 0.20     | 0.82           | 0.004      | 0.10           | 0.20                      | 0.02                      | 0.001                                     |
| '   | Olbali Covel - Roadway    | 10 /6       | 13.02 |       | Impervious | 13.52 | 0.043              | 100     | 0.00 | 0.00     | 1.00           | 0.043      |                |                           |                           |                                           |
| 2   | Single Family Residential | 35%         | 4.22  | В     | Pervious   | 1.48  | 0.005              | 76      | 3.16 | 0.63     | 0.54           | 0.003      | 0.35           | 0.30                      | 0.11                      | 0.001                                     |
|     | (Condominium)             | 3376        | 7.22  | В     | Impervious | 2.74  | 0.009              | 100     | 0.00 | 0.00     | 1.00           | 0.009      |                |                           |                           |                                           |
| 3   | Single Family Residential | 35%         | 34.29 | D     | Pervious   | 12.00 | 0.038              | 91      | 0.99 | 0.20     | 0.82           | 0.031      | 0.35           | 0.20                      | 0.07                      | 0.008                                     |
| 3   | (Condominium)             | 33 /6       | 34.29 |       | Impervious | 22.29 | 0.071              | 100     | 0.00 | 0.00     | 1.00           | 0.071      |                |                           |                           |                                           |
| 4   | Public Park               | 85%         | 12.22 | В     | Pervious   | 10.39 | 0.033              | 76      | 3.16 | 0.63     | 0.54           | 0.018      | 0.85           | 0.30                      | 0.26                      | 0.010                                     |
| 7   | T UDIICT AIK              | 0576        | 12.22 | В     | Impervious | 1.83  | 0.006              | 100     | 0.00 | 0.00     | 1.00           | 0.006      |                |                           |                           |                                           |
| 5   | Public Park               | 85%         | 10.74 | D     | Pervious   | 9.13  | 0.029              | 91      | 0.99 | 0.20     | 0.82           | 0.024      | 0.85           | 0.20                      | 0.17                      | 0.006                                     |
| J   | T UDIICT AIK              | 0576        | 10.74 | Б     | Impervious | 1.61  | 0.005              | 100     | 0.00 | 0.00     | 1.00           | 0.005      |                |                           |                           |                                           |
| 6   | Oil Operations            | 100%        | 4.78  | А     | Pervious   | 4.78  | 0.015              | 93      | 0.75 | 0.15     | 0.86           | 0.013      | 1.00           | 0.40                      | 0.40                      | 0.006                                     |
| 0   | Oii Operations            | 10076       | 4.70  | A     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00     | 1.00           | 0.000      |                |                           |                           |                                           |
| 7   | Open Space / Habitat Area | 100%        | 61.07 | D     | Pervious   | 61.07 | 0.193              | 96      | 0.42 | 0.08     | 0.92           | 0.177      | 1.00           | 0.20                      | 0.20                      | 0.039                                     |
| ,   | Open Opace / Habitat Area | 10076       | 01.07 | D     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00     | 1.00           | 0.000      |                |                           |                           |                                           |

Total Area =

315.98

Y = **0.88** Ybar = 1 - Y = **0.12** 

Page 3 of 5, 4/9/2008

Total  $F_m = 0.12$ 

#### PROPOSED NEWPORT BANNING RANCH PROJECT **100-YEAR HIGH-CONFIDENCE EVENT**

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

5.63 P24, 100-Year Storm Event for Mountainous Area (in) = 11.27

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 127.93

ap - See Figure C-4 0.96 Fp - See Table C-2 Average a<sub>p</sub> = 0.32

Ybar = 1 - Y =

Total Fm (in/hr) = 0.06

 $F_m = a_p F_p$ 

|     |                           |              |        |       |            |       |                    |         |      |          |                |                  |                | Total                     | Fm (In/nr) =              | 0.06                                      |
|-----|---------------------------|--------------|--------|-------|------------|-------|--------------------|---------|------|----------|----------------|------------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |        |       |            |       | Offsite Area       | I       |      |          |                |                  |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN      |      | Low Loss | Rate, Ybar     |                  |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$       | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 91      | 0.99 | 0.20     | 0.82           | 0.003            | 0.10           | 0.20                      | 0.02                      | 0.001                                     |
| '   | Olbali Covel - Roadway    | 10%          | 5.35   | D     | Impervious | 4.82  | 0.038              | 100     | 0.00 | 0.00     | 1.00           | 0.038            |                |                           |                           |                                           |
| 2   | Single Family Residential | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 91      | 0.99 | 0.20     | 0.82           | 0.008            | 0.20           | 0.20                      | 0.04                      | 0.002                                     |
| _   | (>10 dwellings/acre)      | 20%          | 5.94   | D     | Impervious | 4.75  | 0.037              | 100     | 0.00 | 0.00     | 1.00           | 0.037            |                |                           |                           |                                           |
| 3   | Commercial / Industrial   | 10%          | 78.14  | D     | Pervious   | 7.81  | 0.061              | 91      | 0.99 | 0.20     | 0.82           | 0.050            | 0.10           | 0.20                      | 0.02                      | 0.012                                     |
| 3   | Commerciai / industriai   | 10%          | 70.14  | D     | Impervious | 70.33 | 0.550              | 100     | 0.00 | 0.00     | 1.00           | 0.550            |                |                           |                           |                                           |
| 4   | School                    | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.046              | 91      | 0.99 | 0.20     | 0.82           | 0.038            | 0.60           | 0.20                      | 0.12                      | 0.009                                     |
| 4   | 301001                    | 00 /6        | 9.91   | Б     | Impervious | 3.96  | 0.031              | 100     | 0.00 | 0.00     | 1.00           | 0.031            |                |                           |                           |                                           |
|     |                           |              |        |       |            |       | Onsite Area        | ı       |      |          |                |                  |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN      |      | Low Loss | Rate, Ybar     |                  |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | la       | Y <sub>j</sub> | $Y_j^{\star}A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 35%          | 4.43   | D     | Pervious   | 1.55  | 0.012              | 91      | 0.99 | 0.20     | 0.82           | 0.010            | 0.35           | 0.20                      | 0.07                      | 0.002                                     |
| '   | (Condominium)             | 35%          | 4.43   | D     | Impervious | 2.88  | 0.023              | 100     | 0.00 | 0.00     | 1.00           | 0.023            |                |                           |                           |                                           |
| 2   | Open Space / Habitat Area | 100%         | 24.16  | D     | Pervious   | 24.16 | 0.189              | 96      | 0.42 | 0.08     | 0.92           | 0.173            | 1.00           | 0.20                      | 0.20                      | 0.038                                     |
|     | Open Space / Habitat Area | 100%         | 24.10  | ט     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00     | 1.00           | 0.000            |                |                           |                           |                                           |
|     |                           | Total Area = | 127.93 |       |            |       |                    |         |      |          | Y =            | 0.96             |                |                           | Total F <sub>m</sub> =    | 0.06                                      |

Ybar = 1 - Y = 0.04

# PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR HIGH-CONFIDENCE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 100-Year Storm Event for Non-Mountainous Area (in) =

Total Area (ac) = 104.35 0.94

5.63

11.27

ap - See Figure C-4

P24, 100-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> =

|          |                           |              |              |       |            |       |                    |         |      |                |                |            |                | Total                     | Fm (in/hr) =              | <u>0.12</u>                               |
|----------|---------------------------|--------------|--------------|-------|------------|-------|--------------------|---------|------|----------------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|          |                           |              |              |       |            |       | Offsite Area       | 1       |      |                |                |            |                |                           |                           |                                           |
|          |                           | Pervious-    | Area         | Soil  | Pervious/  | Area  | A <sub>i</sub>     | CN      |      | Low Loss       | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No.      | Land Use                  | ness<br>(%)  | (ac)         | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | la             | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 4        | Communical / Individual   | 400/         | 4.05         | 2     | Pervious   | 0.20  | 0.002              | 91      | 0.99 | 0.20           | 0.82           | 0.002      | 0.10           | 0.20                      | 0.02                      | 0.000                                     |
| 1        | Commercial / Industrial   | 10%          | 1.95         | D     | Impervious | 1.76  | 0.017              | 100     | 0.00 | 0.00           | 1.00           | 0.017      |                |                           |                           |                                           |
|          | 0'1 0                     | 4000/        | 0.00         | ,     | Pervious   | 6.26  | 0.060              | 99      | 0.10 | 0.02           | 0.98           | 0.059      | 1.00           | 0.20                      | 0.20                      | 0.012                                     |
| 2        | Oil Operations            | 100%         | 6.26         | D     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00           | 1.00           | 0.000      | 1              |                           |                           |                                           |
|          |                           |              |              |       | · L        |       | Onsite Area        | 1       | L    | · L            | l              | L          | l              |                           | l l                       |                                           |
|          |                           | Pervious-    | A            | Soil  | Pervious/  | Area  | Ai                 | CN      |      | Low Loss       | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No.      | Land Use                  | ness<br>(%)  | Area<br>(ac) | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC III | S    | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| _        | III O Baadaaa             | 400/         | 44.05        | ,     | Pervious   | 1.14  | 0.011              | 91      | 0.99 | 0.20           | 0.82           | 0.009      | 0.10           | 0.20                      | 0.02                      | 0.002                                     |
| 1        | Urban Cover - Roadway     | 10%          | 11.35        | D     | Impervious | 10.22 | 0.098              | 100     | 0.00 | 0.00           | 1.00           | 0.098      | 1              |                           |                           |                                           |
| 2        | Single Family Residential | 050/         | 44.00        | D     | Pervious   | 14.59 | 0.140              | 91      | 0.99 | 0.20           | 0.82           | 0.114      | 0.35           | 0.20                      | 0.07                      | 0.028                                     |
| 2        | (Condominium)             | 35%          | 41.68        | D     | Impervious | 27.09 | 0.260              | 100     | 0.00 | 0.00           | 1.00           | 0.260      | 1              |                           |                           |                                           |
| _        | B.1 B.1                   | 0.50/        | 2.24         |       | Pervious   | 8.17  | 0.078              | 91      | 0.99 | 0.20           | 0.82           | 0.064      | 0.85           | 0.20                      | 0.17                      | 0.016                                     |
| 3        | Public Park               | 85%          | 9.61         | D     | Impervious | 1.44  | 0.014              | 100     | 0.00 | 0.00           | 1.00           | 0.014      |                |                           |                           |                                           |
|          | 011.0                     | 4000/        | . =.         |       | Pervious   | 9.76  | 0.094              | 99      | 0.10 | 0.02           | 0.98           | 0.092      | 1.00           | 0.20                      | 0.20                      | 0.019                                     |
| 4        | Oil Operations            | 100%         | 9.76         | D     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00           | 1.00           | 0.000      |                |                           |                           |                                           |
| _        | 0 0 /// // /              | 4000/        |              | _     | Pervious   | 23.74 | 0.228              | 96      | 0.42 | 0.08           | 0.92           | 0.208      | 1.00           | 0.20                      | 0.20                      | 0.046                                     |
| 5        | Open Space / Habitat Area | 100%         | 23.74        | D     | Impervious | 0.00  | 0.000              | 100     | 0.00 | 0.00           | 1.00           | 0.000      |                |                           |                           |                                           |
| <u> </u> |                           | Total Area = | 104.35       |       | 1 -        |       |                    |         | l    | 1              | Y =            | 0.94       | 1              |                           | Total F <sub>m</sub> =    | 0.12                                      |

Total Area =

Ybar = 1 - Y =

# INFILTRATION RATE CALCULATION SUMMARY PROPOSED NEWPORT BANNING RANCH PROJECT 25-YEAR HIGH-CONFIDENCE EVENT

|                        | Proposed | Condition |        |
|------------------------|----------|-----------|--------|
| Node                   | Α        | В         | С      |
| Total Area<br>(ac)     | 315.98   | 127.93    | 104.35 |
| Y                      | 0.70     | 0.82      | 0.74   |
| Ybar                   | 0.30     | 0.18      | 0.26   |
| Average a <sub>p</sub> | 0.47     | 0.32      | 0.61   |
| Total Fm<br>(in/hr)    | 0.12     | 0.06      | 0.12   |

## PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

4.49

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 315.98

0.70

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y =

0.47

Average a<sub>n</sub> =

|                                                                               |       |                                                |             |       |       |            |       |                    |        |       |                |                |                                |       | rotai                     | Fm (in/hr) =              | <u>0.12</u>                               | -                              |
|-------------------------------------------------------------------------------|-------|------------------------------------------------|-------------|-------|-------|------------|-------|--------------------|--------|-------|----------------|----------------|--------------------------------|-------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|                                                                               |       |                                                |             |       |       |            | Offs  | ite Area           |        |       |                |                |                                |       |                           |                           |                                           |                                |
| No. Infil.   Pervious-   Area   Soil   Pervious/   Area   A <sub>j</sub>   CN |       |                                                |             |       |       |            |       |                    |        |       | Low Loss       | Rate, Ybar     |                                |       |                           |                           |                                           |                                |
| No.                                                                           | Class | Land Use                                       | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1                                                                             | 9     | Urban Cover - Roadway                          | 10%         | 7.57  | А     | Pervious   | 0.76  | 0.002              | 32     | 21.25 | 4.25           | 0.00           | 0.000                          | 0.10  | 0.40                      | 0.04                      | 0.001                                     | 0.002                          |
|                                                                               | 9     |                                                | 1076        | 1.51  | A     | Impervious | 6.81  | 0.022              | 98     | 0.20  | 0.04           | 0.95           | 0.020                          |       |                           |                           |                                           |                                |
| 2                                                                             | 0     | Urban Cover - Roadway                          | 10%         | 2.65  | 2     | Pervious   | 0.27  | 0.001              | 75     | 3.33  | 0.67           | 0.45           | 0.000                          | 0.10  | 0.20                      | 0.02                      | 0.000                                     | 0.001                          |
| 2 9                                                                           | 9     | Olban Cover - Roadway                          | 10%         | 2.65  | D     | Impervious | 2.39  | 0.008              | 98     | 0.20  | 0.04           | 0.95           | 0.007                          |       |                           |                           |                                           |                                |
| 3                                                                             | 9     | Single Family Residential                      | 20%         | 45.27 | Δ.    | Pervious   | 9.05  | 0.029              | 32     | 21.25 | 4.25           | 0.00           | 0.000                          | 0.20  | 0.40                      | 0.08                      | 0.011                                     | 0.029                          |
| 3                                                                             | 9     | (>10 dwellings/acre)                           | 20%         | 45.27 | Α     | Impervious | 36.22 | 0.115              | 98     | 0.20  | 0.04           | 0.95           | 0.109                          |       |                           |                           |                                           |                                |
| 4                                                                             | 9     | Single Family Residential                      | 20%         | 31.84 | В     | Pervious   | 6.37  | 0.020              | 56     | 7.86  | 1.57           | 0.18           | 0.004                          | 0.20  | 0.30                      | 0.06                      | 0.006                                     | 0.020                          |
| 4                                                                             | 9     | (>10 dwellings/acre)                           | 20%         |       |       | Impervious | 25.47 | 0.081              | 98     | 0.20  | 0.04           | 0.95           | 0.076                          |       |                           |                           |                                           |                                |
| 5                                                                             | 9     | Single Family Residential (>10 dwellings/acre) | 20%         | 26.51 | D     | Pervious   | 5.30  | 0.017              | 75     | 3.33  | 0.67           | 0.45           | 0.008                          | 0.20  | 0.20                      | 0.04                      | 0.003                                     | 0.017                          |
| э                                                                             | 9     |                                                | 20%         |       |       | Impervious | 21.21 | 0.067              | 98     | 0.20  | 0.04           | 0.95           | 0.064                          |       |                           |                           |                                           |                                |
| 6                                                                             | 9     | Commercial / Industrial                        | 10%         | 31.91 | D     | Pervious   | 3.19  | 0.010              | 75     | 3.33  | 0.67           | 0.45           | 0.005                          | 0.10  | 0.20                      | 0.02                      | 0.002                                     | 0.010                          |
| 0                                                                             | 9     |                                                |             |       |       | Impervious | 28.72 | 0.091              | 98     | 0.20  | 0.04           | 0.95           | 0.086                          |       |                           |                           |                                           |                                |
| 7                                                                             | 4     | Oil On anations                                | 4000/       | 4.70  | D     | Pervious   | 4.70  | 0.015              | 93     | 0.75  | 0.15           | 0.82           | 0.012                          | 1.00  | 0.20                      | 0.20                      | 0.003                                     | 0.015                          |
| ′                                                                             | 1     | Oil Operations                                 | 100%        | 4.70  | D     | Impervious | 0.00  | 0.000              | 98     | 0.20  | 0.04           | 0.95           | 0.000                          |       |                           |                           |                                           |                                |
| 8                                                                             | 6     | Open Space / Habitat Area                      | 100%        | 16.64 | А     | Pervious   | 16.64 | 0.053              | 46     | 11.74 | 2.35           | 0.07           | 0.004                          | 1.00  | 0.40                      | 0.40                      | 0.021                                     | 0.053                          |
| ٥                                                                             | O     | Open Space / Habitat Area                      | 100%        | 10.04 | A     | Impervious | 0.00  | 0.000              | 98     | 0.20  | 0.04           | 0.95           | 0.000                          |       |                           |                           |                                           |                                |
| 9                                                                             | 1     | Owhou Loop Channel                             | 100/        | 6.55  | ۸     | Pervious   | 0.66  | 0.002              | 78     | 2.82  | 0.56           | 0.51           | 0.001                          | 0.10  | 0.40                      | 0.04                      | 0.001                                     | 0.002                          |
| 9                                                                             | 1     | Oxbow Loop Channel                             | 10%         | 6.55  | Α     | Impervious | 5.90  | 0.019              | 98     | 0.20  | 0.04           | 0.95           | 0.018                          | 1     | 1                         |                           |                                           |                                |

# PROPOSED NEWPORT BANNING RANCH PROJECT 25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

|     |        |                           |             |       |       |            | Ons          | site Area          |        |                     |      |         |            |       |                           |                           |                                           |                                |
|-----|--------|---------------------------|-------------|-------|-------|------------|--------------|--------------------|--------|---------------------|------|---------|------------|-------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     | Infil. | Land Use                  | Pervious-   | Area  | Soil  | Pervious/  | Area<br>(ac) | A <sub>j</sub>     | CN     | Low Loss Rate, Ybar |      |         |            |       |                           |                           |                                           |                                |
| No. | Class  |                           | ness<br>(%) | (ac)  | Group | Impervious |              | (Area<br>Fraction) | AMC II | S                   | la   | $Y_{j}$ | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9      | Urban Cover - Roadway     | 10%         | 15.02 | D     | Pervious   | 1.50         | 0.005              | 75     | 3.33                | 0.67 | 0.45    | 0.002      | 0.10  | 0.20                      | 0.02                      | 0.001                                     | 0.005                          |
| '   | 9      |                           | 10 /6       | 15.02 |       | Impervious | 13.52        | 0.043              | 98     | 0.20                | 0.04 | 0.95    | 0.041      |       |                           |                           |                                           |                                |
| 2   | 9      | Single Family Residential | 35%         | 4.22  | В     | Pervious   | 1.48         | 0.005              | 56     | 7.86                | 1.57 | 0.18    | 0.001      | 0.35  | 0.30                      | 0.11                      | 0.001                                     | 0.005                          |
| _   | 9      | (Condominium)             |             | 4.22  | Ь     | Impervious | 2.74         | 0.009              | 98     | 0.20                | 0.04 | 0.95    | 0.008      |       |                           |                           |                                           |                                |
| 3   | 9      | Single Family Residential | 35%         | 34.29 | D     | Pervious   | 12.00        | 0.038              | 75     | 3.33                | 0.67 | 0.45    | 0.017      | 0.35  | 0.20                      | 0.07                      | 0.008                                     | 0.038                          |
| 3   | 9      | (Condominium)             | 3370        | 34.23 |       | Impervious | 22.29        | 0.071              | 98     | 0.20                | 0.04 | 0.95    | 0.067      |       |                           |                           |                                           |                                |
| 1   | 9      | Public Park               | 85%         | 12.22 | В     | Pervious   | 10.39        | 0.033              | 56     | 7.86                | 1.57 | 0.18    | 0.006      | 0.85  | 0.30                      | 0.26                      | 0.010                                     | 0.033                          |
| 7   | 9      |                           |             |       |       | Impervious | 1.83         | 0.006              | 98     | 0.20                | 0.04 | 0.95    | 0.005      |       |                           |                           |                                           |                                |
| 5   | 9      | Public Park               | 85%         | 10.74 | D     | Pervious   | 9.13         | 0.029              | 75     | 3.33                | 0.67 | 0.45    | 0.013      | 0.85  | 0.20                      | 0.17                      | 0.006                                     | 0.029                          |
| 3   | 9      |                           |             | 10.74 | D     | Impervious | 1.61         | 0.005              | 98     | 0.20                | 0.04 | 0.95    | 0.005      |       |                           |                           |                                           |                                |
| 6   | 1      | Oil Operations            | 100%        | 4.78  | Α     | Pervious   | 4.78         | 0.015              | 78     | 2.82                | 0.56 | 0.51    | 0.008      | 1.00  | 0.40                      | 0.40                      | 0.006                                     | 0.015                          |
| 0   | '      | Oil Operations            |             | 4.70  | A     | Impervious | 0.00         | 0.000              | 98     | 0.20                | 0.04 | 0.95    | 0.000      |       |                           |                           |                                           |                                |
| 7   | 6      | Open Space / Habitat Area | 100%        | 61.07 | D     | Pervious   | 61.07        | 0.193              | 83     | 2.05                | 0.41 | 0.61    | 0.117      | 1.00  | 0.20                      | 0.20                      | 0.039                                     | 0.193                          |
| Ľ   | O      | Open Opace / Habitat Area | 100 /6      | 01.07 | נ     | Impervious | 0.00         | 0.000              | 98     | 0.20                | 0.04 | 0.95    | 0.000      |       |                           |                           |                                           |                                |

Total Area = 315.98 Y = 0.70 Total  $F_m = 0.12$  0.47

Ybar = 1 - Y = **0.30** 

## PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2}}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) = 4.49

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 127.93

0.82

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.32

|     |        |                                         |              |        |       |            |       |                    |        |      |                     |                |            |                                | Total                     | Fm (in/hr) =              | 0.06                                      |                                |
|-----|--------|-----------------------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|---------------------|----------------|------------|--------------------------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     |        |                                         |              |        |       |            | Offs  | site Area          |        |      |                     |                |            |                                |                           |                           |                                           |                                |
|     | Infil. | Land Use                                | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_j$              | CN     |      | Low Loss Rate, Ybar |                |            | Max. Loss Rate, F <sub>m</sub> |                           |                           |                                           |                                |
| No. | Class  |                                         | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | l <sub>a</sub>      | Y <sub>j</sub> | $Y_j^*A_j$ | $a_p$                          | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9      | Urban Cover - Roadway                   | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67                | 0.45           | 0.002      | 0.10                           | 0.20                      | 0.02                      | 0.001                                     | 0.004                          |
| '   | 9      | Olbali Covel - Roadway                  | 10%          | 5.35   | D     | Impervious | 4.82  | 0.038              | 98     | 0.20 | 20 0.04             | 0.95           | 0.036      |                                |                           |                           |                                           |                                |
| 2   | 9      | Single Family Residential               | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67                | 0.45           | 0.004      | 0.20                           | 0.20                      | 0.04                      | 0.002                                     | 0.009                          |
|     | 9      | (>10 dwellings/acre)                    |              | 5.94   | D     | Impervious | 4.75  | 0.037              | 98     | 0.20 | 0.04                | 0.95           | 0.035      |                                |                           |                           |                                           |                                |
| 3   | 0      | Commercial / Industrial                 | 10%          | 78.14  | D     | Pervious   | 7.81  | 0.061              | 75     | 3.33 | 0.67                | 0.45           | 0.028      | 0.10                           | 0.20                      | 0.02                      | 0.012                                     | 0.061                          |
| 3   | 9      |                                         |              |        |       | Impervious | 70.33 | 0.550              | 98     | 0.20 | 0.04                | 0.95           | 0.521      |                                |                           |                           |                                           |                                |
| 4   | 9      | School                                  | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.046              | 75     | 3.33 | 0.67                | 0.45           | 0.021      | 0.60                           | 0.20                      | 0.12                      | 0.009                                     | 0.046                          |
| 4   | 9      | SCHOOL                                  | 00%          | 9.91   |       | Impervious | 3.96  | 0.031              | 98     | 0.20 | 0.04                | 0.95           | 0.029      |                                |                           |                           |                                           |                                |
|     |        |                                         |              |        |       |            | On    | site Area          |        |      |                     |                |            |                                |                           |                           |                                           |                                |
|     | Infil. |                                         | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss            | Rate, Ybar     |            | Max. Loss Rate, F <sub>m</sub> |                           |                           |                                           |                                |
| No. | Class  | Land Use                                | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la                  | Y <sub>j</sub> | $Y_j^*A_j$ | $a_p$                          | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 4   | 9      | Single Family Residential (Condominium) | 35%          | 4.43   | D     | Pervious   | 1.55  | 0.012              | 75     | 3.33 | 0.67                | 0.45           | 0.006      | 0.35                           | 0.20                      | 0.07                      | 0.002                                     | 0.012                          |
| '   | 9      |                                         | 33%          | 4.43   | ט     | Impervious | 2.88  | 0.023              | 98     | 0.20 | 0.04                | 0.95           | 0.021      |                                |                           |                           |                                           |                                |
| 2   | 6      | Open Space / Habitat Area               | 4000/        | 24.16  | D     | Pervious   | 24.16 | 0.189              | 83     | 2.05 | 0.41                | 0.61           | 0.114      | 1.00                           | 0.20                      | 0.20                      | 0.038                                     | 0.189                          |
| 2   | О      | Open Space / Habitat Area               | 100%         | ∠4.16  | ט     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04                | 0.95           | 0.000      |                                |                           |                           |                                           |                                |
|     | •      |                                         | Total Area = | 127.93 |       |            |       | •                  |        | •    | •                   | Y =            | 0.82       |                                | •                         | Total F <sub>m</sub> =    | 0.06                                      | 0.32                           |

Ybar = 1 - Y = 0.18

### PROPOSED NEWPORT BANNING RANCH PROJECT

25-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

Oil Operations

Open Space / Habitat Area

5 6 CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

9.76

0.00

23.74

0.00

Pervious

Impervious

Pervious

Impervious

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 104.35

0.74

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y =

Average  $a_0 = 0.61$ 

| Total Fm (in/hr) = <u>0.12</u> |             |                           |             |       |       |            |       |                    |        |      |          |            |            |                |                           |                           |                                           |                                |
|--------------------------------|-------------|---------------------------|-------------|-------|-------|------------|-------|--------------------|--------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|                                |             |                           |             |       |       |            | Offs  | site Area          |        |      |          |            |            |                |                           |                           |                                           |                                |
|                                | Infil.      |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | $A_j$              | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | Rate, F <sub>m</sub>      |                                           |                                |
| No.                            | Class       | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_j$      | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1                              | 9           | Commercial / Industrial   | 10%         | 1.95  | D     | Pervious   | 0.20  | 0.002              | 75     | 3.33 | 0.67     | 0.45       | 0.001      | 0.10           | 0.20                      | 0.02                      | 0.000                                     | 0.002                          |
| '                              | 9           | Commercial / industrial   | 1076        | 1.55  | D     | Impervious | 1.76  | 0.017              | 98     | 0.20 | 0.04     | 0.95       | 0.016      |                |                           |                           |                                           |                                |
| 2                              | 1           | Oil Operations            | 100%        | 6.26  | D     | Pervious   | 6.26  | 0.060              | 93     | 0.75 | 0.15     | 0.82       | 0.049      | 1.00           | 0.20                      | 0.20                      | 0.012                                     | 0.060                          |
| 2                              | '           | Oil Operations            | 100%        | 0.20  | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000      |                |                           |                           |                                           |                                |
|                                | Onsite Area |                           |             |       |       |            |       |                    |        |      |          |            |            |                |                           |                           |                                           |                                |
|                                | Infil.      |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | Rate, F <sub>m</sub>      |                                           |                                |
| No.                            | Class       | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1                              | 9           | Urban Cover - Roadway     | 10%         | 11.35 | D     | Pervious   | 1.14  | 0.011              | 75     | 3.33 | 0.67     | 0.45       | 0.005      | 0.10           | 0.20                      | 0.02                      | 0.002                                     | 0.011                          |
| Ι'                             | 9           | Olban Cover - Roadway     | 10%         | 11.33 | D     | Impervious | 10.22 | 0.098              | 98     | 0.20 | 0.04     | 0.95       | 0.093      |                |                           |                           |                                           |                                |
| 2                              | 9           | Single Family Residential | 35%         | 41.68 | D     | Pervious   | 14.59 | 0.140              | 75     | 3.33 | 0.67     | 0.45       | 0.064      | 0.35           | 0.20                      | 0.07                      | 0.028                                     | 0.140                          |
| -                              | 9           | (Condominium)             | 33%         | 41.08 | ט     | Impervious | 27.09 | 0.260              | 98     | 0.20 | 0.04     | 0.95       | 0.246      |                |                           |                           |                                           |                                |
| 3                              | 9           | Public Park               | 85%         | 9.61  | D     | Pervious   | 8.17  | 0.078              | 75     | 3.33 | 0.67     | 0.45       | 0.036      | 0.85           | 0.20                      | 0.17                      | 0.016                                     | 0.078                          |
| 3                              | 9           | Public Park               | 00%         | 9.61  | ט     | Impervious | 1.44  | 0.014              | 98     | 0.20 | 0.04     | 0.95       | 0.013      |                |                           |                           |                                           |                                |

0.094

0.000

0.228

0.000

98

83

98

100% Total Area =

100%

23.74 104.35

9.76

D

D

0.74

0.077

0.000

0.138

0.000

1.00

1.00

0.20

0.20

Total F<sub>m</sub> = 0.12

0.019

0.046

0.094

0.228

0.61

0.20

0.20

Ybar = 1 - Y =

0.82

0.95

0.61

0.95

0.75

0.20

2.05

0.20

0.15

0.04

0.41

0.04

# INFILTRATION RATE CALCULATION SUMMARY PROPOSED NEWPORT BANNING RANCH PROJECT 10-YEAR HIGH-CONFIDENCE EVENT

|                        | Proposed | Condition |        |
|------------------------|----------|-----------|--------|
| Node                   | Α        | В         | С      |
| Total Area<br>(ac)     | 315.98   | 127.93    | 104.35 |
| Y                      | 0.67     | 0.79      | 0.70   |
| Ybar                   | 0.33     | 0.21      | 0.30   |
| Average a <sub>p</sub> | 0.47     | 0.32      | 0.61   |
| Total Fm<br>(in/hr)    | 0.12     | 0.06      | 0.12   |

### PROPOSED NEWPORT BANNING RANCH PROJECT

10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

P24, 10-Year Storm Event for Non-Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

P24, 10-Year Storm Event for Mountainous Area (in) =

Total Area (ac) = 315.98 0.67

ap - See Figure C-4

3.68

7.05

Fp - See Table C-2

Ybar = 1 - Y = **0.33** 

Average a<sub>p</sub> =

|     |                            |                         |                   |       |            |          |                    |        |       |          |                |            |                | Total                     | Fm (in/hr) =              | <u>0.12</u>                               |       |
|-----|----------------------------|-------------------------|-------------------|-------|------------|----------|--------------------|--------|-------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|-------|
|     |                            |                         |                   |       |            |          | Offsite Area       |        |       |          |                |            |                |                           |                           |                                           |       |
|     |                            | Pervious-               | Area              | Soil  | Pervious/  | Area     | A <sub>j</sub>     | CN     |       | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |       |
| No. | Land Use                   | ness<br>(%)             | (ac)              | Group | Impervious | (ac)     | (Area<br>Fraction) | AMC II | S     | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |       |
| 1   | Urban Cover - Roadway      | 10%                     | 7.57              | Α     | Pervious   | 0.76     | 0.002              | 32     | 21.25 | 4.25     | 0.00           | 0.000      | 0.10           | 0.40                      | 0.04                      | 0.001                                     |       |
| •   | Olbali Covel - Roadway     | 1076                    | 7.57              | χ.    | Impervious | 6.81     | 0.022              | 98     | 0.20  | 0.04     | 0.94           | 0.020      |                |                           |                           |                                           |       |
| 2   | Urban Cover - Roadway      | 10%                     | 2.65              | D     | Pervious   | 0.27     | 0.001              | 75     | 3.33  | 0.67     | 0.39           | 0.000      | 0.10           | 0.20                      | 0.02                      | 0.000                                     |       |
| _   | Olbali Covel - Roadway     | 1076                    | 2.05              | D     | Impervious | 2.39     | 0.008              | 98     | 0.20  | 0.04     | 0.94           | 0.007      |                |                           |                           |                                           |       |
| 3   | Single Family Residential  | 20%                     | 45.27             | Α     | Pervious   | 9.05     | 0.029              | 32     | 21.25 | 4.25     | 0.00           | 0.000      | 0.20           | 0.40                      | 0.08                      | 0.011                                     |       |
| 3   | (>10 dwellings/acre)       | 20%                     | 45.27             | A     | Impervious | 36.22    | 0.115              | 98     | 0.20  | 0.04     | 0.94           | 0.107      |                |                           |                           |                                           |       |
| 4   | Single Family Residential  | 20%                     | 31.84             | В     | Pervious   | 6.37     | 0.020              | 56     | 7.86  | 1.57     | 0.12           | 0.002      | 0.20           | 0.30                      | 0.06                      | 0.006                                     |       |
| 4   | (>10 dwellings/acre)       | 2076                    | 31.04             | ь     | Impervious | 25.47    | 0.081              | 98     | 0.20  | 0.04     | 0.94           | 0.075      |                |                           |                           |                                           |       |
| 5   | Single Family Residential  | 20%                     | 26.51             | D     | Pervious   | 5.30     | 0.017              | 75     | 3.33  | 0.67     | 0.39           | 0.007      | 0.20           | 0.20                      | 0.04                      | 0.003                                     |       |
| 5   | (>10 dwellings/acre)       | 20%                     | 20.51             | D     | Impervious | 21.21    | 0.067              | 98     | 0.20  | 0.04     | 0.94           | 0.063      |                |                           |                           |                                           |       |
| 6   | Commercial / Industrial    | 10%                     | 31.91             | D     | Pervious   | 3.19     | 0.010              | 75     | 3.33  | 0.67     | 0.39           | 0.004      | 0.10           | 0.20                      | 0.02                      | 0.002                                     |       |
| 0   | Commercial / muusma        | 1076                    | 31.91             | D     | Impervious | 28.72    | 0.091              | 98     | 0.20  | 0.04     | 0.94           | 0.085      |                |                           |                           |                                           |       |
| 7   | Oil Operations             | 100%                    | 4.70              | D     | Pervious   | 4.70     | 0.015              | 93     | 0.75  | 0.15     | 0.79           | 0.012      | 1.00           | 0.20                      | 0.20                      | 0.003                                     |       |
| ′   | On Operations              | 100%                    | 4.70              | D     | Impervious | 0.00     | 0.000              | 98     | 0.20  | 0.04     | 0.94           | 0.000      |                |                           |                           |                                           |       |
| 8   | Open Space / Habitat Area  | 100%                    | 16.64             | Α     | Pervious   | 16.64    | 0.053              | 46     | 11.74 | 2.35     | 0.04           | 0.002      | 1.00           | 0.40                      | 0.40                      | 0.021                                     |       |
| 0   | Open Space / Flabilat Alea | 10076                   | 10.04             | Α     | Impervious | 0.00     | 0.000              | 98     | 0.20  | 0.04     | 0.94           | 0.000      |                |                           |                           |                                           |       |
| 9   | Oxbow Loop Channel 10%     | have been Observed 4000 | 0 hard and 0 hard | 6.55  | ۸          | Pervious | 0.66               | 0.002  | 78    | 2.82     | 0.56           | 0.44       | 0.001          | 0.10                      | 0.40                      | 0.04                                      | 0.001 |
| 9   |                            | Oxbow Loop Channel      | 0.00              | А     | Impervious | 5.90     | 0.019              | 98     | 0.20  | 0.04     | 0.94           | 0.017      |                |                           |                           |                                           |       |

### PROPOSED NEWPORT BANNING RANCH PROJECT

10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

|     | Onsite Area               |              |        |       |            |       |                    |        |      |          |                |                                |                |                           |                           |                                           |
|-----|---------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|--------------------------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |                                |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | Y <sub>j</sub> *A <sub>j</sub> | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%          | 15.02  | D     | Pervious   | 1.50  | 0.005              | 75     | 3.33 | 0.67     | 0.39           | 0.002                          | 0.10           | 0.20                      | 0.02                      | 0.001                                     |
| ' ' | Olban Cover - Roadway     | 10 /6        | 15.02  | D     | Impervious | 13.52 | 0.043              | 98     | 0.20 | 0.04     | 0.94           | 0.040                          |                |                           |                           |                                           |
| 2   | Single Family Residential | 35%          | 4.22   | В     | Pervious   | 1.48  | 0.005              | 56     | 7.86 | 1.57     | 0.12           | 0.001                          | 0.35           | 0.30                      | 0.11                      | 0.001                                     |
| _   | (Condominiums)            | 33 /6        | 4.22   | Б     | Impervious | 2.74  | 0.009              | 98     | 0.20 | 0.04     | 0.94           | 0.008                          |                |                           |                           |                                           |
| 3   | Single Family Residential | 35%          | 34.29  | D     | Pervious   | 12.00 | 0.038              | 75     | 3.33 | 0.67     | 0.39           | 0.015                          | 0.35           | 0.20                      | 0.07                      | 0.008                                     |
| 3   | (Condominiums)            | 35%          | 34.29  | D     | Impervious | 22.29 | 0.071              | 98     | 0.20 | 0.04     | 0.94           | 0.066                          |                |                           |                           |                                           |
| 4   | Public Park               | 85%          | 12.22  | В     | Pervious   | 10.39 | 0.033              | 56     | 7.86 | 1.57     | 0.12           | 0.004                          | 0.85           | 0.30                      | 0.26                      | 0.010                                     |
| 4   | Public Park               | 00%          | 12.22  | В     | Impervious | 1.83  | 0.006              | 98     | 0.20 | 0.04     | 0.94           | 0.005                          |                |                           |                           |                                           |
| 5   | Public Park               | 85%          | 10.74  | D     | Pervious   | 9.13  | 0.029              | 75     | 3.33 | 0.67     | 0.39           | 0.011                          | 0.85           | 0.20                      | 0.17                      | 0.006                                     |
| 5   | Public Park               | 00%          | 10.74  | D     | Impervious | 1.61  | 0.005              | 98     | 0.20 | 0.04     | 0.94           | 0.005                          |                |                           |                           |                                           |
| 6   | Oil Operations            | 100%         | 4.78   | А     | Pervious   | 4.78  | 0.015              | 78     | 2.82 | 0.56     | 0.44           | 0.007                          | 1.00           | 0.40                      | 0.40                      | 0.006                                     |
| ь   | Oil Operations            | 100%         | 4.78   | A     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000                          |                |                           |                           |                                           |
| 7   | Open Chase / Habitat Area | 1000/        | 61.07  | D     | Pervious   | 61.07 | 0.193              | 83     | 2.05 | 0.41     | 0.55           | 0.106                          | 1.00           | 0.20                      | 0.20                      | 0.039                                     |
| ′   | Open Space / Habitat Area | 100%         | 61.07  | ט     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000                          |                |                           |                           |                                           |
|     |                           | Total Area = | 315.98 |       |            |       |                    |        |      |          | Y =            | 0.67                           |                |                           | Total F <sub>m</sub> =    | 0.12                                      |

Ybar = 1 - Y = **0.33** 

### PROPOSED NEWPORT BANNING RANCH PROJECT

10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

3.68

7.05

P24, 10-Year Storm Event for Non-Mountainous Area (in) =

P24, 10-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 127.93

ap - See Figure C-4 Fp - See Table C-2 Average a<sub>p</sub> =

Ybar = 1 - Y =

Total Fm (in/hr) = 0.06

0.32

 $F_m = a_p F_p$ 

|     |                           |              |        |       |            |       |                    |        |      |          |                |            |                | TUlai                     | Fm (in/nr) =              | 0.06                                      |
|-----|---------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |        |       |            |       | Offsite Area       |        |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.39           | 0.002      | 0.10           | 0.20                      | 0.02                      | 0.001                                     |
| '   | Olbali Covel - Roadway    | 10%          | 5.35   | D     | Impervious | 4.82  | 0.038              | 98     | 0.20 | 0.04     | 0.94           | 0.035      |                |                           |                           |                                           |
| 2   | Single Family Residential | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.39           | 0.004      | 0.20           | 0.20                      | 0.04                      | 0.002                                     |
| 2   | (>10 dwellings/acre)      | 20%          | 5.94   | D     | Impervious | 4.75  | 0.037              | 98     | 0.20 | 0.04     | 0.94           | 0.035      |                |                           |                           |                                           |
| 3   | Commercial / Industrial   | 10%          | 78.14  | D     | Pervious   | 7.81  | 0.061              | 75     | 3.33 | 0.67     | 0.39           | 0.024      | 0.10           | 0.20                      | 0.02                      | 0.012                                     |
| 3   | Commerciai / Industriai   | 10%          | 70.14  | D     | Impervious | 70.33 | 0.550              | 98     | 0.20 | 0.04     | 0.94           | 0.515      |                |                           |                           |                                           |
| 4   | School                    | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.046              | 75     | 3.33 | 0.67     | 0.39           | 0.018      | 0.60           | 0.20                      | 0.12                      | 0.009                                     |
| 4   | SCHOOL                    | 60%          | 9.91   | D     | Impervious | 3.96  | 0.031              | 98     | 0.20 | 0.04     | 0.94           | 0.029      |                |                           |                           |                                           |
|     |                           |              |        |       |            |       | Onsite Area        | ı      |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 4   | Single Family Residential | 35%          | 4.43   | D     | Pervious   | 1.55  | 0.012              | 75     | 3.33 | 0.67     | 0.39           | 0.005      | 0.35           | 0.20                      | 0.07                      | 0.002                                     |
| '   | (Condominiums)            | 35%          | 4.43   | D     | Impervious | 2.88  | 0.023              | 98     | 0.20 | 0.04     | 0.94           | 0.021      |                |                           |                           |                                           |
| 2   | Onen Chase / Habitat Area | 100%         | 24.16  | D     | Pervious   | 24.16 | 0.189              | 83     | 2.05 | 0.41     | 0.55           | 0.103      | 1.00           | 0.20                      | 0.20                      | 0.038                                     |
| 2   | Open Space / Habitat Area | 100%         | 24.16  |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000      |                |                           |                           |                                           |
| •   |                           | Total Area = | 127.93 | •     | •          |       | •                  |        |      | •        | Y =            | 0.79       | •              | •                         | Total F <sub>m</sub> =    | 0.06                                      |

Ybar = 1 - Y =

### PROPOSED NEWPORT BANNING RANCH PROJECT

10-YEAR HIGH-CONFIDENCE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{2a}}$$

3.68

7.05

P24, 10-Year Storm Event for Non-Mountainous Area (in) =

P24, 10-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 104.35

0.70 Ybar = 1 - Y =

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Average a<sub>p</sub> =

|     |                           |              |        |       |            |       |                    |        |      |          |                |            |                | Total                     | Fm (in/hr) =              | <u>0.12</u>                               |
|-----|---------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |        |       |            |       | Offsite Area       | I      |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | A <sub>i</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
|     | Commercial / Industrial   | 10%          | 1.95   | D     | Pervious   | 0.20  | 0.002              | 75     | 3.33 | 0.67     | 0.39           | 0.001      | 0.10           | 0.20                      | 0.02                      | 0.000                                     |
| '   | Commerciai / industriai   | 10%          | 1.95   | D     | Impervious | 1.76  | 0.017              | 98     | 0.20 | 0.04     | 0.94           | 0.016      |                |                           |                           |                                           |
|     | Oil On anti-one           | 100%         | 6.26   | D     | Pervious   | 6.26  | 0.060              | 93     | 0.75 | 0.15     | 0.79           | 0.047      | 1.00           | 0.20                      | 0.20                      | 0.012                                     |
| 2   | Oil Operations            | 100%         | 6.26   | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000      |                |                           |                           |                                           |
|     |                           |              |        | •     |            |       | Onsite Area        | 1      |      | •        | •              | •          |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_{j}$        | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%          | 11.35  | D     | Pervious   | 1.14  | 0.011              | 75     | 3.33 | 0.67     | 0.39           | 0.004      | 0.10           | 0.20                      | 0.02                      | 0.002                                     |
| '   | Olban Cover - Roadway     | 10%          | 11.33  | D     | Impervious | 10.22 | 0.098              | 98     | 0.20 | 0.04     | 0.94           | 0.092      |                |                           |                           |                                           |
| 2   | Single Family Residential | 35%          | 41.68  | D     | Pervious   | 14.59 | 0.140              | 75     | 3.33 | 0.67     | 0.39           | 0.054      | 0.35           | 0.20                      | 0.07                      | 0.028                                     |
| _   | (Condominiums)            | 35%          | 41.00  | D     | Impervious | 27.09 | 0.260              | 98     | 0.20 | 0.04     | 0.94           | 0.243      |                |                           |                           |                                           |
| 3   | Public Park               | 85%          | 9.61   | D     | Pervious   | 8.17  | 0.078              | 75     | 3.33 | 0.67     | 0.39           | 0.030      | 0.85           | 0.20                      | 0.17                      | 0.016                                     |
| 3   | Public Park               | 85%          | 9.61   | D     | Impervious | 1.44  | 0.014              | 98     | 0.20 | 0.04     | 0.94           | 0.013      |                |                           |                           |                                           |
|     | Oil On anti-one           | 4000/        | 0.70   | _     | Pervious   | 9.76  | 0.094              | 93     | 0.75 | 0.15     | 0.79           | 0.074      | 1.00           | 0.20                      | 0.20                      | 0.019                                     |
| 4   | Oil Operations            | 100%         | 9.76   | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000      | 1              |                           |                           |                                           |
| _   | Ones Crees / Habitat Arre | 4000/        | 00.74  |       | Pervious   | 23.74 | 0.228              | 83     | 2.05 | 0.41     | 0.55           | 0.124      | 1.00           | 0.20                      | 0.20                      | 0.046                                     |
| 5   | Open Space / Habitat Area | 100%         | 23.74  | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.94           | 0.000      | 1              |                           |                           |                                           |
|     |                           | Total Area = | 104.35 | •     |            |       |                    |        |      |          | Y =            | 0.70       |                |                           | Total F <sub>m</sub> =    | 0.12                                      |

Ybar = 1 - Y =

ii. HC 100-Year Storm Event

# Drainage A

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

-----

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 316.00
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.120
TIME OF CONCENTRATION (MIN.) = 25.42
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 100
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.52
30-MINUTE POINT RAINFALL VALUE (INCHES) = 1.09
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.45
3-HOUR POINT RAINFALL VALUE (INCHES) = 2.43
6-HOUR POINT RAINFALL VALUE (INCHES) = 3.36
24-HOUR POINT RAINFALL VALUE (INCHES) = 5.63

.....

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 118.31 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 29.95

| *****            | *****               | *****         | *****      | *****  | ***** | *****  | *****  |
|------------------|---------------------|---------------|------------|--------|-------|--------|--------|
| TI ME<br>(HOURS) | VOLUME<br>(AF)      | 0 0.<br>(CFS) |            | 162. 5 | 325.0 | 487. 5 | 650. 0 |
| 0. 32            | 0. 2940             | 21. 94        | . Q        |        |       |        |        |
| 0. 75            | 1. 0658             |               | Q          |        |       |        |        |
| 1. 17            | 1. 8501             | 22. 66        | . Q        |        |       |        |        |
| 1. 60            | 2. 6482             | 22. 93        | . Q        |        |       |        |        |
| 2. 02            | 3. 4609             |               | . Q        |        |       |        |        |
| 2.44             | 4. 2888             |               | . Q        |        |       |        |        |
| 2. 87            | 5. 1327             |               | . Q        |        |       |        |        |
| 3. 29            | 5. 9934             |               | . Q        |        |       |        |        |
| 3. 71            | 6. 8719             |               | . Q        | •      | •     | •      |        |
| 4. 14            | 7. 7689             |               | . Q        | •      | •     |        | •      |
| 4. 56            | 8. 6858             |               | . Q        | •      | •     | •      | •      |
| 4. 98<br>5. 41   | 9. 6235<br>10. 5836 |               | . Q<br>. Q | •      | •     | •      | •      |
| 5. 41<br>5. 83   | 10. 5836            |               | . Q<br>. Q | •      | •     | •      | •      |
| 6. 26            | 12. 5761            |               | . Q        | •      | •     | •      | •      |
| 6. 68            | 13. 6117            |               | . Q        | •      | •     | •      | •      |
| 7. 10            | 14. 6766            |               | . Q        | •      | •     | •      | •      |
| 7. 53            | 15. 7721            |               | . 0        | •      | •     | •      | •      |
| 7. 95            | 16. 9017            | 32. 92        | . Q        |        |       |        |        |
| 8. 37            | 18. 0671            | 33. 65        | Q          |        | ·     | ·      | · ·    |
| 8. 80            | 19. 2727            | 35. 22        | . Q        |        |       |        |        |
| 9. 22            | 20. 5209            | 36. 08        | . Q        |        |       |        |        |
| 9. 65            | 21. 8174            | 37. 98        | . Q        |        |       |        |        |
| 10. 07           | 23. 1655            | 39. 03        | . Q        |        |       | •      |        |
| 10. 49           | 24. 5732            | 41. 38        | . Q        |        |       |        |        |
| 10. 92           | 26. 0450            | 42. 70        | . Q        |        |       |        |        |
| 11. 34           | 27. 5926            | 45. 70        | . Q        |        |       |        |        |
| 11. 76           | 29. 2228            | 47. 42        | . Q        | •      | •     | •      | •      |
| 12. 19           | 30. 9912            | 53. 59        | . Q        |        | •     | •      |        |
| 12. 61           | 33. 1063            | 67. 23        | . Q        |        | •     | •      |        |
| 13. 03           | 35. 5652            | 73. 22        | . Q        | •      |       | •      | •      |

Page 1

|        |           |         |     |            | P100_A |    |
|--------|-----------|---------|-----|------------|--------|----|
| 13. 46 | 38. 1927  | 76. 86  | . Q |            |        |    |
| 13. 88 | 41. 0444  | 86. 03  | . Q |            |        |    |
| 14. 31 | 44. 1614  | 92. 01  | . Q |            |        |    |
| 14. 73 | 47. 6813  | 109. 05 | . Q |            |        |    |
| 15. 15 | 51. 7150  | 121. 36 | . Q |            |        |    |
| 15. 58 | 56. 6173  | 158. 66 |     | <b>)</b> . |        |    |
| 16. 00 | 62. 8749  | 198. 77 |     | . Q        |        |    |
| 16. 42 | 77. 7198  | 649. 18 |     |            |        | Q. |
| 16. 85 | 91. 5148  | 138. 80 | . Q |            |        |    |
| 17. 27 | 95. 6916  | 99. 78  | . О |            |        |    |
| 17. 69 | 98. 8577  | 81. 07  | . Q |            |        |    |
| 18. 12 | 101. 5033 | 70. 04  | . Q |            |        |    |
| 18. 54 | 103. 5929 | 49. 32  | . Q |            |        |    |
| 18. 97 | 105. 2289 | 44. 13  | . Q |            |        |    |
| 19. 39 | 106. 7046 | 40. 16  | . Q |            |        |    |
| 19. 81 | 108. 0553 | 37. 00  | . Q |            |        |    |
| 20. 24 | 109. 3054 | 34. 41  | . Q |            |        |    |
| 20. 66 | 110. 4722 | 32. 24  | . Q |            |        |    |
| 21. 08 | 111. 5689 | 30. 40  | . Q |            |        |    |
| 21. 51 | 112. 6054 | 28. 81  | . Q |            |        |    |
| 21. 93 | 113. 5896 | 27. 41  | . Q |            |        |    |
| 22. 36 | 114. 5279 | 26. 18  | . Q |            |        |    |
| 22. 78 | 115. 4254 | 25. 08  | . Q |            | •      |    |
| 23. 20 | 116. 2864 | 24. 10  | . Q |            |        |    |
| 23. 63 | 117. 1146 | 23. 21  | . Q |            |        |    |
| 24. 05 | 117. 9130 | 22. 40  | . Q |            | •      |    |
| 24. 47 | 118. 3051 | 0. 00   | Q   |            |        |    |

# Drainage B

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 127.90 SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060

LOW LOSS FRACTION = 0.040

TIME OF CONCENTRATION(MIN.) = 29.40

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 100

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52

30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45 3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43 6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36

24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 51.56 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =

| ****            | *****          | *****      | **** | ***** | ***** | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 62.5  | 125.0 | 187.5 | 250.0 |
| 0.32            | 0.0000         | 0.00       | Q    |       |       |       |       |
| 0.81            | 0.1992         | 9.84       | .Q   |       |       | •     |       |
| 1.30            | 0.6004         | 9.97       | . Q  |       |       |       |       |
| 1.79            | 1.0099         | 10.25      | .Q   |       |       |       |       |
| 2.28            | 1.4280         | 10.40      | .Q   |       |       |       |       |
| 2.77            | 1.8554         | 10.71      | .Q   | •     | •     | •     | •     |
| 3.26            | 2.2925         | 10.88      | .Q   |       | •     |       | •     |
| 3.75            | 2.7400         | 11.23      | .Q   |       | •     |       | •     |
| 4.24            | 3.1984         | 11.41      | .Q   | •     | •     | •     | •     |
| 4.73            | 3.6687         | 11.81      | .Q   | •     | •     | •     | •     |
| 5.22            | 4.1514         | 12.03      | .Q   | •     | •     | •     | •     |
| 5.71            | 4.6478         | 12.49      | .Q   | •     | •     | •     | •     |
| 6.20            | 5.1584         | 12.73      | . Q  | •     | •     | •     | •     |
| 6.69            | 5.6850         | 13.27      | . Q  | •     |       | •     |       |
| 7.18            | 6.2282         | 13.56      | . Q  | •     | •     | •     | •     |
| 7.67            | 6.7901         | 14.19      | . Q  | •     | •     | •     | •     |
| 8.16            | 7.3719         | 14.54      | . Q  | •     | •     | •     | •     |
| 8.65            | 7.9762         | 15.31      | . Q  | •     | •     | •     | •     |
| 9.14            | 8.6046         | 15.73      | . Q  | •     |       | •     |       |

| 9.63  | 9.2607  | 16.68  | . Q |     |   | • |    |
|-------|---------|--------|-----|-----|---|---|----|
| 10.12 | 9.9468  | 17.21  | . Q |     | • | • |    |
| 10.61 | 10.6681 | 18.42  | . Q |     | • | • |    |
| 11.10 | 11.4280 | 19.11  | . Q |     |   | • |    |
| 11.59 | 12.2346 | 20.73  | . Q |     | • | • |    |
| 12.08 | 13.0932 | 21.68  | . Q |     |   | • |    |
| 12.57 | 14.1380 | 29.92  | . Q |     |   |   |    |
| 13.06 | 15.3798 | 31.41  | . Q |     | • | • |    |
| 13.55 | 16.7275 | 35.15  | . Q |     |   | • |    |
| 14.04 | 18.2003 | 37.58  | . Q |     | • | • |    |
| 14.53 | 19.8639 | 44.58  |     | Q.  | • | • |    |
| 15.02 | 21.7709 | 49.61  |     | Q.  |   |   | •  |
| 15.51 | 24.1445 | 67.62  | •   | Q   |   |   | •  |
| 16.00 | 27.1440 | 80.52  | •   | . Q |   |   | •  |
| 16.49 | 33.7762 | 247.03 |     |     |   | • | Q. |
| 16.98 | 39.9268 | 56.74  | •   | Q.  |   |   | •  |
| 17.47 | 41.8976 | 40.59  | . Q |     |   |   | •  |
| 17.96 | 43.3903 | 33.13  | . Q |     |   | • |    |
| 18.45 | 44.5511 | 24.20  | . Q |     |   |   | •  |
| 18.94 | 45.4434 | 19.88  | . Q |     | • | • | •  |
| 19.43 | 46.2060 | 17.79  | . Q |     |   | • |    |
| 19.92 | 46.8938 | 16.18  | . Q |     | • | • | •  |
| 20.41 | 47.5234 | 14.91  | . Q |     | • | • | •  |
| 20.90 | 48.1061 | 13.87  | . Q |     | • | • | •  |
| 21.39 | 48.6500 | 12.99  | . Q |     | • | • | •  |
| 21.88 | 49.1612 | 12.25  | .Q  |     |   |   |    |
| 22.37 | 49.6443 | 11.61  | .Q  |     |   |   |    |
| 22.86 | 50.1031 | 11.05  | .Q  |     | • | • | •  |
| 23.35 | 50.5404 | 10.55  | .Q  |     |   |   |    |
| 23.84 | 50.9587 | 10.11  | .Q  |     |   |   |    |
| 24.33 | 51.3601 | 9.71   | .Q  |     |   | • | •  |
| 24.82 | 51.5567 | 0.00   | Q   | •   | • | • | •  |
|       |         |        |     |     |   |   |    |

# Drainage C

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 104.40

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120

LOW LOSS FRACTION = 0.060

TIME OF CONCENTRATION(MIN.) = 14.82

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 100

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.52

30-MINUTE POINT RAINFALL VALUE(INCHES) = 1.09

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.45 3-HOUR POINT RAINFALL VALUE(INCHES) = 2.43 6-HOUR POINT RAINFALL VALUE(INCHES) = 3.36

24-HOUR POINT RAINFALL VALUE(INCHES) = 5.63

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 41.38 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 7.60

| *****           | *****          | *****      | **** | ***** | ***** | ****** | ****** |
|-----------------|----------------|------------|------|-------|-------|--------|--------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 75.0  | 150.0 | 225.0  | 300.0  |
| 0.19            | 0.0788         | 7.72       | .Q   |       |       |        |        |
| 0.44            | 0.2371         | 7.80       | .Q   |       |       |        |        |
| 0.69            | 0.3969         | 7.85       | .Q   | •     | •     | •      | ě      |
| 0.93            | 0.5582         | 7.96       | .Q   | •     | •     | •      | •      |
| 1.18            | 0.7212         | 8.01       | .Q   | •     | •     | •      | •      |
| 1.43            | 0.8858         | 8.12       | .Q   | •     | •     | •      | •      |
| 1.67            | 1.0522         | 8.18       | .Q   | •     | •     | •      | •      |
| 1.92            | 1.2204         | 8.30       | .Q   | •     | •     | •      | •      |
| 2.17            | 1.3904         | 8.36       | .Q   |       | •     |        |        |
| 2.42            | 1.5624         | 8.48       | .Q   | •     | •     | •      | •      |
| 2.66            | 1.7362         | 8.55       | .Q   |       | •     |        |        |
| 2.91            | 1.9121         | 8.68       | .Q   |       | •     |        | •      |
| 3.16            | 2.0900         | 8.75       | .Q   |       | •     |        |        |
| 3.40            | 2.2700         | 8.89       | .Q   | •     | •     |        |        |
| 3.65            | 2.4523         | 8.96       | .Q   |       | •     |        |        |
| 3.90            | 2.6368         | 9.11       | .Q   |       | •     |        |        |
| 4.14            | 2.8236         | 9.19       | .Q   | •     | •     |        |        |
| 4.39            | 3.0129         | 9.35       | .Q   |       | •     |        |        |
| 4.64            | 3.2047         | 9.44       | .Q   |       |       |        |        |

| 4.89<br>5.13<br>5.38<br>5.63<br>5.87<br>6.12<br>6.37<br>6.61<br>7.36<br>7.85<br>8.10<br>8.34<br>8.59<br>8.84<br>9.33<br>9.82<br>10.07<br>10.32<br>10.57<br>10.31<br>11.55<br>11.80<br>12.05<br>12.30<br>12.54<br>13.28<br>13.53<br>13.78<br>14.02<br>14.27<br>15.01<br>15.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.02<br>16.0 | 3.3990<br>3.5960<br>3.7959<br>3.9986<br>4.2043<br>4.4130<br>4.6251<br>4.8405<br>5.0594<br>5.2820<br>5.5084<br>5.7388<br>5.9734<br>6.2124<br>6.4560<br>6.7044<br>6.9580<br>7.2170<br>7.4817<br>7.7524<br>8.0295<br>8.3135<br>8.6047<br>8.9037<br>9.2111<br>9.5273<br>9.8534<br>10.1899<br>10.5379<br>10.8982<br>11.3208<br>11.8068<br>12.3110<br>12.8347<br>13.3811<br>13.9522<br>14.5529<br>15.1863<br>15.8624<br>16.5866<br>17.3722<br>18.2304<br>19.1966<br>20.2976<br>21.5949<br>23.2997<br>27.3328 | 9.61<br>9.70<br>9.88<br>9.98<br>10.28<br>10.50<br>10.61<br>10.84<br>10.96<br>11.22<br>11.35<br>11.63<br>11.78<br>12.25<br>12.59<br>12.78<br>13.16<br>13.36<br>13.79<br>14.51<br>14.78<br>15.65<br>16.30<br>16.66<br>17.44<br>17.86<br>23.54<br>24.09<br>25.31<br>26.00<br>27.54<br>28.41<br>30.44<br>31.62<br>34.62<br>34.62<br>34.62<br>34.62<br>34.62<br>36.33<br>40.44<br>51.23<br>56.64<br>70.47<br>96.56<br>298.76 |  |  |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|---|
| 16.25<br>16.49<br>16.74<br>16.99<br>17.23<br>17.48<br>17.73<br>17.98<br>18.22<br>18.47<br>18.72<br>19.46<br>19.21<br>19.46<br>19.70<br>19.95<br>20.20<br>20.45<br>20.69<br>20.94<br>21.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.3328<br>30.9685<br>32.0350<br>32.9045<br>33.6320<br>34.2684<br>34.8411<br>35.3659<br>35.8187<br>36.1936<br>36.5305<br>36.8470<br>37.1463<br>37.4304<br>37.7012<br>37.9603<br>38.2089<br>38.4479<br>38.6784<br>38.9010<br>39.1165                                                                                                                                                                                                                                                                    | 298.58<br>57.63<br>46.87<br>38.31<br>32.97<br>29.38<br>26.73<br>24.68<br>19.69<br>17.04<br>15.97<br>15.05<br>14.26<br>13.57<br>12.96<br>12.42<br>11.93<br>11.49<br>11.09<br>10.72<br>10.39                                                                                                                                                                                                                              |  |  | Q |

| 21.43 | 39.3253 | 10.08 | .Q |   |   |   |   |
|-------|---------|-------|----|---|---|---|---|
| 21.68 | 39.5281 | 9.79  | .Q | • | • | • | • |
| 21.93 | 39.7251 | 9.52  | .Q |   |   | • | • |
| 22.17 | 39.9169 | 9.27  | .Q | • | • | • | • |
| 22.42 | 40.1038 | 9.04  | .Q | • | • | • | • |
| 22.67 | 40.2861 | 8.82  | .Q | • | • | • | • |
| 22.92 | 40.4640 | 8.61  | .Q | • | • | • | • |
| 23.16 | 40.6379 | 8.42  | .Q | • | • | • | • |
| 23.41 | 40.8079 | 8.24  | .Q | • | • | • | • |
| 23.66 | 40.9744 | 8.07  | .Q | • | • | • | • |
| 23.90 | 41.1374 | 7.90  | .Q | • | • | • |   |
| 24.15 | 41.2971 | 7.75  | .Q | • | • | • | • |
| 24.40 | 41.3762 | 0.00  | Q  |   | • | • | • |
|       |         |       |    |   |   |   |   |

iii. HC 25-Year Storm Event

# Drainage A

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 316.00

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120

LOW LOSS FRACTION = 0.300

TIME OF CONCENTRATION(MIN.) = 26.88

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 79.67 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 38.57

| *****                                                                                | *****                                                                                                      | ******                                                                                 | ****                 | ***** | ***** | ***** | ***** |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-------|-------|-------|-------|
| TIME<br>(HOURS)                                                                      | VOLUME<br>(AF)                                                                                             | Q<br>(CFS)                                                                             | 0.                   | 125.0 | 250.0 | 375.0 | 500.0 |
| 0.32<br>0.77<br>1.22<br>1.66<br>2.11<br>2.56                                         | 0.1800<br>0.6863<br>1.2014<br>1.7262<br>2.2614<br>2.8072                                                   | 13.61<br>13.74<br>14.08<br>14.26<br>14.64                                              | .Q<br>.Q<br>.Q<br>.Q |       |       | ·     | ·     |
| 3.01<br>3.46<br>3.90<br>4.35<br>4.80<br>5.25<br>5.70<br>6.14<br>6.59<br>7.04<br>7.49 | 3.3646<br>3.9338<br>4.5159<br>5.1113<br>5.7211<br>6.3460<br>6.9872<br>7.6457<br>8.3229<br>9.0200<br>9.7389 | 15.26<br>15.49<br>15.96<br>16.21<br>16.74<br>17.02<br>17.62<br>17.94<br>18.64<br>19.01 |                      | :     |       |       |       |
| 7.94<br>8.38                                                                         | 10.4810<br>11.2490                                                                                         | 20.26<br>21.22                                                                         | . Q<br>. Q           |       |       |       |       |

| 8.83  | 12.0445 | 21.75  | .Q   |          | •    |    |
|-------|---------|--------|------|----------|------|----|
| 9.28  | 12.8712 | 22.91  | . Q  |          | •    | •  |
| 9.73  | 13.7312 | 23.55  | . Q  | •        |      | •  |
| 10.18 | 14.6298 | 24.99  | . Q  |          | •    | •  |
| 10.62 | 15.5698 | 25.79  | . Q  | •        |      | •  |
| 11.07 | 16.5588 | 27.63  | . Q  | •        |      | •  |
| 11.52 | 17.6014 | 28.69  | . Q  |          |      |    |
| 11.97 | 18.7089 | 31.14  | . Q  |          |      |    |
| 12.42 | 19.9662 | 36.77  | . Q  |          |      |    |
| 12.86 | 21.5157 | 46.93  | . Q  |          |      |    |
| 13.31 | 23.2953 | 49.20  |      |          |      |    |
| 13.76 | 25.2224 | 54.90  | . ~Q | •        |      | •  |
| 14.21 | 27.3230 | 58.58  | . Q  | •        |      | •  |
| 14.66 | 29.6665 | 68.01  | . Q  |          |      |    |
| 15.10 | 32.3249 | 75.59  | . ~  | Q .      |      | •  |
| 15.55 | 35.7192 | 107.76 |      | ~<br>Q . |      |    |
| 16.00 | 40.2639 | 137.74 |      | ~ .Q     |      |    |
| 16.45 | 51.9308 | 492.48 |      |          |      | Q. |
| 16.90 | 62.6990 | 89.20  |      | Q.       |      | ~  |
| 17.34 | 65.5079 | 62.53  | . Q  | ~        |      | •  |
| 17.79 | 67.6249 | 51.82  | . Q  | •        |      | •  |
| 18.24 | 69.4163 | 44.95  | . Q  |          |      |    |
| 18.69 | 70.8010 | 29.85  | . Q  | •        |      | •  |
| 19.14 | 71.8473 | 26.67  | . Q  |          |      |    |
| 19.58 | 72.7898 | 24.24  | .Q   |          |      |    |
| 20.03 | 73.6515 | 22.31  | . Q  | •        |      | •  |
| 20.48 | 74.4482 | 20.73  | . Q  | •        |      | •  |
| 20.93 | 75.1913 | 19.41  | . Q  |          |      |    |
| 21.38 | 75.8890 | 18.28  | . Q  | •        |      | •  |
| 21.82 | 76.5480 | 17.31  | . Q  | •        |      | •  |
| 22.27 | 77.1733 | 16.47  | . Q  | •        |      | •  |
| 22.72 | 77.7691 | 15.72  | . Q  | •        |      | •  |
| 23.17 | 78.3386 | 15.05  | . Q  |          | •    |    |
| 23.62 | 78.8847 | 14.45  | .Q   |          | •    |    |
| 24.06 | 79.4097 | 13.91  | . Q  | •        |      | •  |
| 24.51 | 79.6672 | 0.00   | Q    |          |      |    |
|       |         |        |      |          | <br> |    |

# Drainage B

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 127.90

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060

LOW LOSS FRACTION = 0.180

TIME OF CONCENTRATION(MIN.) = 30.94

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 36.77 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 11.08

| *****           | *****          | *****      | **** | ***** | ***** | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 47.5  | 95.0  | 142.5 | 190.0 |
| 0.01            | 0.0000         | 0.00       | Q    |       |       |       |       |
| 0.53            | 0.1376         | 6.46       | .Q   | •     | •     | ě     | •     |
| 1.05            | 0.4161         | 6.62       | .Q   |       |       | •     |       |
| 1.56            | 0.7002         | 6.71       | .Q   |       |       | •     |       |
| 2.08            | 0.9907         | 6.92       | .Q   |       |       | •     |       |
| 2.59            | 1.2878         | 7.03       | .Q   |       |       | •     |       |
| 3.11            | 1.5922         | 7.26       | .Q   |       |       |       |       |
| 3.62            | 1.9040         | 7.38       | .Q   |       |       | •     | •     |
| 4.14            | 2.2240         | 7.64       | .Q   |       |       | •     | •     |
| 4.66            | 2.5526         | 7.78       | .Q   |       |       | •     | •     |
| 5.17            | 2.8906         | 8.08       | .Q   |       |       | •     | •     |
| 5.69            | 3.2385         | 8.24       | .Q   |       |       | •     | •     |
| 6.20            | 3.5973         | 8.59       | .Q   |       |       | •     | •     |
| 6.72            | 3.9676         | 8.79       | .Q   |       |       |       | •     |
| 7.23            | 4.3509         | 9.20       | .Q   |       |       | •     | •     |
| 7.75            | 4.7479         | 9.43       | .Q   |       |       | •     | •     |
| 8.27            | 5.1605         | 9.93       | . Q  |       |       |       | •     |
| 8.78            | 5.5897         | 10.21      | . Q  |       |       |       | •     |
| 9.30            | 6.0381         | 10.83      | . Q  | •     | •     | •     |       |

| 9.81  | 6.5072  | 11.18  | . Q |    | • | • |    |
|-------|---------|--------|-----|----|---|---|----|
| 10.33 | 7.0008  | 11.98  | . Q |    | • |   |    |
| 10.84 | 7.5211  | 12.44  | . Q |    | • |   |    |
| 11.36 | 8.0738  | 13.50  | . Q |    | • |   |    |
| 11.87 | 8.6626  | 14.13  | . Q |    | • |   |    |
| 12.39 | 9.3656  | 18.86  | . Q |    | • |   |    |
| 12.91 | 10.2296 | 21.69  | . Q |    | • |   |    |
| 13.42 | 11.2074 | 24.20  | . Q |    | • |   |    |
| 13.94 | 12.2733 | 25.82  | . Q | •  | • |   | •  |
| 14.45 | 13.4633 | 30.02  | . Q |    | • |   |    |
| 14.97 | 14.8211 | 33.70  |     | Q. | • |   | •  |
| 15.48 | 16.5736 | 48.55  |     | Q  | • |   | •  |
| 16.00 | 18.8221 | 56.97  |     | .Q | • |   | •  |
| 16.52 | 24.0787 | 189.73 |     |    | • |   | Q. |
| 17.03 | 28.9624 | 39.46  |     | Q. |   |   | •  |
| 17.55 | 30.3960 | 27.81  | . Q | •  | • | • | •  |
| 18.06 | 31.4754 | 22.84  | . Q | •  | • | • | •  |
| 18.58 | 32.2784 | 14.84  | . Q |    | • | • | •  |
| 19.09 | 32.8704 | 12.94  | . Q | •  | • | • | •  |
| 19.61 | 33.3925 | 11.56  | . Q | •  | • | • | •  |
| 20.13 | 33.8629 | 10.51  | . Q | •  | • | • | •  |
| 20.64 | 34.2930 | 9.67   | . Q |    | • | • | •  |
| 21.16 | 34.6906 | 8.99   | .Q  |    | • | • | •  |
| 21.67 | 35.0614 | 8.41   | .Q  |    | • | • | •  |
| 22.19 | 35.4096 | 7.93   | .Q  | •  | • | • | •  |
| 22.70 | 35.7385 | 7.51   | .Q  |    | • | • | •  |
| 23.22 | 36.0505 | 7.14   | .Q  |    | • | • | •  |
| 23.73 | 36.3478 | 6.81   | .Q  | •  | • | • | •  |
| 24.25 | 36.6321 | 6.52   | .Q  |    | • | • | •  |
| 24.77 | 36.7711 | 0.00   | Q   | •  | • | • | •  |
|       |         |        |     |    |   |   |    |

\_\_\_\_\_\_

# Drainage C

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 104.40

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120

LOW LOSS FRACTION = 0.260

TIME OF CONCENTRATION(MIN.) = 15.18

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 27.23 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 11.83

| *****           | ********************** |            |    |      |       |       |       |  |  |  |
|-----------------|------------------------|------------|----|------|-------|-------|-------|--|--|--|
| TIME<br>(HOURS) | VOLUME<br>(AF)         | Q<br>(CFS) | 0. | 57.5 | 115.0 | 172.5 | 230.0 |  |  |  |
| 0.06            | 0.0000                 | 0.00       | Q  |      |       |       |       |  |  |  |
| 0.31            | 0.0497                 | 4.75       | Q  |      |       |       |       |  |  |  |
| 0.57            | 0.1497                 | 4.81       | Q  |      | •     |       | •     |  |  |  |
| 0.82            | 0.2507                 | 4.85       | Q  |      | •     |       | •     |  |  |  |
| 1.07            | 0.3528                 | 4.92       | Q  |      | •     |       | •     |  |  |  |
| 1.33            | 0.4559                 | 4.95       | Q  |      | •     |       | •     |  |  |  |
| 1.58            | 0.5602                 | 5.02       | Q  |      | •     |       | •     |  |  |  |
| 1.83            | 0.6656                 | 5.06       | Q  |      | •     |       | •     |  |  |  |
| 2.08            | 0.7723                 | 5.14       | Q  |      |       |       | •     |  |  |  |
| 2.34            | 0.8801                 | 5.18       | Q  |      |       |       | •     |  |  |  |
| 2.59            | 0.9892                 | 5.26       | Q  |      |       |       | •     |  |  |  |
| 2.84            | 1.0996                 | 5.30       | Q  |      |       |       | •     |  |  |  |
| 3.10            | 1.2114                 | 5.39       | Q  |      |       |       | •     |  |  |  |
| 3.35            | 1.3245                 | 5.43       | Q  |      |       |       |       |  |  |  |
| 3.60            | 1.4390                 | 5.52       | Q  |      |       |       | •     |  |  |  |
| 3.86            | 1.5550                 | 5.57       | Q  |      |       |       | •     |  |  |  |
| 4.11            | 1.6726                 | 5.67       | Q  |      |       |       |       |  |  |  |
| 4.36            | 1.7917                 | 5.72       | Q  |      |       |       | •     |  |  |  |
| 4.61            | 1.9124                 | 5.83       | .Q | •    | •     | •     | •     |  |  |  |

| 4.87  | 2.0348  | 5.88   | .Q  | •   |   | • | •  |
|-------|---------|--------|-----|-----|---|---|----|
| 5.12  | 2.1590  | 6.00   | .Q  |     | • |   |    |
| 5.37  | 2.2850  | 6.05   | .Q  | •   | • | • |    |
| 5.63  | 2.4129  | 6.18   | .Q  |     | • |   |    |
| 5.88  | 2.5427  | 6.24   | . Q |     |   |   | •  |
| 6.13  | 2.6745  | 6.37   | . Q |     |   |   |    |
| 6.39  | 2.8085  | 6.44   | .Q  | •   |   | - | •  |
| 6.64  | 2.9447  | 6.59   | . Q | •   | • | • | •  |
| 6.89  |         |        |     | •   | • | • | •  |
|       | 3.0832  | 6.66   | .Q  | •   | • | • | •  |
| 7.14  | 3.2242  | 6.82   | . Q | •   | • | • | •  |
| 7.40  | 3.3676  | 6.90   | . Q | •   | • | • | •  |
| 7.65  | 3.5137  | 7.07   | .Q  | •   | • | • | •  |
| 7.90  | 3.6626  | 7.16   | .Q  | •   | • | • | •  |
| 8.16  | 3.8143  | 7.35   | .Q  | •   |   | • | •  |
| 8.41  | 3.9692  | 7.45   | .Q  |     |   | • | •  |
| 8.66  | 4.1273  | 7.67   | .Q  | •   | • | • |    |
| 8.92  | 4.2887  | 7.78   | .Q  |     | • |   |    |
| 9.17  | 4.4538  | 8.01   | . Q |     |   |   |    |
| 9.42  | 4.6227  | 8.14   | . Q | _   | _ | _ |    |
| 9.68  | 4.7957  | 8.41   | .Q  | •   | • | • | •  |
| 9.93  | 4.9729  | 8.55   | . Q | •   | • | • | •  |
| 10.18 | 5.1548  | 8.85   |     | •   | • | • | •  |
| 10.18 |         |        | . Q | •   | • | • | •  |
|       | 5.3415  | 9.01   | .Q  | •   | • | • | •  |
| 10.69 | 5.5336  | 9.36   | . Q | •   | • | • | •  |
| 10.94 | 5.7313  | 9.55   | .Q  | •   | • | • | •  |
| 11.19 | 5.9353  | 9.96   | .Q  | •   | • | • | •  |
| 11.45 | 6.1458  | 10.18  | .Q  | •   |   | • | •  |
| 11.70 | 6.3636  | 10.66  | .Q  | •   |   | • | •  |
| 11.95 | 6.5892  | 10.92  | .Q  |     |   | • | •  |
| 12.20 | 6.8515  | 14.16  | . Q |     |   |   |    |
| 12.46 | 7.1623  | 15.56  | . Q | •   |   | • |    |
| 12.71 | 7.4957  | 16.33  | . Q | •   |   | • |    |
| 12.96 | 7.8417  | 16.76  | . Q |     |   |   |    |
| 13.22 | 8.2023  | 17.73  | . Q |     |   |   |    |
| 13.47 | 8.5786  | 18.28  | . Q |     |   |   |    |
| 13.72 | 8.9740  | 19.54  | . Q | •   | • | • | •  |
| 13.98 | 9.3903  | 20.28  | . Q | •   | • | • | •  |
| 14.23 | 9.8301  | 21.79  | _   | •   | • | • | •  |
| 14.23 | 10.2965 | 22.82  |     | •   | • | • | •  |
|       |         |        | . Q | •   | • | • | •  |
| 14.73 | 10.8016 | 25.49  | . Q | •   | • | • | •  |
| 14.99 | 11.3527 | 27.22  | . Q | •   | • | • | •  |
| 15.24 | 11.9723 | 32.05  | . Q | •   | • | • | •  |
| 15.49 | 12.6927 | 36.86  | . Q | •   | • | • | •  |
| 15.75 | 13.5619 | 46.28  | . Q | •   | • | • | •  |
| 16.00 | 14.8082 | 72.92  | •   | . Q | • | • | •  |
| 16.25 | 17.9666 | 229.18 | •   | •   |   | • | Q. |
| 16.51 | 20.7392 | 36.03  | . Q | •   | • | • | •  |
| 16.76 | 21.4227 | 29.35  | . Q | •   | • | • | •  |
| 17.01 | 21.9810 | 24.05  | . Q |     |   | • | •  |
| 17.27 | 22.4530 | 21.10  | . Q |     |   |   |    |
| 17.52 | 22.8710 | 18.88  | . Q |     |   |   |    |
| 17.77 | 23.2484 | 17.22  | . Q | •   |   | • |    |
| 18.02 | 23.5951 | 15.93  | . Q |     |   |   |    |
| 18.28 | 23.8788 | 11.20  | .Q  |     |   |   |    |
| 18.53 | 24.1048 | 10.41  | .Q  |     | • |   | •  |
| 18.78 | 24.3155 | 9.75   | . Q | •   | • | • | •  |
| 19.04 | 24.5134 | 9.18   | . Q | •   | • | • | •  |
|       |         |        |     | •   | • | • | •  |
| 19.29 | 24.7003 | 8.70   | . Q | •   | • | • | •  |
| 19.54 | 24.8777 | 8.27   | . Q | •   | • | • | •  |
| 19.80 | 25.0467 | 7.89   | .Q  | •   | • | • | •  |
| 20.05 | 25.2082 | 7.56   | . Q | •   | • | • | •  |
| 20.30 | 25.3631 | 7.26   | . Q | •   | • | • | •  |
| 20.55 | 25.5120 | 6.99   | .Q  | •   | • | • | •  |
| 20.81 | 25.6555 | 6.74   | .Q  | •   | • | • | •  |
| 21.06 | 25.7941 | 6.51   | . Q | •   | • | • | •  |
| 21.31 | 25.9281 | 6.31   | .Q  | •   | • | • | •  |
| 21.57 | 26.0580 | 6.12   | .Q  | •   | • | • | •  |
|       |         |        |     |     |   |   |    |

| 21.82 | 26.1840 | 5.94 | .Q |   |   |   | • |
|-------|---------|------|----|---|---|---|---|
| 22.07 | 26.3064 | 5.77 | .Q | • |   | • |   |
| 22.33 | 26.4255 | 5.62 | Q  | • | • |   |   |
| 22.58 | 26.5416 | 5.48 | Q  | • | • |   |   |
| 22.83 | 26.6547 | 5.34 | Q  | • | • |   |   |
| 23.08 | 26.7651 | 5.22 | Q  | • | • |   |   |
| 23.34 | 26.8730 | 5.10 | Q  | • | • |   |   |
| 23.59 | 26.9784 | 4.99 | Q  | • |   |   |   |
| 23.84 | 27.0816 | 4.88 | Q  | • | • |   |   |
| 24.10 | 27.1826 | 4.78 | Q  | • |   |   |   |
| 24.35 | 27.2326 | 0.00 | Q  |   | • |   | • |
|       |         |      |    |   |   |   |   |

# Drainage A

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 316.00

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120

LOW LOSS FRACTION = 0.330

TIME OF CONCENTRATION(MIN.) = 28.16

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 10

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20

24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 62.99 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 33.91

| *****           | ****           | *****      | **** | ****  | ***** | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 100.0 | 200.0 | 300.0 | 400.0 |
| 0.04            | 0.0000         | 0.00       | Q    |       |       |       |       |
| 0.51            | 0.2119         | 10.93      | .Q   | •     |       |       |       |
| 0.98            | 0.6385         | 11.07      | . Q  |       | •     |       |       |
| 1.45            | 1.0734         | 11.36      | .Q   |       | •     |       |       |
| 1.92            | 1.5169         | 11.51      | .Q   |       | •     |       |       |
| 2.39            | 1.9697         | 11.83      | .Q   | •     | •     | •     | •     |
| 2.86            | 2.4320         | 12.00      | .Q   |       | •     |       | •     |
| 3.33            | 2.9046         | 12.36      | .Q   | •     | •     | •     | •     |
| 3.80            | 3.3879         | 12.56      | .Q   | •     | •     | •     | •     |
| 4.27            | 3.8827         | 12.96      | .Q   | •     | •     | •     | •     |
| 4.74            | 4.3897         | 13.18      | .Q   | •     | •     | •     | •     |
| 5.21            | 4.9098         | 13.64      | .Q   | •     | •     | •     | •     |
| 5.67            | 5.4437         | 13.89      | .Q   | •     | •     | •     | •     |
| 6.14            | 5.9927         | 14.42      | .Q   |       |       |       |       |
| 6.61            | 6.5575         | 14.71      | .Q   | •     | •     | •     | •     |
| 7.08            | 7.1400         | 15.32      | .Q   | •     | •     | •     | •     |
| 7.55            | 7.7409         | 15.66      | .Q   | •     | •     | •     | •     |
| 8.02            | 8.3626         | 16.39      | .Q   |       |       |       | •     |
| 8.49            | 9.0063         | 16.80      | .Q   | •     | •     | •     | •     |

| 8.96     | 9.6749               | 17.68  | .Q         |     |   |   |     |
|----------|----------------------|--------|------------|-----|---|---|-----|
| 9.43     | 10.3703              | 18.17  | .Q         | •   | • | • | •   |
| 9.90     | 11.0964              | 19.27  | .Q         | •   |   | • |     |
| 10.37    | 11.8557              | 19.88  | . Q        | •   |   | • |     |
| 10.84    | 12.6541              | 21.28  | . Q        |     | • | • |     |
| 11.31    | 13.4953              | 22.09  | . Q        |     | • | • |     |
| 11.78    | 14.3883              | 23.96  | . Q        |     |   |   |     |
| 12.25    | 15.3390              | 25.06  | . Q        |     | • |   |     |
| 12.71    | 16.4967              | 34.63  | . Q        |     | • |   |     |
| 13.18    | 17.8734              | 36.35  | . Q        |     | • |   |     |
| 13.65    | 19.3674              | 40.68  | . Q        |     |   | _ |     |
| 14.12    | 20.9996              | 43.48  | . Q        |     |   |   |     |
| 14.59    | 22.8386              | 51.34  | . Q        |     |   | _ |     |
| 15.06    | 24.9424              | 57.14  | . Q        |     |   |   |     |
| 15.53    | 27.6104              | 80.42  |            | Q . |   |   |     |
| 16.00    | 31.1534              | 102.27 |            | Q   | - | - |     |
| 16.47    | 40.7151              | 390.76 |            |     | • |   | Q.  |
| 16.94    | 49.5613              | 65.38  | . Q        |     | • | - | χ.• |
| 17.41    | 51.7396              | 46.94  | . Q        | •   | • | • | •   |
| 17.88    | 53.3936              | 38.34  | . Q        | •   | • |   |     |
| 18.35    | 54.7513              | 31.66  | . Q        | •   | • | • | •   |
| 18.82    | 55.8110              | 22.97  | . Q        | •   | • | • | •   |
| 19.29    | 56.6551              | 20.55  | . Q        | •   | • | • | •   |
| 19.75    | 57.4164              | 18.70  | .0         | •   | • | • | •   |
| 20.22    | 58.1131              | 17.22  | .0         | •   | • | • | •   |
| 20.69    | 58.7577              | 16.02  | . Q        | •   | • | • | •   |
| 21.16    | 59.3594              | 15.01  | . Q        | •   | • | • | •   |
| 21.63    | 59.9248              | 14.15  | .Q         | •   | • | • | •   |
| 22.10    | 60.4592              | 13.40  | .Q<br>.Q   | •   | • | • | •   |
| 22.57    | 60.9665              | 12.75  | . Q        | •   | • | • | •   |
| 23.04    | 61.4501              | 12.73  | . Q<br>. Q | •   | • | • | •   |
| 23.51    | 61.9126              | 11.67  | .0         | •   | • | • | •   |
| 23.98    | 62.3563              | 11.21  | .0         | •   | • | • | •   |
| 24.45    | 62.7842              | 10.85  | . Q<br>. Q | •   | • | • | •   |
| 24.45    | 62.7842              | 0.00   | Q<br>Q     | •   | • | • | •   |
| <u> </u> | 04.99 <del>1</del> 0 |        |            | ·   | · |   | ·   |
|          |                      |        |            |     |   |   |     |

# Drainage B

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90 TOTAL CATCHMENT AREA(ACRES) = 127.90

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060

LOW LOSS FRACTION = 0.210

TIME OF CONCENTRATION(MIN.) = 32.10

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 10

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20

24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 29.17 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 10.05

| *****   | *****  | ***** | **** | **** | ***** | ***** | ***** |
|---------|--------|-------|------|------|-------|-------|-------|
| TIME    | VOLUME | Q     | 0.   | 40.0 | 80.0  | 120.0 | 160.0 |
| (HOURS) | (AF)   | (CFS) |      |      |       |       |       |
| 0.49    | 0.1043 | 5.21  | .Q   |      | ·     |       |       |
| 1.02    | 0.3361 | 5.28  | .Q   |      |       | •     | •     |
| 1.56    | 0.5728 | 5.43  | . Q  | •    |       | •     |       |
| 2.09    | 0.8150 | 5.52  | .Q   |      |       |       |       |
| 2.63    | 1.0629 | 5.70  | .Q   | •    | •     | •     | •     |
| 3.16    | 1.3169 | 5.79  | .Q   |      | •     | •     |       |
| 3.70    | 1.5775 | 6.00  | .Q   | •    |       | •     | •     |
| 4.23    | 1.8450 | 6.10  | .Q   | •    |       | •     | •     |
| 4.77    | 2.1200 | 6.34  | .Q   | •    |       | •     |       |
| 5.30    | 2.4030 | 6.46  | .Q   | •    |       | •     |       |
| 5.84    | 2.6948 | 6.74  | .Q   | •    |       | •     |       |
| 6.37    | 2.9959 | 6.88  | .Q   | •    |       |       | •     |
| 6.91    | 3.3073 | 7.21  | .Q   | •    |       |       | •     |
| 7.44    | 3.6298 | 7.38  | .Q   | •    | ě     | •     | •     |
| 7.98    | 3.9648 | 7.77  | .Q   | •    |       |       | •     |
| 8.51    | 4.3132 | 7.99  | .Q   | •    |       |       | •     |
| 9.05    | 4.6770 | 8.47  | . Q  | •    | ě     | •     | •     |
| 9.58    | 5.0574 | 8.74  | . Q  | •    | •     | •     | •     |
| 10.12   | 5.4574 | 9.35  | . Q  | •    |       |       | •     |

| 10.65 | 5.8788  | 9.71   | . Q |    |   |   |    |
|-------|---------|--------|-----|----|---|---|----|
| 11.19 | 6.3262  | 10.53  | . Q |    |   | • |    |
| 11.72 | 6.8025  | 11.01  | . Q |    |   |   |    |
| 12.26 | 7.3308  | 12.88  | . Q |    |   | • |    |
| 12.79 | 7.9734  | 16.18  | . Q |    |   | • |    |
| 13.32 | 8.7315  | 18.11  | . Q |    | • |   | •  |
| 13.86 | 9.5597  | 19.36  | . Q |    | • |   | •  |
| 14.40 | 10.4928 | 22.85  | . Q |    |   |   |    |
| 14.93 | 11.5603 | 25.44  | . Q |    | • |   | •  |
| 15.47 | 12.9464 | 37.26  | •   | Q. | • |   | •  |
| 16.00 | 14.7633 | 44.92  | •   | .Q | • |   | •  |
| 16.53 | 19.1223 | 152.26 |     |    |   |   | Q. |
| 17.07 | 23.1500 | 29.93  | . Q |    | • |   | •  |
| 17.61 | 24.2736 | 20.89  | . Q |    | • |   | •  |
| 18.14 | 25.1128 | 17.07  | . Q |    |   |   |    |
| 18.67 | 25.7457 | 11.56  | . Q |    |   |   |    |
| 19.21 | 26.2245 | 10.10  | . Q |    |   |   |    |
| 19.74 | 26.6474 | 9.03   | . Q |    | • |   | •  |
| 20.28 | 27.0288 | 8.22   | . Q |    | • |   | •  |
| 20.82 | 27.3779 | 7.57   | .Q  |    | • |   | •  |
| 21.35 | 27.7009 | 7.04   | .Q  |    | • |   | •  |
| 21.89 | 28.0023 | 6.60   | .Q  |    | • |   | •  |
| 22.42 | 28.2856 | 6.22   | .Q  |    |   | • | •  |
| 22.95 | 28.5533 | 5.89   | .Q  |    |   | • | •  |
| 23.49 | 28.8075 | 5.61   | .Q  |    | • | • | •  |
| 24.02 | 29.0497 | 5.35   | .Q  |    | • | • | •  |
| 24.56 | 29.1681 | 0.00   | Q   |    |   |   | •  |
|       |         |        |     |    |   |   |    |

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 104.40

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120

LOW LOSS FRACTION = 0.300

TIME OF CONCENTRATION(MIN.) = 15.44

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 10

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.34

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.72

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.95 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.59 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.20 24-HOUR POINT RAINFALL VALUE(INCHES) = 3.68

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 21.35 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 10.66

| *****   | *****  | ***** | *** | ***** | ***** | ***** | ***** |
|---------|--------|-------|-----|-------|-------|-------|-------|
| TIME    | VOLUME | Q     | 0.  | 47.5  | 95.0  | 142.5 | 190.0 |
| (HOURS) | (AF)   | (CFS) |     |       |       |       |       |
| 0.05    | 0.0000 | 0.00  |     |       |       |       |       |
| 0.05    | 0.0000 | 0.00  | Q   | •     | •     | •     | •     |
| 0.30    | 0.0400 | 3.76  | Q   | •     | •     | •     | •     |
| 0.56    | 0.1203 | 3.79  | Q   | •     |       | •     | •     |
| 0.82    | 0.2014 | 3.84  | Q   |       |       |       | •     |
| 1.07    | 0.2834 | 3.87  | Q   | •     | •     | •     | •     |
| 1.33    | 0.3662 | 3.92  | Q   |       |       |       |       |
| 1.59    | 0.4500 | 3.95  | Q   | •     | •     | •     | •     |
| 1.85    | 0.5347 | 4.01  | Q   | •     | •     | •     | •     |
| 2.10    | 0.6203 | 4.04  | Q   |       |       |       |       |
| 2.36    | 0.7070 | 4.11  | Q   |       |       |       |       |
| 2.62    | 0.7947 | 4.14  | Q   |       |       |       | •     |
| 2.88    | 0.8834 | 4.20  | Q   |       |       |       |       |
| 3.13    | 0.9732 | 4.24  | Q   | •     | •     | •     | •     |
| 3.39    | 1.0641 | 4.31  | Q   |       |       |       |       |
| 3.65    | 1.1561 | 4.35  | Q   | •     | •     | •     | •     |
| 3.91    | 1.2494 | 4.42  | Q   | •     | •     | •     | •     |
| 4.16    | 1.3439 | 4.46  | Q   | •     | •     | •     | •     |
| 4.42    | 1.4397 | 4.54  | Q   |       |       |       |       |
| 4.68    | 1.5368 | 4.59  | Q   | •     |       |       | •     |
|         |        |       |     |       |       |       |       |

| 4.93           | 1.6352             | 4.67           | Q          |     |   |   |    |
|----------------|--------------------|----------------|------------|-----|---|---|----|
| 5.19           | 1.7351             | 4.72           | Q          | •   | • | • | •  |
| 5.45           | 1.8365             | 4.81           | . Q        | •   | • | • | •  |
| 5.71<br>5.96   | 1.9394<br>2.0439   | 4.86<br>4.97   | .Q<br>.Q   | •   | • | • | •  |
| 6.22           | 2.1501             | 5.02           | .Q<br>.Q   | •   | • | • | •  |
| 6.48           | 2.2580             | 5.13           | . Q        |     | • |   | •  |
| 6.74           | 2.3677             | 5.19           | . Q        | •   | • | • | •  |
| 6.99<br>7.25   | 2.4793<br>2.5928   | 5.31<br>5.37   | .Q         | •   | • | • | •  |
| 7.23           | 2.7085             | 5.50           | .Q<br>.Q   | •   | • | • | •  |
| 7.77           | 2.8263             | 5.57           | .Q         | •   |   |   |    |
| 8.02           | 2.9464             | 5.72           | .Q         | •   | • |   |    |
| 8.28           | 3.0689             | 5.80           | . Q        | •   | • | • | •  |
| 8.54<br>8.79   | 3.1939<br>3.3216   | 5.96<br>6.05   | .Q<br>.Q   | •   | • | • | •  |
| 9.05           | 3.4521             | 6.23           | .Q         |     | • | • | •  |
| 9.31           | 3.5856             | 6.32           | . Q        | •   |   |   | •  |
| 9.57           | 3.7223             | 6.53           | . Q        | •   | • | • | •  |
| 9.82<br>10.08  | 3.8623<br>4.0059   | 6.64<br>6.87   | .Q<br>.Q   | •   | • | • | •  |
| 10.34          | 4.1534             | 7.00           | . Q<br>. Q |     | • | • | •  |
| 10.60          | 4.3050             | 7.26           | . Q        |     | • |   | •  |
| 10.85          | 4.4610             | 7.41           | . Q        | •   | • | • | •  |
| 11.11<br>11.37 | 4.6218<br>4.7878   | 7.72<br>7.89   | . Q        | •   | • | • | •  |
| 11.63          | 4.9595             | 8.26           | .Q<br>.Q   | •   | • | • | •  |
| 11.88          | 5.1373             | 8.46           | . Q        | •   | • |   |    |
| 12.14          | 5.3298             | 9.65           | . Q        | •   | • | • | •  |
| 12.40          | 5.5549             | 11.51          | . Q        | •   | • | • | •  |
| 12.65<br>12.91 | 5.8060<br>6.0668   | 12.10 $12.42$  | . Q<br>. Q | •   | • | • | •  |
| 13.17          | 6.3388             | 13.16          | . Q        | •   | • | • | •  |
| 13.43          | 6.6232             | 13.58          | . Q        | •   | • | • | •  |
| 13.68          | 6.9222             | 14.55          | . Q        | •   | • | • | •  |
| 13.94<br>14.20 | 7.2376<br>7.5733   | 15.11<br>16.46 | . Q<br>. Q | •   | • | • | •  |
| 14.46          | 7.9321             | 17.28          | . Q        | •   | • |   |    |
| 14.71          | 8.3215             | 19.34          | . Q        | •   | • | • | •  |
| 14.97          | 8.7469             | 20.67          | . Q        | •   | • | • | •  |
| 15.23<br>15.49 | 9.2259             | 24.38          | . Q        | •   | • | • | •  |
| 15.49          | 9.7776<br>10.4480  | 27.50<br>35.54 | . Q        | Q . | • | • | •  |
| 16.00          | 11.4174            | 55.62          | •          | .Q  | • | • | •  |
| 16.26          | 14.0056            | 187.78         | •          | •   | • | • | Q. |
| 16.51<br>16.77 | 16.2955<br>16.8258 | 27.56<br>22.31 | . Q        | •   | • | • | •  |
| 17.03          | 17.2568            | 18.23          | . Q<br>. Q | •   | • |   | •  |
| 17.29          | 17.6180            | 15.74          | . Q        | •   | • | • | •  |
| 17.54          | 17.9346            | 14.04          | . Q        | •   | • | • | •  |
| 17.80          | 18.2198            | 12.78          | . Q        | •   | • | • | •  |
| 18.06<br>18.32 | 18.4811<br>18.6988 | 11.80<br>8.68  | . Q<br>.Q  | •   | • | • | •  |
| 18.57          | 18.8768            | 8.07           | . Q        | •   | • |   |    |
| 18.83          | 19.0430            | 7.56           | .Q         | •   |   |   | •  |
| 19.09          | 19.1991            | 7.13           | . Q        | •   | • | • | •  |
| 19.35<br>19.60 | 19.3467<br>19.4868 | 6.75<br>6.42   | .Q<br>.Q   | •   | • | • | •  |
| 19.86          | 19.6204            | 6.14           | .Q<br>.Q   | •   | • | • | •  |
| 20.12          | 19.7481            | 5.88           | . Q        |     | • |   | •  |
| 20.37          | 19.8707            | 5.65           | .Q         | •   | • | • | •  |
| 20.63 20.89    | 19.9885<br>20.1021 | 5.44<br>5.25   | . Q        | •   | • | • | •  |
| 20.89          | 20.1021            | 5.45<br>5.07   | .Q<br>.Q   | •   | • | • | •  |
| 21.40          | 20.3181            | 4.91           | .Q         | •   | • | • | •  |
| 21.66          | 20.4210            | 4.77           | .Q         | •   | • |   | •  |
| 21.92          | 20.5209            | 4.63           | Q          | •   | • | • | •  |

| 22.18 | 20.6180 | 4.50 | Q |   | •    |   |
|-------|---------|------|---|---|------|---|
| 22.43 | 20.7125 | 4.38 | Q |   |      |   |
| 22.69 | 20.8046 | 4.27 | Q | • |      | • |
| 22.95 | 20.8944 | 4.17 | Q | • |      | • |
| 23.21 | 20.9821 | 4.07 | Q | • |      | • |
| 23.46 | 21.0677 | 3.98 | Q | • |      | • |
| 23.72 | 21.1515 | 3.90 | Q | • |      | • |
| 23.98 | 21.2335 | 3.81 | Q | • |      | • |
| 24.23 | 21.3139 | 3.75 | Q | • |      | • |
| 24.49 | 21.3537 | 0.00 | Q | • |      | • |
|       |         |      |   |   | <br> |   |

b) Expected Value (50% Confidence) Events (

i. Infiltration Analysis

# INFILTRATION RATE CALCULATION SUMMARY PROPOSED NEWPORT BANNING RANCH PROJECT 100-YEAR EXPECTED VALUE EVENT

|                        | Proposed | Condition |        |
|------------------------|----------|-----------|--------|
| Node                   | Α        | В         | С      |
| Total Area<br>(ac)     | 315.98   | 127.93    | 104.35 |
| Y                      | 0.70     | 0.82      | 0.74   |
| Ybar                   | 0.30     | 0.18      | 0.26   |
| Average a <sub>p</sub> | 0.47     | 0.32      | 0.61   |
| Total Fm<br>(in/hr)    | 0.14     | 0.10      | 0.18   |

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

4.49

8.76

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 315.98 0.70

Ybar = 1 - Y =

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Average a<sub>p</sub> = 0.47

|     |                           |             |       |       |            |       |                    |        |       |          |                |            |                | TULAI                     | Fm (in/hr) =              | <u>0.14</u>                               |
|-----|---------------------------|-------------|-------|-------|------------|-------|--------------------|--------|-------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |             |       |       |            |       | Offsite Area       | I      |       |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |       | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S     | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%         | 7.57  | А     | Pervious   | 0.76  | 0.002              | 32     | 21.25 | 4.25     | 0.00           | 0.000      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
| '   | Olban Cover - Roadway     | 1076        | 7.51  | ^     | Impervious | 6.81  | 0.022              | 98     | 0.20  | 0.04     | 0.95           | 0.020      |                |                           |                           |                                           |
| 2   | Urban Cover - Roadway     | 10%         | 2.65  | D     | Pervious   | 0.27  | 0.001              | 75     | 3.33  | 0.67     | 0.45           | 0.000      | 0.10           | 0.30                      | 0.03                      | 0.000                                     |
| 2   | Olbail Cover - Roadway    | 1076        | 2.00  | ם     | Impervious | 2.39  | 0.008              | 98     | 0.20  | 0.04     | 0.95           | 0.007      |                |                           |                           |                                           |
| 3   | Single Family Residential | 20%         | 45.27 | А     | Pervious   | 9.05  | 0.029              | 32     | 21.25 | 4.25     | 0.00           | 0.000      | 0.20           | 0.30                      | 0.06                      | 0.009                                     |
| 3   | (>10 dwellings/acre)      | 2076        | 45.27 | ^     | Impervious | 36.22 | 0.115              | 98     | 0.20  | 0.04     | 0.95           | 0.109      |                |                           |                           |                                           |
| 4   | Single Family Residential | 20%         | 31.84 | В     | Pervious   | 6.37  | 0.020              | 56     | 7.86  | 1.57     | 0.18           | 0.004      | 0.20           | 0.30                      | 0.06                      | 0.006                                     |
| 4   | (>10 dwellings/acre)      | 2076        | 31.04 | ם     | Impervious | 25.47 | 0.081              | 98     | 0.20  | 0.04     | 0.95           | 0.076      |                |                           |                           |                                           |
| 5   | Single Family Residential | 20%         | 26.51 | D     | Pervious   | 5.30  | 0.017              | 75     | 3.33  | 0.67     | 0.45           | 0.008      | 0.20           | 0.30                      | 0.06                      | 0.005                                     |
| J   | (>10 dwellings/acre)      | 2076        | 20.51 | D     | Impervious | 21.21 | 0.067              | 98     | 0.20  | 0.04     | 0.95           | 0.064      |                |                           |                           |                                           |
| 6   | Commercial / Industrial   | 10%         | 31.91 | D     | Pervious   | 3.19  | 0.010              | 75     | 3.33  | 0.67     | 0.45           | 0.005      | 0.10           | 0.30                      | 0.03                      | 0.003                                     |
| Ü   | Commercial / madstrial    | 1070        | 31.31 | D     | Impervious | 28.72 | 0.091              | 98     | 0.20  | 0.04     | 0.95           | 0.086      |                |                           |                           |                                           |
| 7   | Oil Operations            | 100%        | 4.70  | D     | Pervious   | 4.70  | 0.015              | 93     | 0.75  | 0.15     | 0.82           | 0.012      | 1.00           | 0.30                      | 0.30                      | 0.004                                     |
| '   | Oil Operations            | 10076       | 4.70  | D     | Impervious | 0.00  | 0.000              | 98     | 0.20  | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
| 8   | Open Space / Habitat Area | 100%        | 16.64 | А     | Pervious   | 16.64 | 0.053              | 46     | 11.74 | 2.35     | 0.07           | 0.004      | 1.00           | 0.30                      | 0.30                      | 0.016                                     |
| 3   | Open opace / Habitat Area | 10070       | 10.04 | A     | Impervious | 0.00  | 0.000              | 98     | 0.20  | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
| 9   | Oxbow Loop Channel        | 10%         | 6.55  | А     | Pervious   | 0.66  | 0.002              | 78     | 2.82  | 0.56     | 0.51           | 0.001      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
| 9   | CADOW LOOP CHARITIES      | 1070        | 0.55  | ^     | Impervious | 5.90  | 0.019              | 98     | 0.20  | 0.04     | 0.95           | 0.018      |                |                           |                           |                                           |

### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

|     |                           |                        |       |       |            |       | Onsite Area        | 1      |      |          |            |            |                |                           |                           |                                           |
|-----|---------------------------|------------------------|-------|-------|------------|-------|--------------------|--------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           | Pervious-              | Area  | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |
| No. | Land Use                  | ness<br>(%)            | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%                    | 15.02 | D     | Pervious   | 1.50  | 0.005              | 75     | 3.33 | 0.67     | 0.45       | 0.002      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
|     | Olbali Covel - Roadway    | 1076                   | 15.02 | D     | Impervious | 13.52 | 0.043              | 98     | 0.20 | 0.04     | 0.95       | 0.041      |                |                           |                           |                                           |
| 2   | Single Family Residential | 35%                    | 4.22  | В     | Pervious   | 1.48  | 0.005              | 56     | 7.86 | 1.57     | 0.18       | 0.001      | 0.35           | 0.30                      | 0.11                      | 0.001                                     |
|     | (Condominiums)            | 3370                   | 7.22  | D     | Impervious | 2.74  | 0.009              | 98     | 0.20 | 0.04     | 0.95       | 0.008      |                |                           |                           |                                           |
| 3   | Single Family Residential | 35%                    | 34.29 | D     | Pervious   | 12.00 | 0.038              | 75     | 3.33 | 0.67     | 0.45       | 0.017      | 0.35           | 0.30                      | 0.11                      | 0.011                                     |
| 3   | (Condominiums)            | 3376                   | 54.25 | D     | Impervious | 22.29 | 0.071              | 98     | 0.20 | 0.04     | 0.95       | 0.067      |                |                           |                           |                                           |
| 4   | Public Park               | 85%                    | 12.22 | В     | Pervious   | 10.39 | 0.033              | 56     | 7.86 | 1.57     | 0.18       | 0.006      | 0.85           | 0.30                      | 0.26                      | 0.010                                     |
|     | r ubile r ark             | 0370                   | 12.22 |       | Impervious | 1.83  | 0.006              | 98     | 0.20 | 0.04     | 0.95       | 0.005      |                |                           |                           |                                           |
| 5   | Public Park               | 85%                    | 10.74 | D     | Pervious   | 9.13  | 0.029              | 75     | 3.33 | 0.67     | 0.45       | 0.013      | 0.85           | 0.30                      | 0.26                      | 0.009                                     |
| J   | T UDIIC T AIK             | 0576                   | 10.74 | D     | Impervious | 1.61  | 0.005              | 98     | 0.20 | 0.04     | 0.95       | 0.005      |                |                           |                           |                                           |
| 6   | Oil Operations            | 100%                   | 4.78  | А     | Pervious   | 4.78  | 0.015              | 78     | 2.82 | 0.56     | 0.51       | 0.008      | 1.00           | 0.30                      | 0.30                      | 0.005                                     |
| U   | Oil Operations            | 10076                  | 4.70  | ^     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000      |                |                           |                           |                                           |
| 7   | Open Space / Habitat Area | 100%                   | 61.07 | D     | Pervious   | 61.07 | 0.193              | 83     | 2.05 | 0.41     | 0.61       | 0.117      | 1.00           | 0.30                      | 0.30                      | 0.058                                     |
|     | Орен Орасе / Парнан Агеа  | ce / Habitat Area 100% | 01.07 | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95       | 0.000      |                |                           |                           |                                           |

Total Area = 315.98

Y = **0.70** 

Total  $F_m = 0.14$ 

Ybar = 1 - Y = **0.30** 

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_j = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a + S)P_{24}}$$

4.49

8.76

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

P24, 25-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 127.93

 $F_m = a_p F_p$ ap - See Figure C-4

0.82 Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 0.32

0.18

Total Fm (in/hr) = 0.10

|     |                           |              |        |       |            |       | Offaita A          |        |      |          |                |            |                |                           | 1 111 (111/111) =         | 0.10                                      |
|-----|---------------------------|--------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |              |        |       | , ,        |       | Offsite Area       |        | 1    |          |                |            | 1              |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                |                           | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%          | 5.35   | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.45           | 0.002      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
| '   | Olban Cover - Roadway     | 1078         | 5.55   |       | Impervious | 4.82  | 0.038              | 98     | 0.20 | 0.04     | 0.95           | 0.036      |                |                           |                           |                                           |
| 2   | Single Family Residential | 20%          | 5.94   | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.45           | 0.004      | 0.20           | 0.30                      | 0.06                      | 0.003                                     |
| _   | (>10 dwellings/acre)      | 2076         | 5.54   |       | Impervious | 4.75  | 0.037              | 98     | 0.20 | 0.04     | 0.95           | 0.035      |                |                           |                           |                                           |
| 3   | Commercial / Industrial   | 10%          | 78.14  | D     | Pervious   | 7.81  | 0.061              | 75     | 3.33 | 0.67     | 0.45           | 0.028      | 0.10           | 0.30                      | 0.03                      | 0.018                                     |
| 3   | Commercial/industrial     | 10 /6        | 70.14  | D     | Impervious | 70.33 | 0.550              | 98     | 0.20 | 0.04     | 0.95           | 0.521      |                |                           |                           |                                           |
| 4   | School                    | 60%          | 9.91   | D     | Pervious   | 5.95  | 0.046              | 75     | 3.33 | 0.67     | 0.45           | 0.021      | 0.60           | 0.30                      | 0.18                      | 0.014                                     |
| 4   | Scrioor                   | 0078         | 3.31   |       | Impervious | 3.96  | 0.031              | 98     | 0.20 | 0.04     | 0.95           | 0.029      |                |                           |                           |                                           |
|     |                           |              |        |       |            |       | Onsite Area        | 1      |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-    | Area   | Soil  | Pervious/  | Area  | $A_{j}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%)  | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Single Family Residential | 35%          | 4.43   | D     | Pervious   | 1.55  | 0.012              | 75     | 3.33 | 0.67     | 0.45           | 0.006      | 0.35           | 0.30                      | 0.11                      | 0.004                                     |
|     | (Condominiums)            | 35%          | 4.43   |       | Impervious | 2.88  | 0.023              | 98     | 0.20 | 0.04     | 0.95           | 0.021      |                |                           |                           |                                           |
| 2   | Open Space / Habitat Area | 100%         | 24.16  | D     | Pervious   | 24.16 | 0.189              | 83     | 2.05 | 0.41     | 0.61           | 0.114      | 1.00           | 0.30                      | 0.30                      | 0.057                                     |
| _   | Open Space / Habitat Area | 100%         | 24.10  |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
|     |                           | Total Area = | 127.93 |       |            |       |                    |        |      |          | Y =            | 0.82       |                |                           | Total F <sub>m</sub> =    | 0.10                                      |

Ybar = 1 - Y = 0.18

#### PROPOSED NEWPORT BANNING RANCH PROJECT

**100-YEAR EXPECTED VALUE EVENT** 

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

P24, 25-Year Storm Event for Non-Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

 $F_m = a_p F_p$ 

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

Total Area (ac) = 104.35 0.74

4.49

8.76

ap - See Figure C-4

P24, 25-Year Storm Event for Mountainous Area (in) =

Ybar = 1 - Y =

Fp - See Table C-2 Average a<sub>p</sub> = 0.61

CN - See Figure C-1 and C-3

Total Fm (in/hr) = 0.18

|     |                           |             |        |       |            |       |                    |        |      |          |                |            |                | Total                     | riii (iii/iii <i>)</i> =  | 0.10                                      |
|-----|---------------------------|-------------|--------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|
|     |                           |             |        |       |            |       | Offsite Area       | ļ      |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-   | Area   | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Commercial / Industrial   | 10%         | 1.95   | D     | Pervious   | 0.20  | 0.002              | 75     | 3.33 | 0.67     | 0.45           | 0.001      | 0.10           | 0.30                      | 0.03                      | 0.001                                     |
|     | Commercial / industrial   | 1076        | 1.93   | Б     | Impervious | 1.76  | 0.017              | 98     | 0.20 | 0.04     | 0.95           | 0.016      |                |                           |                           |                                           |
| 2   | Oil Operations            | 100%        | 6.26   | D     | Pervious   | 6.26  | 0.060              | 93     | 0.75 | 0.15     | 0.82           | 0.049      | 1.00           | 0.30                      | 0.30                      | 0.018                                     |
| _   | On Operations             | 10070       | 0.20   |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
|     |                           |             |        |       |            |       | Onsite Area        | 1      |      |          |                |            |                |                           |                           |                                           |
|     |                           | Pervious-   | Area   | Soil  | Pervious/  | Area  | Aj                 | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |
| No. | Land Use                  | ness<br>(%) | (ac)   | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | $Y_{j}$        | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) |
| 1   | Urban Cover - Roadway     | 10%         | 11.35  | D     | Pervious   | 1.14  | 0.011              | 75     | 3.33 | 0.67     | 0.45           | 0.005      | 0.10           | 0.30                      | 0.03                      | 0.003                                     |
| 1   | Ofban Cover - Roadway     | 10%         | 11.35  | D     | Impervious | 10.22 | 0.098              | 98     | 0.20 | 0.04     | 0.95           | 0.093      |                |                           |                           |                                           |
| 2   | Single Family Residential | 35%         | 41.68  | D     | Pervious   | 14.59 | 0.140              | 75     | 3.33 | 0.67     | 0.45           | 0.064      | 0.35           | 0.30                      | 0.11                      | 0.042                                     |
| _   | (Condominiums)            | 3376        | 41.00  |       | Impervious | 27.09 | 0.260              | 98     | 0.20 | 0.04     | 0.95           | 0.246      |                |                           |                           |                                           |
| 3   | Public Park               | 85%         | 9.61   | D     | Pervious   | 8.17  | 0.078              | 75     | 3.33 | 0.67     | 0.45           | 0.036      | 0.85           | 0.30                      | 0.26                      | 0.023                                     |
| 3   | 1 ublic I alk             | 0376        | 5.01   | D     | Impervious | 1.44  | 0.014              | 98     | 0.20 | 0.04     | 0.95           | 0.013      |                |                           |                           |                                           |
| 4   | Oil Operations            | 100%        | 9.76   | D     | Pervious   | 9.76  | 0.094              | 93     | 0.75 | 0.15     | 0.82           | 0.077      | 1.00           | 0.30                      | 0.30                      | 0.028                                     |
| _   | Oii Operations            | 10070       | 3.10   | D     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
| 5   | Open Space / Habitat Area | 100%        | 23.74  | D     | Pervious   | 23.74 | 0.228              | 83     | 2.05 | 0.41     | 0.61           | 0.138      | 1.00           | 0.30                      | 0.30                      | 0.068                                     |
|     | Open Opace / Habitat Area | 100 /6      | 23.74  |       | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.95           | 0.000      |                |                           |                           |                                           |
|     |                           | T-1-1 A     | 404.05 |       |            |       |                    |        |      |          |                | 0.74       |                |                           | T-4-1 F                   | 0.40                                      |

Total Area = 104.35 Y = 0.74 Total F<sub>m</sub> = 0.18

Ybar = 1 - Y =

# INFILTRATION RATE CALCULATION SUMMARY PROPOSED NEWPORT BANNING RANCH PROJECT 2-YEAR EXPECTED VALUE EVENT

|                        | Proposed | Condition |        |
|------------------------|----------|-----------|--------|
| Node                   | Α        | В         | С      |
| Total Area<br>(ac)     | 315.98   | 127.93    | 104.35 |
| Y                      | 0.53     | 0.63      | 0.49   |
| Ybar                   | 0.47     | 0.37      | 0.51   |
| Average a <sub>p</sub> | 0.47     | 0.32      | 0.61   |
| Total Fm<br>(in/hr)    | 0.28     | 0.19      | 0.37   |

#### PROPOSED NEWPORT BANNING RANCH PROJECT

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

 $S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$ 

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

1.44

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 315.98

0.53

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y =

Average a<sub>p</sub> = 0.47

Total Fm (in/hr) =

|     |        |                            |             |       |       |            |       |                    |        |       |                |            |            |       | Total                     | Fm (in/hr) =              | 0.28                                      | 7          |
|-----|--------|----------------------------|-------------|-------|-------|------------|-------|--------------------|--------|-------|----------------|------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|------------|
|     |        |                            |             |       |       |            | Offs  | ite Area           |        |       |                |            |            |       |                           |                           |                                           |            |
| NI- | Infil. | Land Use                   | Pervious-   | Area  | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |       | Low Loss       | Rate, Ybar |            |       | Max. Los                  | ,                         |                                           |            |
| No. | Class  | Land Use                   | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S     | l <sub>a</sub> | $Y_{j}$    | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | $a_p^*A_j$ |
| 1   | 9      | Urban Cover - Roadway      | 10%         | 7.57  | А     | Pervious   | 0.76  | 0.002              | 32     | 21.25 | 4.25           | 0.30       | 0.001      | 0.10  | 0.60                      | 0.06                      | 0.001                                     | 0.002      |
| '   | 3      | Olbail Cover - Roadway     | 1070        | 7.51  | ζ     | Impervious | 6.81  | 0.022              | 98     | 0.20  | 0.04           | 0.85       | 0.018      |       |                           |                           |                                           |            |
| 2   | 9      | Urban Cover - Roadway      | 10%         | 2.65  | D     | Pervious   | 0.27  | 0.001              | 75     | 3.33  | 0.67           | 0.10       | 0.000      | 0.10  | 0.60                      | 0.06                      | 0.001                                     | 0.001      |
| 2   | 9      | Orban Cover - Roadway      | 1076        | 2.00  | D     | Impervious | 2.39  | 0.008              | 98     | 0.20  | 0.04           | 0.85       | 0.006      |       |                           |                           |                                           |            |
| 3   | 9      | Single Family Residential  | 20%         | 45.27 | А     | Pervious   | 9.05  | 0.029              | 32     | 21.25 | 4.25           | 0.30       | 0.009      | 0.20  | 0.60                      | 0.12                      | 0.017                                     | 0.029      |
| 3   | 9      | (>10 dwellings/acre)       | 20%         | 45.27 | A     | Impervious | 36.22 | 0.115              | 98     | 0.20  | 0.04           | 0.85       | 0.097      |       |                           |                           |                                           |            |
| 4   | 9      | Single Family Residential  | 20%         | 31.84 | В     | Pervious   | 6.37  | 0.020              | 56     | 7.86  | 1.57           | 0.00       | 0.000      | 0.20  | 0.60                      | 0.12                      | 0.012                                     | 0.020      |
| 4   | 9      | (>10 dwellings/acre)       | 20%         | 31.04 | D     | Impervious | 25.47 | 0.081              | 98     | 0.20  | 0.04           | 0.85       | 0.068      |       |                           |                           |                                           |            |
| 5   | 0      | Single Family Residential  | 20%         | 26.51 | D     | Pervious   | 5.30  | 0.017              | 75     | 3.33  | 0.67           | 0.10       | 0.002      | 0.20  | 0.60                      | 0.12                      | 0.010                                     | 0.017      |
| э   | 9      | (>10 dwellings/acre)       | 20%         | 20.51 | D     | Impervious | 21.21 | 0.067              | 98     | 0.20  | 0.04           | 0.85       | 0.057      |       |                           |                           |                                           |            |
| 6   | 0      | Communical / Industrial    | 10%         | 31.91 | D     | Pervious   | 3.19  | 0.010              | 75     | 3.33  | 0.67           | 0.10       | 0.001      | 0.10  | 0.60                      | 0.06                      | 0.006                                     | 0.010      |
| 6   | 9      | Commercial / Industrial    | 10%         | 31.91 | D     | Impervious | 28.72 | 0.091              | 98     | 0.20  | 0.04           | 0.85       | 0.077      |       |                           |                           |                                           |            |
| 7   |        | 011.0                      | 4000/       | . =0  | ,     | Pervious   | 4.70  | 0.015              | 93     | 0.75  | 0.15           | 0.56       | 0.008      | 1.00  | 0.60                      | 0.60                      | 0.009                                     | 0.015      |
| 1   | 1      | Oil Operations             | 100%        | 4.70  | D     | Impervious | 0.00  | 0.000              | 98     | 0.20  | 0.04           | 0.85       | 0.000      |       |                           |                           |                                           |            |
| _   | 0      | On an Orange (Habitat Assa | 4000/       | 40.04 | Δ.    | Pervious   | 16.64 | 0.053              | 46     | 11.74 | 2.35           | 0.05       | 0.003      | 1.00  | 0.60                      | 0.60                      | 0.032                                     | 0.053      |
| 8   | 6      | Open Space / Habitat Area  | 100%        | 16.64 | Α     | Impervious | 0.00  | 0.000              | 98     | 0.20  | 0.04           | 0.85       | 0.000      |       |                           |                           |                                           |            |
| _   |        |                            | 100/        | 2.55  |       | Pervious   | 0.66  | 0.002              | 78     | 2.82  | 0.56           | 0.14       | 0.000      | 0.10  | 0.60                      | 0.06                      | 0.001                                     | 0.002      |
| 9   | 1      | Oxbow Loop Channel         | 10%         | 6.55  | 55 A  | Impervious | 5.90  | 0.019              | 98     | 0.20  | 0.04           | 0.85       | 0.016      |       |                           |                           |                                           |            |

# PROPOSED NEWPORT BANNING RANCH PROJECT 2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA A

|     |        |                           |             |       |       |            | Ons   | site Area          |        |      |                |                |            |       |                           |                           |                                           |                                |
|-----|--------|---------------------------|-------------|-------|-------|------------|-------|--------------------|--------|------|----------------|----------------|------------|-------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     | Infil. |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss       | Rate, Ybar     |            |       | Max. Loss                 | Rate, F <sub>m</sub>      |                                           |                                |
| No. | Class  | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | Ø    | l <sub>a</sub> | Y <sub>j</sub> | $Y_j^*A_j$ | $a_p$ | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9      | Urban Cover - Roadway     | 10%         | 15.02 | D     | Pervious   | 1.50  | 0.005              | 75     | 3.33 | 0.67           | 0.10           | 0.000      | 0.10  | 0.60                      | 0.06                      | 0.003                                     | 0.005                          |
|     | 3      | Olbaii Covei - Roadway    | 1076        | 13.02 | ם     | Impervious | 13.52 | 0.043              | 98     | 0.20 | 0.04           | 0.85           | 0.036      |       |                           |                           |                                           |                                |
| 2   | 9      | Single Family Residential | 35%         | 4.22  | В     | Pervious   | 1.48  | 0.005              | 56     | 7.86 | 1.57           | 0.00           | 0.000      | 0.35  | 0.60                      | 0.21                      | 0.003                                     | 0.005                          |
|     | 3      | (Condominium)             | 33 /6       | 4.22  | ם     | Impervious | 2.74  | 0.009              | 98     | 0.20 | 0.04           | 0.85           | 0.007      |       |                           |                           |                                           |                                |
| 3   | 9      | Single Family Residential | 35%         | 34.29 | D     | Pervious   | 12.00 | 0.038              | 75     | 3.33 | 0.67           | 0.10           | 0.004      | 0.35  | 0.60                      | 0.21                      | 0.023                                     | 0.038                          |
| 3   | 9      | (Condominium)             | 33 /6       | 34.29 | D     | Impervious | 22.29 | 0.071              | 98     | 0.20 | 0.04           | 0.85           | 0.060      |       |                           |                           |                                           |                                |
| 1   | 9      | Public Park               | 85%         | 12.22 | В     | Pervious   | 10.39 | 0.033              | 56     | 7.86 | 1.57           | 0.00           | 0.000      | 0.85  | 0.60                      | 0.51                      | 0.020                                     | 0.033                          |
| 4   | 9      | Fublic Falk               | 05 /0       | 12.22 | ь     | Impervious | 1.83  | 0.006              | 98     | 0.20 | 0.04           | 0.85           | 0.005      |       |                           |                           |                                           |                                |
| 5   | 9      | Public Park               | 85%         | 10.74 | D     | Pervious   | 9.13  | 0.029              | 75     | 3.33 | 0.67           | 0.10           | 0.003      | 0.85  | 0.60                      | 0.51                      | 0.017                                     | 0.029                          |
| 3   | 9      | Fublic Falk               | 05 /0       | 10.74 | D     | Impervious | 1.61  | 0.005              | 98     | 0.20 | 0.04           | 0.85           | 0.004      |       |                           |                           |                                           |                                |
| 6   | 1      | Oil Operations            | 100%        | 4.78  | Α     | Pervious   | 4.78  | 0.015              | 78     | 2.82 | 0.56           | 0.14           | 0.002      | 1.00  | 0.60                      | 0.60                      | 0.009                                     | 0.015                          |
| 0   | 1      | Oil Operations            | 100%        | 4.70  | A     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.85           | 0.000      |       |                           |                           |                                           |                                |
| 7   | 6      | Open Space / Habitat Area | 100%        | 61.07 | D     | Pervious   | 61.07 | 0.193              | 83     | 2.05 | 0.41           | 0.24           | 0.046      | 1.00  | 0.60                      | 0.60                      | 0.116                                     | 0.193                          |
|     | J      | Open Opace / Habitat Area | 10076       | 01.07 | נ     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04           | 0.85           | 0.000      |       |                           |                           |                                           |                                |

Total Area = 315.98 Y = 0.53 Total  $F_m = 0.28$  0.47

Ybar = 1 - Y = **0.47** 

#### PROPOSED NEWPORT BANNING RANCH PROJECT

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA B

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}}$$

1.44

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 127.93

ap - See Figure C-4 0.63 Fp - See Table C-2

Ybar = 1 - Y = 0.37 Average a<sub>p</sub> = 0.32

 $F_m = a_p F_p$ 

|     |        |                                        |              |            |       |            |       |                    |        |      |          |                |            |                | Total                     | Fm (in/hr) =              | <u>0.19</u>                               |                                |
|-----|--------|----------------------------------------|--------------|------------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|     |        |                                        |              |            |       |            | Offs  | site Area          |        |      |          |                |            |                |                           |                           |                                           |                                |
|     | Infil. |                                        | Pervious-    | Area       | Soil  | Pervious/  | Area  | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                               | ness<br>(%)  | (ac)       | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9      | Urban Cover - Roadway                  | 10%          | 5.35       | D     | Pervious   | 0.54  | 0.004              | 75     | 3.33 | 0.67     | 0.10           | 0.000      | 0.10           | 0.60                      | 0.06                      | 0.003                                     | 0.004                          |
| '   | 9      | Olbali Covel - Roadway                 | 1076         | 5.55       | D     | Impervious | 4.82  | 0.038              | 98     | 0.20 | 0.04     | 0.85           | 0.032      |                |                           |                           |                                           |                                |
| 2   | 9      | Single Family Residential              | 20%          | 5.94       | D     | Pervious   | 1.19  | 0.009              | 75     | 3.33 | 0.67     | 0.10           | 0.001      | 0.20           | 0.60                      | 0.12                      | 0.006                                     | 0.009                          |
| _   | 9      | (>10 dwellings/acre)                   | 2076         | 5.54       | D     | Impervious | 4.75  | 0.037              | 98     | 0.20 | 0.04     | 0.85           | 0.031      |                |                           |                           |                                           |                                |
| 3   | 9      | Commercial / Industrial                | 10%          | 78.14      | _     | Pervious   | 7.81  | 0.061              | 75     | 3.33 | 0.67     | 0.10           | 0.006      | 0.10           | 0.60                      | 0.06                      | 0.037                                     | 0.061                          |
| 3   | 9      | Commercial / industrial                | 10%          | 70.14      | D     | Impervious | 70.33 | 0.550              | 98     | 0.20 | 0.04     | 0.85           | 0.466      |                |                           |                           |                                           |                                |
| 4   | 9      | School                                 | 60%          | 9.91       | D     | Pervious   | 5.95  | 0.046              | 75     | 3.33 | 0.67     | 0.10           | 0.005      | 0.60           | 0.60                      | 0.36                      | 0.028                                     | 0.046                          |
| 4   | 9      | SCHOOL                                 | 60%          | 9.91       | D     | Impervious | 3.96  | 0.031              | 98     | 0.20 | 0.04     | 0.85           | 0.026      |                |                           |                           |                                           |                                |
|     |        |                                        |              |            |       |            | Ons   | site Area          |        |      |          |                |            |                |                           |                           |                                           |                                |
|     | Infil. |                                        | Pervious-    | Area       | Soil  | Pervious/  | Area  | $A_j$              | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No. | Class  | Land Use                               | ness<br>(%)  | (ac)       | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1   | 9      | Single Family Residential              | 35%          | 4.43       | D     | Pervious   | 1.55  | 0.012              | 75     | 3.33 | 0.67     | 0.10           | 0.001      | 0.35           | 0.60                      | 0.21                      | 0.007                                     | 0.012                          |
|     | 9      | (Condominium)                          | 3376         | 4.43       | D     | Impervious | 2.88  | 0.023              | 98     | 0.20 | 0.04     | 0.85           | 0.019      |                |                           |                           |                                           |                                |
| 2   | 6      | Open Space / Habitat Area              | 100%         | 2/ 16      | D     | Pervious   | 24.16 | 0.189              | 83     | 2.05 | 0.41     | 0.24           | 0.045      | 1.00           | 0.60                      | 0.60                      | 0.113                                     | 0.189                          |
|     | 0      | Open Space / Habitat Area 100% 24.16 D | U            | Impervious | 0.00  | 0.000      | 98    | 0.20               | 0.04   | 0.85 | 0.000    |                |            |                |                           |                           |                                           |                                |
|     |        |                                        | Total Area = | 127.93     |       |            |       |                    |        |      |          | Y =            | 0.63       |                |                           | Total F <sub>m</sub> =    | 0.19                                      | 0.32                           |

Ybar = 1 - Y =

#### PROPOSED NEWPORT BANNING RANCH PROJECT

2-YEAR EXPECTED VALUE EVENT

Single Area Unit Hydrograph Designation: DRAINAGE AREA C

1) Loss Rate Calculation - Area-Averaged Low Loss Rate Fraction, Ybar and Area-Averaged maximum Loss Rate, F<sub>m</sub> (inch/hour), equations taken from Orange County Hydrology Manual, Section C

$$A_{j} = \frac{A_{i}}{A_{1} + A_{2} + \dots + A_{m}}$$

$$S = \frac{1000}{CN} - 10 \qquad I_a = 0.2 \, S$$

CN - See Figure C-1 and C-3

$$Y_j = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a + S)P_{24}}$$

1.44

2.67

P24, 2-Year Storm Event for Non-Mountainous Area (in) =

P24, 2-Year Storm Event for Mountainous Area (in) =

 $Y_{j} = \frac{(P_{24} - I_{a})^{2}}{(P_{24} - I_{a} + S)P_{24}} \qquad Y = \frac{Y_{1}A_{1} + Y_{2}A_{2} + \dots + Y_{m}A_{m}}{A_{1} + A_{2} + \dots + A_{m}} = \sum Y_{j}A_{j}$ 

Total Area (ac) = 104.35

0.49

ap - See Figure C-4 Fp - See Table C-2

 $F_m = a_p F_p$ 

Ybar = 1 - Y = 0.51 Average a<sub>p</sub> = 0.61

Total F<sub>m</sub> =

0.37

0.61

|    | Total Fm (in/hr) = $0.37$ |                         |             |      |       |            |      |                    |        |      |          |            |            |                | _                         |                           |                                           |                                |
|----|---------------------------|-------------------------|-------------|------|-------|------------|------|--------------------|--------|------|----------|------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|    | Offsite Area              |                         |             |      |       |            |      |                    |        |      |          |            |            |                |                           |                           |                                           |                                |
|    | Infil.                    |                         | Pervious-   | Area | Soil  | Pervious/  | Area | A <sub>j</sub>     | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No | Class                     | Land Use                | ness<br>(%) | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la       | $Y_{j}$    | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1  | 9                         | Commercial / Industrial | 10%         | 1.95 | D     | Pervious   | 0.20 | 0.002              | 75     | 3.33 | 0.67     | 0.10       | 0.000      | 0.10           | 0.60                      | 0.06                      | 0.001                                     | 0.002                          |
| '  | 9                         | Commercial / muustral   | 1076        | 1.55 | D     | Impervious | 1.76 | 0.017              | 98     | 0.20 | 0.04     | 0.85       | 0.014      |                |                           |                           |                                           |                                |
| 2  | 1                         | Oil Operations          | 100%        | 6.26 | D     | Pervious   | 6.26 | 0.060              | 93     | 0.75 | 0.15     | 0.56       | 0.034      | 1.00           | 0.60                      | 0.60                      | 0.036                                     | 0.060                          |
| 2  | 1                         | Oil Operations          | 100%        | 0.20 | D     | Impervious | 0.00 | 0.000              | 98     | 0.20 | 0.04     | 0.85       | 0.000      |                |                           |                           |                                           |                                |
|    |                           |                         |             |      |       |            | Ons  | site Area          |        |      |          |            |            |                |                           |                           |                                           |                                |
|    | Infil.                    |                         | Pervious-   | Area | Soil  | Pervious/  | Area | $A_j$              | CN     |      | Low Loss | Rate, Ybar |            |                | Max. Los                  | s Rate, F <sub>m</sub>    |                                           |                                |
| No | Class                     | Land Use                | ness<br>(%) | (ac) | Group | Impervious | (ac) | (Area<br>Fraction) | AMC II | S    | la       | $Y_j$      | $Y_j^*A_j$ | $a_p$          | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |

|    | Onsite Area |                           |             |       |       |            |       |                    |        |      |          |                |            |                |                           |                           |                                           |                                |
|----|-------------|---------------------------|-------------|-------|-------|------------|-------|--------------------|--------|------|----------|----------------|------------|----------------|---------------------------|---------------------------|-------------------------------------------|--------------------------------|
|    | Infil.      |                           | Pervious-   | Area  | Soil  | Pervious/  | Area  | $A_{i}$            | CN     |      | Low Loss | Rate, Ybar     |            |                | Max. Los                  | Rate, F <sub>m</sub>      |                                           |                                |
| No | Class       | Land Use                  | ness<br>(%) | (ac)  | Group | Impervious | (ac)  | (Area<br>Fraction) | AMC II | S    | la       | Y <sub>j</sub> | $Y_j^*A_j$ | a <sub>p</sub> | F <sub>p</sub><br>(in/hr) | F <sub>m</sub><br>(in/hr) | F <sub>m</sub> *A <sub>j</sub><br>(in/hr) | a <sub>p</sub> *A <sub>j</sub> |
| 1  | 9           | Urban Cover - Roadway     | 10%         | 11.35 | D     | Pervious   | 1.14  | 0.011              | 75     | 3.33 | 0.67     | 0.10           | 0.001      | 0.10           | 0.60                      | 0.06                      | 0.007                                     | 0.011                          |
|    | 9           | Olbaii Covei - Roadway    | 1076        | 11.55 | ם     | Impervious | 10.22 | 0.098              | 98     | 0.20 | 0.04     | 0.85           | 0.083      |                |                           |                           |                                           |                                |
| 2  | 9           | Single Family Residential | 35%         | 41.68 | D     | Pervious   | 14.59 | 0.140              | 75     | 3.33 | 0.67     | 0.10           | 0.014      | 0.35           | 0.60                      | 0.21                      | 0.084                                     | 0.140                          |
|    | 9           | (Condominium)             | 3376        | 41.00 | ם     | Impervious | 27.09 | 0.260              | 98     | 0.20 | 0.04     | 0.85           | 0.220      |                |                           |                           |                                           |                                |
| 3  | 9           | Public Park               | 85%         | 9.61  | D     | Pervious   | 8.17  | 0.078              | 75     | 3.33 | 0.67     | 0.10           | 0.008      | 0.85           | 0.60                      | 0.51                      | 0.047                                     | 0.078                          |
| 3  | 9           | i ubile i aik             | 0576        | 5.01  | ם     | Impervious | 1.44  | 0.014              | 98     | 0.20 | 0.04     | 0.85           | 0.012      |                |                           |                           |                                           |                                |
| 1  | 1           | Oil Operations            | 100%        | 9.76  | D     | Pervious   | 9.76  | 0.094              | 93     | 0.75 | 0.15     | 0.56           | 0.053      | 1.00           | 0.60                      | 0.60                      | 0.056                                     | 0.094                          |
| 4  | '           | Oil Operations            | 10076       | 5.70  | ם     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.85           | 0.000      |                |                           |                           |                                           |                                |
| 5  | 6           | Open Space / Habitat Area | 100%        | 23.74 | D     | Pervious   | 23.74 | 0.228              | 83     | 2.05 | 0.41     | 0.24           | 0.054      | 1.00           | 0.60                      | 0.60                      | 0.137                                     | 0.228                          |
| 5  | 0           | Open Opace / Habitat Area | 100 /6      | 23.74 | ם     | Impervious | 0.00  | 0.000              | 98     | 0.20 | 0.04     | 0.85           | 0.000      |                |                           |                           |                                           |                                |

Total Area =

104.35

Y = 0.49

Ybar = 1 - Y = 0.51

ii. EV 100-Year Storm Event

# Drainage A

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 316.00

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120

LOW LOSS FRACTION = 0.300

TIME OF CONCENTRATION(MIN.) = 26.88

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 79.67 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 38.57

| *****                                                                                | *****                                                                                                      | ******                                                                                 | ****                 | ***** | ***** | ***** | ***** |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-------|-------|-------|-------|
| TIME<br>(HOURS)                                                                      | VOLUME<br>(AF)                                                                                             | Q<br>(CFS)                                                                             | 0.                   | 125.0 | 250.0 | 375.0 | 500.0 |
| 0.32<br>0.77<br>1.22<br>1.66<br>2.11<br>2.56                                         | 0.1800<br>0.6863<br>1.2014<br>1.7262<br>2.2614<br>2.8072                                                   | 13.61<br>13.74<br>14.08<br>14.26<br>14.64                                              | .Q<br>.Q<br>.Q<br>.Q |       |       | ·     | ·     |
| 3.01<br>3.46<br>3.90<br>4.35<br>4.80<br>5.25<br>5.70<br>6.14<br>6.59<br>7.04<br>7.49 | 3.3646<br>3.9338<br>4.5159<br>5.1113<br>5.7211<br>6.3460<br>6.9872<br>7.6457<br>8.3229<br>9.0200<br>9.7389 | 15.26<br>15.49<br>15.96<br>16.21<br>16.74<br>17.02<br>17.62<br>17.94<br>18.64<br>19.01 |                      | :     |       |       |       |
| 7.94<br>8.38                                                                         | 10.4810<br>11.2490                                                                                         | 20.26<br>21.22                                                                         | . Q<br>. Q           |       |       |       |       |

| 8.83  | 12.0445 | 21.75  | .Q   | •        | •    |    |
|-------|---------|--------|------|----------|------|----|
| 9.28  | 12.8712 | 22.91  | . Q  |          | •    | •  |
| 9.73  | 13.7312 | 23.55  | . Q  | •        |      | •  |
| 10.18 | 14.6298 | 24.99  | . Q  |          | •    | •  |
| 10.62 | 15.5698 | 25.79  | . Q  | •        |      | •  |
| 11.07 | 16.5588 | 27.63  | . Q  | •        |      | •  |
| 11.52 | 17.6014 | 28.69  | . Q  |          |      |    |
| 11.97 | 18.7089 | 31.14  | . Q  |          |      |    |
| 12.42 | 19.9662 | 36.77  | . Q  |          |      |    |
| 12.86 | 21.5157 | 46.93  | . Q  |          |      |    |
| 13.31 | 23.2953 | 49.20  | . Q  |          |      |    |
| 13.76 | 25.2224 | 54.90  | . ~Q | •        |      | •  |
| 14.21 | 27.3230 | 58.58  | . Q  | •        |      | •  |
| 14.66 | 29.6665 | 68.01  | . Q  |          |      |    |
| 15.10 | 32.3249 | 75.59  | . ~  | Q .      |      | •  |
| 15.55 | 35.7192 | 107.76 |      | ~<br>Q . |      |    |
| 16.00 | 40.2639 | 137.74 |      | ~ .Q     |      |    |
| 16.45 | 51.9308 | 492.48 |      |          |      | Q. |
| 16.90 | 62.6990 | 89.20  |      | Q.       |      | ~  |
| 17.34 | 65.5079 | 62.53  | . Q  | ~        |      | •  |
| 17.79 | 67.6249 | 51.82  | . Q  | •        |      | •  |
| 18.24 | 69.4163 | 44.95  | . Q  |          |      |    |
| 18.69 | 70.8010 | 29.85  | . Q  | •        |      | •  |
| 19.14 | 71.8473 | 26.67  | . Q  |          |      |    |
| 19.58 | 72.7898 | 24.24  | .Q   |          |      |    |
| 20.03 | 73.6515 | 22.31  | . Q  | •        |      | •  |
| 20.48 | 74.4482 | 20.73  | . Q  | •        |      | •  |
| 20.93 | 75.1913 | 19.41  | . Q  |          |      |    |
| 21.38 | 75.8890 | 18.28  | . Q  | •        |      | •  |
| 21.82 | 76.5480 | 17.31  | . Q  | •        |      | •  |
| 22.27 | 77.1733 | 16.47  | . Q  | •        |      | •  |
| 22.72 | 77.7691 | 15.72  | . Q  | •        |      | •  |
| 23.17 | 78.3386 | 15.05  | . Q  | •        | •    |    |
| 23.62 | 78.8847 | 14.45  | .Q   | •        | •    |    |
| 24.06 | 79.4097 | 13.91  | . Q  | •        |      | •  |
| 24.51 | 79.6672 | 0.00   | Q    |          |      |    |
|       |         |        |      |          | <br> |    |

# Drainage B

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 127.90

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.060

LOW LOSS FRACTION = 0.180

TIME OF CONCENTRATION(MIN.) = 30.94

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 25

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.40

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.87

1-HOUR POINT RAINFALL VALUE(INCHES) = 1.15 3-HOUR POINT RAINFALL VALUE(INCHES) = 1.94 6-HOUR POINT RAINFALL VALUE(INCHES) = 2.71

24-HOUR POINT RAINFALL VALUE(INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 36.77 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 11.08

| *****           | *****          | *****      | **** | ***** | ***** | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 47.5  | 95.0  | 142.5 | 190.0 |
| 0.01            | 0.0000         | 0.00       | Q    |       |       |       |       |
| 0.53            | 0.1376         | 6.46       | .Q   | •     | •     | ě     | •     |
| 1.05            | 0.4161         | 6.62       | .Q   |       |       | •     |       |
| 1.56            | 0.7002         | 6.71       | .Q   |       |       | •     |       |
| 2.08            | 0.9907         | 6.92       | .Q   |       |       | •     |       |
| 2.59            | 1.2878         | 7.03       | .Q   |       |       | •     |       |
| 3.11            | 1.5922         | 7.26       | .Q   |       |       |       |       |
| 3.62            | 1.9040         | 7.38       | .Q   |       |       | •     | •     |
| 4.14            | 2.2240         | 7.64       | .Q   |       |       | •     | •     |
| 4.66            | 2.5526         | 7.78       | .Q   |       |       | •     | •     |
| 5.17            | 2.8906         | 8.08       | .Q   |       |       | •     | •     |
| 5.69            | 3.2385         | 8.24       | .Q   |       |       | •     | •     |
| 6.20            | 3.5973         | 8.59       | .Q   |       |       | •     | •     |
| 6.72            | 3.9676         | 8.79       | .Q   |       |       |       | •     |
| 7.23            | 4.3509         | 9.20       | .Q   |       |       | •     | •     |
| 7.75            | 4.7479         | 9.43       | .Q   |       |       | •     | •     |
| 8.27            | 5.1605         | 9.93       | . Q  |       |       |       | •     |
| 8.78            | 5.5897         | 10.21      | . Q  |       |       |       | •     |
| 9.30            | 6.0381         | 10.83      | . Q  | •     | •     | •     |       |

| 9.81  | 6.5072  | 11.18  | . Q |    | • | • |    |
|-------|---------|--------|-----|----|---|---|----|
| 10.33 | 7.0008  | 11.98  | . Q |    | • |   |    |
| 10.84 | 7.5211  | 12.44  | . Q |    | • |   |    |
| 11.36 | 8.0738  | 13.50  | . Q |    | • |   |    |
| 11.87 | 8.6626  | 14.13  | . Q |    | • |   |    |
| 12.39 | 9.3656  | 18.86  | . Q |    | • |   |    |
| 12.91 | 10.2296 | 21.69  | . Q |    | • |   |    |
| 13.42 | 11.2074 | 24.20  | . Q |    | • |   |    |
| 13.94 | 12.2733 | 25.82  | . Q | •  | • |   | •  |
| 14.45 | 13.4633 | 30.02  | . Q |    | • |   |    |
| 14.97 | 14.8211 | 33.70  |     | Q. | • |   | •  |
| 15.48 | 16.5736 | 48.55  |     | Q  | • |   | •  |
| 16.00 | 18.8221 | 56.97  |     | .Q | • |   | •  |
| 16.52 | 24.0787 | 189.73 |     |    | • |   | Q. |
| 17.03 | 28.9624 | 39.46  |     | Q. | • |   | •  |
| 17.55 | 30.3960 | 27.81  | . Q | •  | • | • | •  |
| 18.06 | 31.4754 | 22.84  | . Q | •  | • | • | •  |
| 18.58 | 32.2784 | 14.84  | . Q |    | • | • | •  |
| 19.09 | 32.8704 | 12.94  | . Q | •  | • | • | •  |
| 19.61 | 33.3925 | 11.56  | . Q | •  | • | • | •  |
| 20.13 | 33.8629 | 10.51  | . Q | •  | • | • | •  |
| 20.64 | 34.2930 | 9.67   | . Q |    | • | • | •  |
| 21.16 | 34.6906 | 8.99   | .Q  |    | • | • | •  |
| 21.67 | 35.0614 | 8.41   | .Q  |    | • | • | •  |
| 22.19 | 35.4096 | 7.93   | .Q  | •  | • | • | •  |
| 22.70 | 35.7385 | 7.51   | .Q  |    | • | • | •  |
| 23.22 | 36.0505 | 7.14   | .Q  |    | • | • | •  |
| 23.73 | 36.3478 | 6.81   | .Q  | •  | • | • | •  |
| 24.25 | 36.6321 | 6.52   | .Q  |    | • | • | •  |
| 24.77 | 36.7711 | 0.00   | Q   | •  | • | • | •  |
|       |         |        |     |    |   |   |    |

\_\_\_\_\_\_

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

(C) Copyright 1989-2007 Advanced Engineering Software (aes)
Ver. 14.0 Release Date: 06/01/2007 License ID 1355 -----

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90
TOTAL CATCHMENT AREA (ACRES) = 104.40
SOIL-LOSS RATE, Fm, (INCH/HR) = 0.120
LOW LOSS FRACTION = 0.260
TIME OF CONCENTRATION (MIN.) = 15.18
SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA
ORANGE COUNTY "VALLEY" RAINFALL VALUES ARE USED
RETURN FREQUENCY (YEARS) = 25
5-MINUTE POINT RAINFALL VALUE (INCHES) = 0.40
30-MINUTE POINT RAINFALL VALUE (INCHES) = 0.87
1-HOUR POINT RAINFALL VALUE (INCHES) = 1.15
3-HOUR POINT RAINFALL VALUE (INCHES) = 1.94
6-HOUR POINT RAINFALL VALUE (INCHES) = 2.71
24-HOUR POINT RAINFALL VALUE (INCHES) = 4.49

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) =

| *****                                                                                                                               | *****                                                                                                                                                             | *****                                                                                                                               | ****                                    | ***** | ****   | ****   | *****  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|--------|--------|--------|
| TI ME<br>(HOURS)                                                                                                                    | VOLUME<br>(AF)                                                                                                                                                    | Q<br>(CFS)                                                                                                                          | 0.                                      | 57. 5 | 115. 0 | 172. 5 | 230. 0 |
|                                                                                                                                     |                                                                                                                                                                   | (CFS) 0. 00 4. 75 4. 81 4. 85 4. 92 4. 95 5. 02 5. 06 5. 14 5. 18 5. 26 5. 30 5. 39 5. 43 5. 55 5. 52 5. 57                         |                                         |       |        |        | 250.0  |
| 4. 11<br>4. 36<br>4. 61<br>4. 87<br>5. 12<br>5. 37<br>5. 63<br>5. 88<br>6. 13<br>6. 39<br>6. 64<br>6. 89<br>7. 14<br>7. 40<br>7. 65 | 1. 6726<br>1. 7917<br>1. 9124<br>2. 0348<br>2. 1590<br>2. 2850<br>2. 4129<br>2. 5427<br>2. 6745<br>2. 8085<br>2. 9447<br>3. 0832<br>3. 2242<br>3. 3676<br>3. 5137 | 5. 67<br>5. 72<br>5. 83<br>5. 88<br>6. 00<br>6. 05<br>6. 18<br>6. 24<br>6. 37<br>6. 44<br>6. 59<br>6. 66<br>6. 82<br>6. 90<br>7. 07 | Q . Q . Q . Q . Q . Q . Q . Q . Q . Q . |       |        |        |        |

Page 1

|                  |                      |                  |            |            | PEV100_C |   |    |
|------------------|----------------------|------------------|------------|------------|----------|---|----|
| 7. 90            | 3. 6626              | 7. 16            | . Q        |            |          |   |    |
| 8. 16<br>8. 41   | 3. 8143<br>3. 9692   | 7. 35<br>7. 45   | . Q<br>. Q |            |          |   |    |
| 8. 66<br>8. 92   | 4. 1273<br>4. 2887   | 7. 67<br>7. 78   | . Q<br>. Q |            |          |   |    |
| 9. 17            | 4. 4538              | 8. 01            | . Q<br>. Q |            |          |   |    |
| 9. 42<br>9. 68   | 4. 6227<br>4. 7957   | 8. 14<br>8. 41   | . Q<br>. Q |            |          |   | •  |
| 9. 93            | 4. 9729              | 8. 55            | . Q        |            |          |   |    |
| 10. 18<br>10. 43 | 5. 1548<br>5. 3415   | 8. 85<br>9. 01   | . Q<br>. Q | •          | •        | • |    |
| 10. 69           | 5. 5336              | 9. 36            | . Q        |            |          |   |    |
| 10. 94<br>11. 19 | 5. 7313<br>5. 9353   | 9. 55<br>9. 96   | . Q<br>. Q |            |          |   |    |
| 11. 45           | 6. 1458              | 10. 18           | . Q        |            |          |   |    |
| 11. 70<br>11. 95 | 6. 3636<br>6. 5892   | 10. 66<br>10. 92 | . Q<br>. Q |            |          | • |    |
| 12. 20           | 6. 8515              | 14. 16           | . Q        |            |          |   | •  |
| 12. 46<br>12. 71 | 7. 1623<br>7. 4957   | 15. 56<br>16. 33 | . Q<br>. Q |            |          |   | •  |
| 12. 96<br>13. 22 | 7. 8417<br>8. 2023   | 16. 76<br>17. 73 | . Q<br>. Q | •          |          | • | •  |
| 13. 47           | 8. 5786              | 18. 28           | . Q<br>. Q | •          |          | • |    |
| 13. 72<br>13. 98 | 8. 9740<br>9. 3903   | 19. 54<br>20. 28 | . Q<br>. Q |            |          |   | •  |
| 14. 23           | 9. 8301              | 21. 79           | . Q        |            | ·        |   |    |
| 14. 48<br>14. 73 | 10. 2965<br>10. 8016 | 22. 82<br>25. 49 | . Q<br>. Q |            |          |   |    |
| 14. 99           | 11. 3527             | 27. 22           | . Q_       |            |          |   | •  |
| 15. 24<br>15. 49 | 11. 9723<br>12. 6927 | 32. 05<br>36. 86 | . Q<br>. Q |            |          |   | •  |
| 15. 75<br>16. 00 | 13. 5619<br>14. 8082 | 46. 28<br>72. 92 | . 0        | ! .<br>. Q |          | • | •  |
| 16. 25           | 17. 9666             | 229. 18          | •          |            |          |   | Q. |
| 16. 51<br>16. 76 | 20. 7392<br>21. 4227 | 36. 03<br>29. 35 | . Q<br>. Q | •          |          | • |    |
| 17. 01           | 21. 9810             | 24. 05           | Q          | •          |          | • |    |
| 17. 27<br>17. 52 | 22. 4530<br>22. 8710 | 21. 10<br>18. 88 | . Q<br>. Q |            |          | • |    |
| 17. 77           | 23. 2484             | 17. 22           | . Q        |            |          |   |    |
| 18. 02<br>18. 28 | 23. 5951<br>23. 8788 | 15. 93<br>11. 20 | . Q<br>. Q |            |          |   |    |
| 18. 53<br>18. 78 | 24. 1048<br>24. 3155 | 10. 41<br>9. 75  | . Q<br>. Q |            |          |   |    |
| 19. 04           | 24. 5134             | 9. 18            | . Q<br>. Q |            |          |   |    |
| 19. 29<br>19. 54 | 24. 7003<br>24. 8777 | 8. 70<br>8. 27   | . Q<br>. Q | •          | •        | • |    |
| 19. 80           | 25. 0467             | 7. 89            | . Q        |            |          | • |    |
| 20. 05<br>20. 30 | 25. 2082<br>25. 3631 | 7. 56<br>7. 26   | . Q<br>. Q |            | :        |   |    |
| 20. 55           | 25. 5120             | 6. 99            | . Q        |            |          |   | •  |
| 20. 81<br>21. 06 | 25. 6555<br>25. 7941 | 6. 74<br>6. 51   | . Q<br>. Q |            |          |   | •  |
| 21. 31           | 25. 9281             | 6. 31            | . Q        | •          |          | • | •  |
| 21. 57<br>21. 82 | 26. 0580<br>26. 1840 | 6. 12<br>5. 94   | . Q<br>. Q |            |          |   |    |
| 22. 07<br>22. 33 | 26. 3064<br>26. 4255 | 5. 77<br>5. 62   | . Q<br>Q   |            |          |   |    |
| 22. 58           | 26. 5416             | 5. 48            | Q          |            |          |   |    |
| 22. 83<br>23. 08 | 26. 6547<br>26. 7651 | 5. 34<br>5. 22   | Q<br>Q     |            |          |   |    |
| 23. 34           | 26. 8730             | 5. 10            | Q          |            |          |   |    |
| 23. 59<br>23. 84 | 26. 9784<br>27. 0816 | 4. 99<br>4. 88   | Q<br>Q     |            |          |   | ·  |
| 24. 10<br>24. 35 | 27. 1826<br>27. 2326 | 4. 78            | Q<br>Q     |            |          | • | •  |
| 24. 30<br>       | 27. 2326             | 0. 00<br>        |            |            |          |   |    |

iii. EV 2-Year Storm Event

# Drainage A

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 316.00

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.280

LOW LOSS FRACTION = 0.470

TIME OF CONCENTRATION(MIN.) = 37.17

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

USER SPECIFIED RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37 3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62 6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85

24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME(ACRE-FEET) = 17.97 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 19.95

| *****           | *****          | *****      | **** | ***** | ***** | ***** | ***** |
|-----------------|----------------|------------|------|-------|-------|-------|-------|
| TIME<br>(HOURS) | VOLUME<br>(AF) | Q<br>(CFS) | 0.   | 20.0  | 40.0  | 60.0  | 80.0  |
| 0.51            | 0.0733         | 3.46       | .Q   |       |       |       |       |
| 1.13            | 0.2517         | 3.51       | .Q   |       |       |       | •     |
| 1.75            | 0.4344         | 3.63       | . Q  |       |       |       |       |
| 2.37            | 0.6220         | 3.70       | .Q   |       |       |       |       |
| 2.99            | 0.8148         | 3.83       | .Q   |       |       |       |       |
| 3.61            | 1.0130         | 3.91       | .Q   | •     | •     | •     | •     |
| 4.23            | 1.2173         | 4.07       | . Q  | •     | •     | •     | •     |
| 4.85            | 1.4281         | 4.16       | . Q  | •     | •     | •     | •     |
| 5.47            | 1.6460         | 4.35       | . Q  | ÷     | •     | ě     | •     |
| 6.09            | 1.8715         | 4.46       | . Q  | •     | •     | •     | •     |
| 6.71            | 2.1056         | 4.69       | . Q  | •     |       |       | •     |
| 7.33            | 2.3489         | 4.82       | . Q  | •     |       |       | •     |
| 7.95            | 2.6028         | 5.10       | . Q  | •     |       |       | •     |
| 8.57            | 2.8682         | 5.26       | . Q  |       |       |       | •     |
| 9.19            | 3.1470         | 5.63       | . Q  | •     |       |       | •     |
| 9.81            | 3.4405         | 5.84       | . Q  | •     |       |       | •     |
| 10.42           | 3.7519         | 6.32       | . Q  | •     | •     | •     | •     |
| 11.04           | 4.0830         | 6.61       | . Q  | •     |       | •     | •     |
| 11.66           | 4.4392         | 7.30       | . Q  | •     | •     | •     | •     |

| 12.28 | 4.8239  | 7.73  | . Q |     |   |   | •  |  |
|-------|---------|-------|-----|-----|---|---|----|--|
| 12.90 | 5.2890  | 10.44 | . Q | •   | • |   | •  |  |
| 13.52 | 5.8425  | 11.18 | . Q | •   |   |   |    |  |
| 14.14 | 6.4678  | 13.25 | . ( | 2 . | • |   | •  |  |
| 14.76 | 7.1952  | 15.17 |     | Q.  | • |   | •  |  |
| 15.38 | 8.1185  | 20.90 |     | Q   | • | • | •  |  |
| 16.00 | 9.3012  | 25.30 |     | . Q | • |   | •  |  |
| 16.62 | 11.8500 | 74.26 |     | •   | • |   | Q. |  |
| 17.24 | 14.1972 | 17.44 |     | Q.  |   |   |    |  |
| 17.86 | 14.9530 | 12.09 | . ( | 2 . | • |   | •  |  |
| 18.48 | 15.5012 | 9.32  | . Q | •   | • |   | •  |  |
| 19.10 | 15.9174 | 6.93  | . Q | •   | • | • | •  |  |
| 19.72 | 16.2503 | 6.07  | . Q | •   | • |   | •  |  |
| 20.34 | 16.5448 | 5.44  | . Q | •   | • |   | •  |  |
| 20.96 | 16.8109 | 4.95  | . Q | •   | • | • | •  |  |
| 21.58 | 17.0546 | 4.57  | . Q | •   | • | • | •  |  |
| 22.19 | 17.2805 | 4.25  | . Q | •   | • |   | •  |  |
| 22.81 | 17.4915 | 3.99  | .Q  |     |   |   |    |  |
| 23.43 | 17.6899 | 3.76  | .Q  |     |   |   |    |  |
| 24.05 | 17.8776 | 3.57  | .Q  |     |   |   |    |  |
| 24.67 | 17.9689 | 0.00  | Q   | •   |   |   |    |  |
|       |         |       |     |     |   |   |    |  |

# Drainage B

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 127.90

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.190

LOW LOSS FRACTION = 0.370

TIME OF CONCENTRATION(MIN.) = 37.45

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

USER SPECIFIED RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37 3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62 6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85

24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = 8.66 TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 6.69

| ****                                                                                                 | *****************                                                                                                              |                                                                       |      |               |      |                  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------|---------------|------|------------------|--|--|--|--|--|--|--|
| TIME<br>(HOURS)                                                                                      | VOLUME<br>(AF)                                                                                                                 | Q 0.<br>(CFS)                                                         | 10.0 | 20.0          | 30.0 | 40.0             |  |  |  |  |  |  |  |
| 0.40<br>1.02<br>1.64<br>2.27<br>2.89<br>3.52<br>4.14<br>4.76<br>5.39<br>6.01<br>6.64<br>7.26<br>7.89 | 0.0272<br>0.1133<br>0.2015<br>0.2920<br>0.3850<br>0.4807<br>0.5793<br>0.6809<br>0.7861<br>0.8949<br>1.0078<br>1.1252<br>1.2477 | 1.68 . 1.74 . 1.77 . 1.84 . 1.87 . 1.95 . 1.99 . 2.08 . 2.13 . 2.25 . | Q    |               |      |                  |  |  |  |  |  |  |  |
| 8.51<br>9.13<br>9.76<br>10.38<br>11.01<br>11.63                                                      | 1.3758<br>1.5103<br>1.6519<br>1.8021<br>1.9619<br>2.1338                                                                       | 2.70 .<br>2.80 .                                                      | Q .  | · · · · · · · |      | :<br>:<br>:<br>: |  |  |  |  |  |  |  |

| 12.26 | 2.3194 | 3.70  | . Q |     |   |     |            |
|-------|--------|-------|-----|-----|---|-----|------------|
| 12.88 | 2.5439 | 5.00  | . Q |     |   | •   |            |
| 13.50 | 2.8111 | 5.36  | . Q |     |   | •   |            |
| 14.13 | 3.1129 | 6.35  | . Q | •   | • | •   | •          |
| 14.75 | 3.4639 | 7.26  |     | Q . |   | •   |            |
| 15.38 | 3.9095 | 10.01 |     | Q   |   | •   |            |
| 16.00 | 4.4810 | 12.14 |     | . Q |   | •   |            |
| 16.62 | 5.7116 | 35.57 |     |     |   | . 0 | <b>)</b> . |
| 17.25 | 6.8444 | 8.35  | •   | Q.  | • | •   | •          |
| 17.87 | 7.2093 | 5.79  | . Q | •   | • | •   | •          |
| 18.50 | 7.4725 | 4.41  | . Q |     |   | •   |            |
| 19.12 | 7.6719 | 3.32  | . Q | •   | • | •   | •          |
| 19.74 | 7.8325 | 2.91  | . Q | •   | • | •   | •          |
| 20.37 | 7.9746 | 2.60  | . Q | •   | • | •   | •          |
| 20.99 | 8.1030 | 2.37  | . Q |     |   |     |            |
| 21.62 | 8.2206 | 2.19  | . Q | •   | • | •   | •          |
| 22.24 | 8.3295 | 2.04  | . Q | •   | • | •   | •          |
| 22.87 | 8.4313 | 1.91  | .Q  |     |   |     |            |
| 23.49 | 8.5271 | 1.80  | .Q  |     |   |     |            |
| 24.11 | 8.6177 | 1.71  | .Q  |     |   | •   |            |
| 24.74 | 8.6617 | 0.00  | Q   | •   |   |     | •          |
|       |        |       |     |     |   |     |            |

# Drainage C

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### SMALL AREA UNIT HYDROGRAPH MODEL

\_\_\_\_\_\_

(C) Copyright 1989-2007 Advanced Engineering Software (aes) Ver. 14.0 Release Date: 06/01/2007 License ID 1355

Analysis prepared by:

Problem Descriptions:

RATIONAL METHOD CALIBRATION COEFFICIENT = 0.90

TOTAL CATCHMENT AREA(ACRES) = 104.40

SOIL-LOSS RATE, Fm, (INCH/HR) = 0.370

LOW LOSS FRACTION = 0.510

TIME OF CONCENTRATION(MIN.) = 16.80

SMALL AREA PEAK Q COMPUTED USING PEAK FLOW RATE FORMULA

USER SPECIFIED RAINFALL VALUES ARE USED

RETURN FREQUENCY(YEARS) = 2

5-MINUTE POINT RAINFALL VALUE(INCHES) = 0.13

30-MINUTE POINT RAINFALL VALUE(INCHES) = 0.28

1-HOUR POINT RAINFALL VALUE(INCHES) = 0.37 3-HOUR POINT RAINFALL VALUE(INCHES) = 0.62 6-HOUR POINT RAINFALL VALUE(INCHES) = 0.85

24-HOUR POINT RAINFALL VALUE(INCHES) = 1.44

5.55 TOTAL CATCHMENT RUNOFF VOLUME (ACRE-FEET) = TOTAL CATCHMENT SOIL-LOSS VOLUME(ACRE-FEET) = 6.98

| ******************** |                |            |    |      |      |      |      |  |  |  |  |
|----------------------|----------------|------------|----|------|------|------|------|--|--|--|--|
| TIME<br>(HOURS)      | VOLUME<br>(AF) | Q<br>(CFS) | 0. | 10.0 | 20.0 | 30.0 | 40.0 |  |  |  |  |
| 0.04                 | 0.0000         | 0.00       | Q  |      |      |      |      |  |  |  |  |
| 0.32                 | 0.0122         | 1.05       | .Q |      | •    |      |      |  |  |  |  |
| 0.60                 | 0.0367         | 1.07       | .Q | •    | •    | •    | •    |  |  |  |  |
| 0.88                 | 0.0615         | 1.08       | .Q |      |      | •    |      |  |  |  |  |
| 1.16                 | 0.0866         | 1.09       | .Q |      |      |      |      |  |  |  |  |
| 1.44                 | 0.1120         | 1.10       | .Q | •    |      | •    | •    |  |  |  |  |
| 1.72                 | 0.1376         | 1.12       | .Q |      | •    |      | •    |  |  |  |  |
| 2.00                 | 0.1636         | 1.13       | .Q |      | •    | •    |      |  |  |  |  |
| 2.28                 | 0.1899         | 1.15       | .Q |      | •    | •    |      |  |  |  |  |
| 2.56                 | 0.2166         | 1.16       | .Q |      | •    | •    |      |  |  |  |  |
| 2.84                 | 0.2435         | 1.18       | .Q |      | •    | •    |      |  |  |  |  |
| 3.12                 | 0.2708         | 1.19       | .Q |      | •    | •    |      |  |  |  |  |
| 3.40                 | 0.2985         | 1.21       | .Q |      | •    | •    |      |  |  |  |  |
| 3.68                 | 0.3266         | 1.22       | .Q |      | •    | •    |      |  |  |  |  |
| 3.96                 | 0.3550         | 1.24       | .Q |      | •    | •    |      |  |  |  |  |
| 4.24                 | 0.3839         | 1.25       | .Q |      | •    | •    |      |  |  |  |  |
| 4.52                 | 0.4132         | 1.28       | .Q |      | •    | •    |      |  |  |  |  |
| 4.80                 | 0.4429         | 1.29       | .Q |      | •    |      | •    |  |  |  |  |
| 5.08                 | 0.4731         | 1.32       | .Q | •    | •    | •    |      |  |  |  |  |

| 5.64       0.         5.92       0.         6.20       0.         6.48       0.         6.76       0.         7.04       0.         7.32       0.         7.60       0.         7.88       0.         8.16       0.         8.44       0.         8.72       0.         9.00       0.         9.28       0.         9.56       1.         9.84       1.         10.40       1.         10.68       1.         11.24       1.         11.80       1.         12.08       1.         12.36       1.         12.44       1.         11.52       1.         11.80       1.         12.08       1.         12.44       1.         12.52       1.         13.48       1.         13.76       1.         14.04       2.         14.88       2.         15.44       2.         17.40       4.         17.96       4.         1 | .5037       1.3         .5348       1.3         .5665       1.3         .5987       1.4         .6648       1.4         .6648       1.4         .6648       1.5         .68046       1.8         .8046       1.8         .8413       1.6         .8789       1.6         .9968       1.7         .9968       1.7         .0381       1.8         .0805       1.8         .1240       1.9         .1688       1.9         .2149       2.6         .2149       2.6         .3117       2.3         .3626       2.3         .4155       2.3         .4705       2.3         .5335       3.6         .9262       3.8         .9262       3.8         .9262       3.8         .9372       5.6         .8351       3.8         .9464       3.3         .8521       2.3         .9955       1.8         .9031       2.5         .9937       1.5         .9848 <th>36</th> <th></th> <th></th> <th></th> <th></th> | 36 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|

# C HEC-RAS MODELING

C1 HEC-RAS Modeling Report for Northerly Arroyo Channel

#### ras82101\_N\_Arroyo. rep

HEC-RAS Version 3.1.3 May 2005 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street Davis, California



PROJECT DATA

Project Title: Newport Banning Ranch Project File: ras82101.prj Run Date and Time: 4/15/2008 11:14:38 AM

Project in English units

#### PLAN DATA

Plan Title: N Arroyo Run

Plan File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.p02

Geometry Title: Nouth Arroyo
Geometry File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.g02

Flow Title

: N\_Arroyo Flows : p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.f02 Flow File

Plan Summary Information: Number of: Cross Sections = Multiple Openings 6 0

Inline Structures = Lateral Structures = Cul verts = 0 0 Bri dges 0

Computational Information

Water surface calculation tolerance 0.01 Critical depth calculation tolerance = Maximum number of iterations = 0.01 20 0.3 Maximum difference tolerance Flow tolerance factor 0.001

Computation Options

Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

# FLOW DATA

Flow Title: N\_Arroyo Flows

Flow File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.f02

Flow Data (cfs)

Ri ver Reach RS EV 2yr 45 EV 100vr 160 N\_Arroyo

Boundary Conditions

Ri ver Profile Reach Upstream Downstream EV 2yr EV 100yr N\_Arroyo Cri ti cal Cri ti cal Cri ti cal N\_Arroyo Cri ti cal

#### GEOMETRY DATA

Geometry Title: Nouth Arroyo Geometry File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.g02

CROSS SECTION

RIVER: N\_Arroyo

REACH: 1 RS: 809

Description:

| S | tation El | evati on | Data    | num=  | 17     |       |        |      |       |       |
|---|-----------|----------|---------|-------|--------|-------|--------|------|-------|-------|
|   | Sta       | Elev     | Sta     | Elev  | Sta    | Elev  | Sta    | Elev | Sta   | Elev  |
|   | 0         | 52.72    | 3. 16   | 50.65 | 4. 16  | 50    | 31.73  | 45   | 31.73 | 44.94 |
|   | 46. 96    | 40       | 53.35   | 40    | 55.35  | 40.42 | 58. 51 | 41   | 61.67 | 41.62 |
|   | 63. 91    | 42       | 64. 91  | 42. 2 | 68. 51 | 43    | 72.64  | 44   | 73.64 | 44. 1 |
|   | 76. 8     | 45       | 100. 23 | 45. 4 |        |       |        |      |       |       |

Manning's n Values num= n Val Sta Sta n Val Sta 31.73 . 06 . 06 76.8

Lengths: Left Channel Right 121.96 124.01 131.23 Bank Sta: Left Ri ght Coeff Contr. Expan. . 3 31.73 76. 8 . 1

CROSS SECTION OUTPUT Profile #EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft) | 41. 75<br>0. 06 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 41. 69          | Reach Len. (ft)        | 121. 96 | 124. 01          | 131. 23  |
| Crit W.S. (ft)                  | 40. 94          | Flow Area (sq ft)      |         | 22. 47           |          |
| E.G. Slope (ft/ft)              | 0.005884        | Area (sq ft) ′         |         | 22. 47           |          |
| Q Total (cfs)                   | 45.00           | Flow (cfs) ´           |         | 45.00            |          |
| Top Width (ft)                  | 20. 33          | Top Width (ft)         |         | 20. 33           |          |
| Vel Total (ft/s)                | 2.00            | Avg. Vel. (ft/s)       |         | 2. 00            |          |
| Max Chl Dpth (ft)               | 1. 69           | Hyďr. Depth (ft)       |         | 1. 11            |          |
| Conv. Total (cfs)               | 586. 6          | Conv. (cfs)            |         | 586. 6           |          |
| Length Wtd. (ft)                | 124.01          | Wetted Per. (ft)       |         | 20. 76           |          |
| Min Ch El (ft)                  | 40.00           | Shear (lb/sq`ft)       |         | 0.40             |          |
| Al pha                          | 1.00            | Stream Power (lb/ft s) |         | 0.80             |          |
| Frctn Loss (ft)                 | 1. 75           | Cum Volume (acre-ft)   |         | 0. 22            |          |
| C & E Loss (ft)                 | 0.02            | Cum SA (acres)         |         | 0. 26            |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #EV 100yr

| E.G. Elev (ft)     | 42. 95   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 16    | Wt. n-Val.             |         | 0.060   | 3        |
| W.S. Elev (ft)     | 42. 79   | Reach Len. (ft)        | 121. 96 | 124. 01 | 131. 23  |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 49. 94  |          |
| E.G. Slope (ft/ft) | 0.008456 | Area (sq ft)           |         | 49. 94  |          |
| Q Total (cfs)      | 160.00   | Flow (cfs)             |         | 160.00  |          |
| Top Width (ft)     | 29. 22   | Top Width (ft)         |         | 29. 22  |          |
| Vel Total (ft/s)   | 3. 20    | Avg. Vel. (ft/s)       |         | 3. 20   |          |
| Max Chl Dpth (ft)  | 2. 79    | Hydr. Depth (ft)       |         | 1. 71   |          |
| Conv. Total (cfs)  | 1740. 0  | Conv. (cfs)            |         | 1740. 0 |          |
| Length Wtd. (ft)   | 124.04   | Wetted Per. (ft)       |         | 29. 93  |          |
| Min Ch El (ft)     | 40.00    | Shear (lb/sq ft)       |         | 0. 88   |          |
| Al pha             | 1. 00    | Stream Power (lb/ft s) |         | 2. 82   |          |
| Frctn Loss (ft)    | 2. 14    | Cum Volume (acre-ft)   | 0.00    | 0. 55   | 0.00     |
| C & E Loss (ft)    | 0.03     | Cum SA (acres)         | 0. 01   | 0. 37   | 0. 02    |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: N\_Arroyo REACH: 1 RS: 685 I NPUT Description: Station Elevation Data num= Sta 9. 6 Elev El ev El ev 55. 6 45. 72 19. 6 55 49. 98 46.85 21.84 45.74 26.9 45 43.36 29.14 42.35 32.74 40 32. 74 37. 81 39.92 32.74 39.89 32.74 39.86 34. 16 39.76 35.57 39.36 39. 1 38. 81 39 44.28 39 51.49 39.36 62.89 40 65.31 40 67.54 40.2 69.78 40.35 78.38 41 85.68 41 40. 76 40. 7 90.68 41.21 94.29 41.05 95.29 41 98.12 99.53 40.68 100.53 40.65 101.95 40.61 102.95 40.62 104.36 106.6 40.84 107.6 40.89 108.6 41 110.01 41.24 112.42 117.42 42.03 Manning's n Values num= 3 Sta Sťa n Val Sta n Val n Val 0 . 06 32.74 . 06 65.31 . 06 Lengths: Left Channel Bank Sta: Left Ri ght Ri ght Coeff Contr. Expan. 161. 18 166. 09 32.74 . 3 65.31 167.39 . 1 CROSS SECTION OUTPUT Profile #EV 2yr E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft) 39.98 Element Left OB Channel Right OB LI ement
Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs) 0. 24 39. 74 39. 74 0. 060 166. 09 167.39 161.18 11. 37 0.069249 11. 37 E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Total (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch El (ft)
Alpha 45. 00 23. 95 45. 00 23. 95 3. 96 0. 47 3.96 0.74 Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (lb/ft s) 171.0 171.0 166.09 24.05 2. 04 8. 09 39.00 1.00 7.97 Al pha Frctn Loss (ft) C & E Loss (ft) Cum Volume (acre-ft) 0.17 0.01 Cum SA (acres) 0.20

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Warni ng:

#### CROSS SECTION OUTPUT Profile #EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft) | 40. 78<br>0. 44 | Element<br>Wt. n-Val.  | Left 0B<br>0.060 | Channel<br>0.060 | Ri ght 0B<br>0. 060 |
|---------------------------------|-----------------|------------------------|------------------|------------------|---------------------|
| W.S. Elev (ft)                  | 40. 34          | Reach Len. (ft)        | 161. 18          | 166. 09          | 167. 39             |
| Crit W.S. (ft)                  | 40. 34          | Flow Area (sq ft)      | 0. 09            | 29. 73           | 0. 69               |
| E.G. Slope (ft/ft)              | 0.053032        | Area (sq ft)           | 0.09             | 29. 73           | 0. 69               |
| Q Total (cfs)                   | 160.00          | Flow (cfs)             | 0. 14            | 158. 71          | 1. 15               |
| Top Width (ft)                  | 37.44           | Top Width (ft)         | 0. 52            | 32. 57           | 4.35                |
| Vel Total (ft/s)                | 5. 25           | Avg. Vel. (ft/s)       | 1. 56            | 5. 34            | 1. 67               |
| Max Chl Dpth (ft)               | 1. 34           | Hyďr. Depth (ft)       | 0. 17            | 0. 91            | 0. 16               |
| Conv. Total (cfs)               | 694.8           | Conv. (cfs)            | 0.6              | 689. 2           | 5. 0                |
| Length Wtd. (ft)                | 166.09          | Wetted`Per. (ft)       | 0.63             | 32. 82           | 4.36                |
| Min Ch El (ft)                  | 39.00           | Shear (lb/sq`ft)       | 0. 47            | 3.00             | 0. 52               |
| Al pha                          | 1. 03           | Stream Power (lb/ft s) | 0.74             | 16. 01           | 0.87                |
| Frctn Loss (ft)                 | 8. 69           | Cum Volume (acre-ft)   | 0.00             | 0.44             | 0.00                |
| C & E Loss (ft)                 | 0.02            | Cum SA (acrès)         | 0. 01            | 0. 28            | 0.02                |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

# CROSS SECTION

| RIVER: N_Arroyo<br>REACH: 1                                                                                                                                                                                                                                                                        | RS: 519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| INPUT Description: Station Elevation Data  Sta Elev Sta 0 49.84 0 14.47 39.57 15.89 22.96 38.19 24.37 44.76 36.67 46.99 63.96 36.22 66.79 76.46 36.05 77.46 91.6 35.94 100.09 112.82 35.62 115.65 125.54 35.22 130.54 150.07 28.48 157.88 167.78 22.94 172.02 180.87 20.06 181.87 202.16 25 203.57 | El ev         Sta         El ev         Sta         El ev         Sta         El ev           49. 21         5         45         7. 24         43. 24         12. 24         39. 94           39. 1         17. 3         39         18. 71         38. 74         21. 54         38. 37           38         37. 1         37. 09         38. 1         37         39. 1         36. 98           36. 63         49. 82         36. 5         54. 06         36. 45         56. 89         36. 34           36. 19         69. 03         36. 16         70. 03         36. 16         72. 86         36. 1           36. 05         86. 13         35. 97         88. 37         35. 96         90. 6         35. 94           35. 87         102. 92         35. 83         107. 16         35. 75         109. 99         35. 69           35. 54         119. 89         35. 4         121. 3         35. 35         124. 13         35. 26           35. 04         131. 54         35         142. 86         31. 27         146. 46         30           25         162. 12         24. 13         163. 54         24         166. 37         23. 29           22 |          |
| Manni ng's n Val ues<br>Sta n Val Sta<br>O .06 157.88                                                                                                                                                                                                                                              | n Val Sta n Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Bank Sta: Left Right 157.88 202.16                                                                                                                                                                                                                                                                 | Lengths: Left Channel Right Coeff Contr. Expan. 129.98 119.28 109.74 .1 .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| CROSS SECTION OUTPUT Pro                                                                                                                                                                                                                                                                           | ofile #EV 2yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| E.G. Elev (ft)                                                                                                                                                                                                                                                                                     | 21.46 Element Left OB Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Right OB |
| E.G. Elev (ft)  Vel Head (ft)  W.S. Elev (ft)  Crit W.S. (ft)  E.G. Slope (ft/ft)  Q Total (cfs)  Top Width (ft)  Vel Total (ft/s)  Max Chl Dpth (ft)  Conv. Total (cfs)  Length Wtd. (ft)  Min Ch El (ft)  Al pha  Frctn Loss (ft)  C & E Loss (ft)                                               | 0.23 Wt. n-Val. 21.24 Reach Len. (ft) 129.98 119.28 21.10 Flow Area (sq ft) 11.79 0.035202 Area (sq ft) 11.79 45.00 Flow (cfs) 45.00 15.57 Top Width (ft) 15.57 3.82 Avg. Vel. (ft/s) 3.82 1.24 Hydr. Depth (ft) 0.76 239.8 Conv. (cfs) 239.8 119.28 Wetted Per. (ft) 15.84 20.00 Shear (lb/sq ft) 1.64 1.00 Stream Power (lb/ft s) 6.25 2.31 Cum Volume (acre-ft) 0.13 0.03 Cum SA (acres) 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109. 74  |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)    | 22. 60<br>0. 62   | Element<br>Wt. n-Val.                | Left OB | Channel<br>0.060  | Right OB |
|------------------------------------|-------------------|--------------------------------------|---------|-------------------|----------|
| W.S. Elev (ft)<br>Crit W.S. (ft)   | 21. 98<br>21. 98  | Reach Len. (ft)<br>Flow Area (sg ft) | 129. 98 | 119. 28<br>25. 38 | 109. 74  |
| <pre>E.G. Slope`(ft/ft)</pre>      | 0. 051614         | Area (sq ft) ′                       |         | 25. 38            |          |
| Q Total (cfs)                      | 160.00            | Flow (cfs)                           |         | 160. 00<br>20. 91 |          |
| Top Width (ft)<br>Vel Total (ft/s) | 20. 91<br>6. 30   | Top Width (ft)<br>Avg. Vel. (ft/s)   |         | 6. 30             |          |
| Max Chl Dpth (ft)                  | 1. 98             | Hydr. Depth (ft)                     |         | 1. 21             |          |
| Conv. Total (cfs)                  | 704. 3            | Conv. (cfs)                          |         | 704.3             |          |
| Length Wtd. (ft)<br>Min Ch El (ft) | 119. 27<br>20. 00 | Wetted Per. (ft)<br>Shear (lb/sg ft) |         | 21. 39<br>3. 82   |          |
| Al pha                             | 1.00              | Stream`Power (lb/ft s)               |         | 24. 10            |          |
| Freth Loss (ft)                    | 1.54              | Cum Volume (acre-ft)                 | 0.00    | 0. 33             | 0.00     |
| C & E Loss (ft)                    | 0. 14             | Cum SA (acres)                       | 0. 01   | 0. 18             | 0. 01    |

Warning: The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of error between computed and assumed values.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

ras82101\_N\_Arroyo.rep

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical doubter. is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

| REACH: | N_Arroyo<br>1 | RS | S: 399 |  |
|--------|---------------|----|--------|--|
|        |               |    |        |  |

I NPUT

| I NPUT      |        |        |        |         |        |         |        |         |        |
|-------------|--------|--------|--------|---------|--------|---------|--------|---------|--------|
| Description | on:    |        |        |         |        |         |        |         |        |
| Stati on El |        | Data   | num=   | 45      |        |         |        |         |        |
| Sta         | Elev   | Sta    | Elev   | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   |
| 0           | 39.82  | 3. 16  | 37. 27 | 7. 16   | 35     | 9. 4    | 34.55  | 10. 4   | 34     |
| 11. 4       | 33. 6  | 13. 4  | 32. 78 | 15.63   | 32     | 17.63   | 31     | 22.73   | 30. 21 |
| 23.73       | 30     | 27.86  | 29. 75 | 34. 93  | 29. 59 | 38.09   | 29.67  | 39.09   | 29. 68 |
| 42. 25      | 29. 78 | 43. 25 | 29. 8  | 45. 25  | 29.86  | 46. 25  | 29.87  | 48. 49  | 29. 91 |
| 49. 49      | 29.81  | 50.49  | 29. 6  | 51.49   | 29. 6  | 52.49   | 29.53  | 53. 9   | 29     |
| 54. 9       | 28.57  | 55. 9  | 28     | 56. 9   | 27. 23 | 57. 9   | 27     | 58. 9   | 26.53  |
| 60. 32      | 25.71  | 61. 32 | 25     | 71. 51  | 21. 91 | 77. 6   | 20     | 83.68   | 19     |
| 87. 8       | 18. 13 | 88. 8  | 17. 82 | 91. 8   | 17     | 93. 22  | 17. 14 | 96. 22  | 18     |
| 100.34      | 19     | 103.34 | 20     | 105.58  | 20.49  | 115. 77 | 25.01  | 128. 93 | 29. 19 |
| 100.34      | 19     | 103.34 | 20     | 105. 58 | 20.49  | 115. 77 | 25.01  | 128. 93 | 29. 19 |

Manning's n Values num= Sta n Val 0 .06 n Val Sta Sta n Val . 06 103. 34 77.6

Bank Sta: Left Right 77.6 103.34 Lengths: Left Channel Right 133.51 133.65 129.63 Coeff Contr. Expan. . 3 . 1

CROSS SECTION OUTPUT Profile #EV 2yr

| E.G. Elev (ft)     | 19. 11   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 11    | Wt. n-Val.             |         | 0.060   | 5        |
| W.S. Elev`(ft)     | 19.00    | Reach Len. (ft)        | 133. 51 | 133. 65 | 129.63   |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 16. 71  |          |
| E.G. Slope (ft/ft) | 0.012262 | Area (sq ft) ′         |         | 16. 71  |          |
| Q Total (cfs)      | 45.00    | Flow (cfs)             |         | 45.00   |          |
| Top Width (ft)     | 16. 68   | Top Width (ft)         |         | 16. 68  |          |
| Vel Total (ft/s)   | 2. 69    | Avg. Vel. (ft/s)       |         | 2. 69   |          |
| Max Chl Dpth (ft)  | 2.00     | Hydr. Depth (ft)       |         | 1. 00   |          |
| Conv. Total (cfs)  | 406. 4   | Conv. (cfs)            |         | 406. 4  |          |
| Length Wtd. (ft)   | 133. 65  | Wetted Per. (ft)       |         | 17. 17  |          |
| Min Ch El (ft)     | 17. 00   | Shear (Ib/sq`ft)       |         | 0. 74   |          |
| Al pha             | 1. 00    | Stream Power (lb/ft s) |         | 2. 01   |          |
| Frctn Loss (ft)    | 1. 47    | Cum Volume (acre-ft)   |         | 0. 09   |          |
| C & E Loss (ft)    | 0.00     | Cum SA (acrès)         |         | 0. 08   |          |

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)     | 20. 73<br>0. 14      | Element<br>Wt. n-Val.      | Left 0B<br>0.060 | Channel<br>0.060  | Ri ght 0B<br>0.060 |
|-------------------------------------|----------------------|----------------------------|------------------|-------------------|--------------------|
| W.S. Elev (ft)                      | 20. 60               | Reach Len. (ft)            | 133. 51          | 133. 65           | 129.63             |
| Crit W.S. (ft)                      | 0.00572/             | Flow Area (sq ft)          | 0. 56            | 53. 20            | 0.80               |
| E.G. Slope (ft/ft)<br>Q Total (cfs) | 0. 005736<br>160. 00 | Area (sq ft)<br>Flow (cfs) | 0. 56<br>0. 46   | 53. 20<br>158. 85 | 0. 80<br>0. 69     |
| Top Width (ft)                      | 30. 11               | Top Width (ft)             | 1. 90            | 25. 74            | 2. 48              |
| Vel Total (ft/s)                    | 2. 93                | Avg. Vel. (ft/s)           | 0.81             | 2. 99             | 0.86               |
| Max Chl Dpth (ft)                   | 3. 60                | Hydr. Depth (ft)           | 0. 30            | 2. 07             | 0. 32              |
| Conv. Total (cfs)                   | 2112. 6              | Conv. (cfs)                | 6. 0             | 2097. 5           | 9. 1               |
| Length Wtd. (ft)                    | 133. 64              | Wetted Per. (ft)           | 1. 99            | 26. 48            | 2. 55              |
| Min <sup>-</sup> Ch El (ft)         | 17. 00               | Shear (lb/sq ft)           | 0. 10            | 0. 72             | 0. 11              |
| Al pha                              | 1. 03                | Stream Power (lb/ft s)     | 0.08             | 2. 15             | 0. 10              |
| Frctn Loss (ft)                     | 1. 19                | Cum Volume (acre-ft)       | 0.00             | 0. 22             | 0.00               |
| C & E Loss (ft)                     | 0. 02                | Cum SA (acrès)             | 0.00             | 0. 12             | 0.00               |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION

RIVER: N\_Arroyo REACH: 1

RS: 266

I NPUT Description.

| Description | 11.      |        |         |        |        |        |        |        |        |
|-------------|----------|--------|---------|--------|--------|--------|--------|--------|--------|
| Station El  | evati on | Data   | num=    | 25     |        |        |        |        |        |
| Sta         | Elev     | Sta    | Elev    | Sta    | Elev   | Sta    | Elev   | Sta    | Elev   |
| 0           | 23.08    | 4      | 23. 2   | 16. 04 | 24     | 21.04  | 24     | 22.04  | 23. 6  |
| 24.04       | 23       | 25.04  | 22. 48  | 26.04  | 22     | 28. 04 | 21. 17 | 29.04  | 21     |
| 30. 04      | 20       | 32.04  | 18. 98  | 37. 04 | 15     | 40. 46 | 15     | 41. 46 | 16. 5  |
| 45. 46      | 20       | 48     | 24. 233 | 48. 46 | 25     | 50.46  | 26. 53 | 52.46  | 30     |
| 53.46       | 30. 1    | 67. 49 | 35      | 71. 49 | 37. 33 | 76. 49 | 40     | 79. 49 | 41. 38 |

Manning's n Values Sta n Val Sta num= n Val Šta n Val . 06 21.04 48

Bank Sta: Left 21.04 Lengths: Left Channel Right 135.31 134.23 135.07 Ri ght Ri ght Coeff Contr. Expan. 48 . 1

#### CROSS SECTION OUTPUT Profile #EV 2yr

| E.G. Elev (ft)     | 17.64    | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 14    | Wt. n-Val.             |         | 0.060   | ū        |
| W.S. Elev (ft)     | 17. 50   | Reach Len. (ft)        | 135. 31 | 134. 23 | 135.07   |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 14. 77  |          |
| E.G. Slope (ft/ft) | 0.009905 | Area (sq ft) '         |         | 14. 77  |          |
| Q Total (cfs)      | 45.00    | Flow (cfs)             |         | 45. 00  |          |
| Top Width (ft)     | 8. 70    | Top Width (ft)         |         | 8. 70   |          |
| Vel Total (ft/s)   | 3. 05    | Avg. Vel. (ft/s)       |         | 3. 05   |          |
| Max Chl Dpth (ft)  | 2.50     | Hydr. Depth (ft)       |         | 1. 70   |          |
| Conv. Total (cfs)  | 452. 2   | Conv. (cfs)            |         | 452. 2  |          |
| Length Wtd. (ft)   | 134. 23  | Wetted Per. (ft)       |         | 10. 75  |          |
| Min Ch El (ft)     | 15.00    | Shear (lb/sq ft)       |         | 0. 85   |          |
| Al pha             | 1.00     | Stream Power (lb/ft s) |         | 2. 59   |          |
| Frctn Loss (ft)    | 2.72     | Cum Volume (acre-ft)   |         | 0. 04   |          |
| C & E Loss (ft)    | 0. 01    | Cum SA (acres)         |         | 0. 04   |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft) | 19. 52<br>0. 38 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 19. 13          | Reach Len. (ft)        | 135. 31 | 134. 23          | 135.07   |
| Crit W.S. (ft)                  | 18. 04          | Flow Area (sq ft)      |         | 32. 20           |          |
| E.G. Slope (ft/ft)              | 0. 015769       | Area (sq ft) ′         |         | 32. 20           |          |
| Q Total (cfs)                   | 160.00          | Flow (cfs)             |         | 160. 00          |          |
| Top Width (ft)                  | 12. 72          | Top Width (ft)         |         | 12. 72           |          |
| Vel Total (ft/s)                | 4. 97           | Avg. Vel. (ft/s)       |         | 4. 97            |          |
| Max Chl Dpth (ft)               | 4. 13           | Hydr. Depth (ft)       |         | 2. 53            |          |
| Conv. Total (cfs)               | 1274. 1         | Conv. (cfs)            |         | 1274. 1          |          |
| Length Wtd. (ft)                | 134. 23         | Wetted Per. (ft)       |         | 15. 94           |          |
| Min Ch El (ft)                  | 15. 00          | Shear (lb/sq ft)       |         | 1. 99            |          |
| Al pha                          | 1. 00           | Stream Power (lb/ft s) |         | 9. 88            |          |
| Frctn Loss (ft)                 | 3. 60           | Cum Volume (acre-ft)   |         | 0. 09            |          |
| C & E Loss (ft)                 | 0. 01           | Cum SA (acres)         |         | 0. 06            |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: N\_Arroyo REACH: 1

RS: 132

INPLIT

Description:

| Station El | evati on | Data   | num=    | 34     | ras82101 | 1_N_Arroy | o. rep |
|------------|----------|--------|---------|--------|----------|-----------|--------|
| Sta        | Elev     | Sta    | Elev    | Šta    | Elev     | Sta       | Elev   |
| 0          | 17. 66   | 1      | 18      | 12     | 18       | 13        | 17. 99 |
| 23.08      | 16       | 24.08  | 15. 96  | 28.08  | 15       | 30.08     | 14.85  |
| 37. 08     | 14.43    | 40.08  | 14. 25  | 42.32  | 14. 14   | 44.32     | 14     |
| 47. 32     | 13       | 48. 32 | 13      | 49. 32 | 14       | 50. 32    | 14. 3  |
| 54. 32     | 17. 13   | 55     | 17. 805 | 57. 32 | 20. 11   | 58. 32    | 20. 25 |
| 63. 32     | 23. 47   | 66. 32 | 25      | 68. 32 | 26. 21   | 69. 73    | 26. 61 |
| 73. 73     | 28. 8    | 74. 73 | 29. 27  | 76. 73 | 30       | 82. 73    | 30     |

Manning's n Values Sta n Val 0 .06 3 Sta num= n Val Sta n Val 12 . 06

Lengths: Left Channel 11.17 131.59 Bank Sta: Left Ri ght Ri ght 25. 19 Coeff Contr. Expan. . 1

# CROSS SECTION OUTPUT Profile #EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft) | 14. 92<br>0. 29 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 14. 63          | Reach Len. (ft)        |         | 0.000            |          |
| Crit W.S. (ft)                  | 14. 63          | Flow Area (sq ft)      |         | 10. 41           |          |
| E.G. Slope (ft/ft)              | 0.062119        | Area (sq ft)           |         | 10. 41           |          |
| Q Total (cfs)                   | 45. 00          | Flow (cfs)             |         | 45. 00           |          |
| Top Width (ft)                  | 17. 03          | Top Width (ft)         |         | 17. 03           |          |
| Vel Total (ft/s)                | 4. 32           | Avg. Vel. (ft/s)       |         | 4. 32            |          |
| Max Chl Dpth (ft)               | 1. 63           | Hydr. Depth (ft)       |         | 0. 61            |          |
| Conv. Total (cfs)               | 180. 6          | Conv. (cfs)            |         | 180. 6           |          |
| Length Wtd. (ft)                |                 | Wetted Per. (ft)       |         | 17. 77           |          |
| Min Ch El (ft)                  | 13.00           | Shear (lb/sq ft)       |         | 2. 27            |          |
| Al pha                          | 1.00            | Stream Power (lb/ft s) |         | 9. 82            |          |
| Frctn Loss (ft)                 |                 | Cum Volume (acre-ft)   |         |                  |          |
| C & E Loss (ft)                 |                 | Cum SA (acrès)         |         |                  |          |

Elev

13.41 15 15 22. 93 27. 77

17 14. 71

Sta

19. 08

33.08 45. 32 52. 32 62. 32 71. 73

# CROSS SECTION OUTPUT Profile #EV 100yr

| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) O Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) | 15. 90<br>0. 53<br>15. 37<br>15. 37<br>0. 055499<br>160. 00<br>26. 10<br>5. 86<br>2. 37<br>679. 2 | Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (Ib/sq ft) | Left OB | Channel 0. 060  27. 30 27. 30 160. 00 26. 10 5. 86 1. 05 679. 2 27. 12 3. 49 | Right OB |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------|----------|
| Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft)                                                                                                                           | 13. 00<br>1. 00                                                                                   | Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/ft s) Cum Volume (acre-ft) Cum SA (acres)                                                                                |         |                                                                              |          |

# SUMMARY OF MANNING'S N VALUES

Ri ver: N\_Arroyo

| Reach  | Ri ver Sta. | n1           | n2           | n3           |
|--------|-------------|--------------|--------------|--------------|
| 1      | 809<br>685  | . 06<br>. 06 | . 06<br>. 06 | . 06<br>. 06 |
| 1      | 519         | . 06         | . 06         | . 06         |
| 1<br>1 | 399<br>266  | . 06<br>. 06 | . 06<br>. 06 | . 06<br>. 06 |
| 1      | 132         | . 06         | . 06         | . 06         |

# SUMMARY OF REACH LENGTHS

Ri ver: N\_Arroyo

Reach River Sta. Left Channel Ri ght

|   |     | ras82101_N_Arroyo. rep |         |         |  |  |  |
|---|-----|------------------------|---------|---------|--|--|--|
| 1 | 809 | 121. 96                | 124. 01 | 131. 23 |  |  |  |
| 1 | 685 | 161. 18                | 166.09  | 167. 39 |  |  |  |
| 1 | 519 | 129. 98                | 119. 28 | 109.74  |  |  |  |
| 1 | 399 | 133. 51                | 133.65  | 129.63  |  |  |  |
| 1 | 266 | 135. 31                | 134. 23 | 135.07  |  |  |  |
| 1 | 132 | 11. 17                 | 131. 59 | 25. 19  |  |  |  |

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River:  $\ensuremath{\mathsf{N\_Arroyo}}$ 

| Reach       | River Sta.        | Contr.            | Expan.            |
|-------------|-------------------|-------------------|-------------------|
| 1<br>1<br>1 | 809<br>685<br>519 | . 1<br>. 1<br>. 1 | . 3<br>. 3<br>. 3 |
| i           | 399               | . i               | . 3               |
| 1           | 266               | . 1               | . 3               |
| 1           | 132               | 1                 | 3                 |







C2 HEC-RAS Modeling Report for Southerly Arroyo Channel under Existing Condition

HEC-RAS Version 3.1.3 May 2005 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street Davis, California



PROJECT DATA

Project Title: Newport Banning Ranch Project File: ras82101.prj Run Date and Time: 4/15/2008 3:54:07 PM

Project in English units

#### PLAN DATA

Plan Title: Ex. S Arroyo Run Plan File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.p01

Geometry Title: X South Arroyo Geometry File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.g01

Flow Title

: Ex. S\_Arroyo Flows : p:\Projects\821\01\Wat\HH\ELR Study\HEC\_RAS\ras82101.f01 Flow File

Plan Summary Information: Number of: Cross Sections = Multiple Openings = 12 0

Inline Structures = Lateral Structures = Cul verts = 0 0 Bri dges Ω

Computational Information
Water surface calculation tolerance = Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance Flow tolerance factor 0.001

Computation Options

Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

# FLOW DATA

Flow Title: Ex. S\_Arroyo Flows

Flow File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.f01

Flow Data (cfs)

| Ri ver   | Reach | RS   | Ex EV 2yr | Ex EV 100yr |
|----------|-------|------|-----------|-------------|
| S_Arroyo | 1     | 2256 | 27        | 95          |
| S_Arroyo | 1     | 1112 | 34        | 138         |
| S Arroyo | 1     | 481  | 45        | 198         |

# Boundary Conditions

| Ri ver   | Reach | Profile     | Upstream   | Downstream |
|----------|-------|-------------|------------|------------|
| S_Arroyo | 1     | Ex EV 2yr   | Cri ti cal | Cri ti cal |
| S_Arroyo | 1     | Ex EV 100yr | Cri ti cal | Cri ti cal |

#### GEOMETRY DATA

Geometry Title: X South Arroyo Geometry File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.g01

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 2256

| ı | NIE | ΟI | ıт  |
|---|-----|----|-----|
| ı | INL | ·  | , , |

| Description | n:       |          |          |        |        |        |        |        |        |
|-------------|----------|----------|----------|--------|--------|--------|--------|--------|--------|
| Station El  | evati on | Data     | num=     | 41     |        |        |        |        |        |
| Sta         | Elev     | Sta      | El ev    | Sta    | Elev   | Sta    | Elev   | Sta    | Elev   |
| 0           | 72.65    | 4.47     | 71. 39   | 5.47   | 71.06  | 9. 08  | 70     | 14. 91 | 67.75  |
| 21. 23      | 65.41    | 22. 2365 | 5. 24367 | 23. 23 | 65     | 25.47  | 64. 23 | 36.65  | 60     |
| 38.06       | 59. 17   | 44.77    | 55       | 57. 13 | 55     | 58. 54 | 55. 24 | 59.54  | 55.85  |
| 63. 15      | 56.85    | 64. 15   | 57. 3    | 66.39  | 57. 79 | 74.45  | 59. 97 | 74.45  | 59. 98 |
| 74. 45      | 60       | 74.45    | 60.07    | 79.83  | 65     | 80.83  | 66. 97 | 82.83  | 70     |
| 84. 25      | 70.88    | 85. 25   | 71.05    | 86. 25 | 71     | 87. 25 | 70. 93 | 88. 25 | 70.48  |
| 89. 66      | 70. 28   | 90.66    | 70. 17   | 92. 9  | 70.44  | 94. 31 | 70. 61 | 95. 31 | 70. 5  |
| 96. 73      | 70       | 103.61   | 70       | 104.61 | 70. 27 | 106.85 | 70.49  | 109.68 | 71     |
| 110. 68     | 71       |          |          |        |        |        |        |        |        |

Manning's n Values num= n Val Sta n Val Sta 0 .06 36.65 Šta n Val 74. 45 . 06 . 06

Bank Sta: Left Right 36.65 74.45 Lengths: Left Channel Right 193.64 193.64 193.64 Coeff Contr. Expan. . 1

# CROSS SECTION OUTPUT Profile #Ex EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft)      | 56. 09<br>0. 05     | Element<br>Wt. n-Val.             | Left OB | Channel<br>0.060 | Right OB |
|--------------------------------------|---------------------|-----------------------------------|---------|------------------|----------|
| W.S. Elev (ft)                       | 56.04               | Reach Len. (ft)                   | 193. 64 | 193. 64          | 193.64   |
| Crit W.S. (ft)<br>E.G. Slope (ft/ft) | 55. 50<br>0. 005746 | Flow Area (sq ft)<br>Area (sq ft) |         | 15. 61<br>15. 61 |          |
| Q Total (cfs)                        | 27.00               | Flow (cfs)                        |         | 27. 00           |          |
| Top Width (ft)                       | 17. 14              | Top Width (ft)                    |         | 17. 14           |          |
| Vel Total (ft/s)                     | 1. 73               | Avg. Vel. (ft/s)                  |         | 1. 73            |          |
| Max Chl Dpth (ft)                    | 1. 04               | Hydr. Depth (ft)                  |         | 0. 91            |          |
| Conv. Total (cfs)                    | 356. 2              | Conv. (cfs)                       |         | 356. 2           |          |
| Length Wtd. (ft)                     | 193. 64             | Wetted Per. (ft)                  |         | 17. 65           |          |
| Min <sup>*</sup> Ch El (ft)          | 55.00               | Shear (Ib/sq ft)                  |         | 0. 32            |          |
| Al pha                               | 1. 00               | Stream Power (lb/ft s)            |         | 0. 55            |          |
| Frctn Loss (ft)                      | 2. 43               | Cum Volume (acre-ft)              |         | 0. 86            |          |
| C & E Loss (ft)                      | 0. 02               | Cum SA (acres)                    |         | 1. 52            |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)     | 57. 18   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 11    | Wt. n-Val.             |         | 0. 060  |          |
| W.S. Elev (ft)     | 57. 07   | Reach Len. (ft)        | 193. 64 | 193. 64 | 193. 64  |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 35. 99  |          |
| E.G. Slope (ft/ft) | 0.006317 | Area (sq ft)           |         | 35. 99  |          |
| Q Total (cfs)      | 95.00    | Flow (cfs)             |         | 95.00   |          |
| Top Width (ft)     | 22. 20   | Top Width (ft)         |         | 22. 20  |          |
| Vel Total (ft/s)   | 2.64     | Avg. Vel. (ft/s)       |         | 2. 64   |          |
| Max Chl Dpth (ft)  | 2.07     | Hydr. Depth (ft)       |         | 1. 62   |          |
| Conv. Total (cfs)  | 1195. 3  | Conv. (cfs)            |         | 1195.3  |          |
| Length Wtd. (ft)   | 193.64   | Wetted`Per. (ft)       |         | 23. 17  |          |
| Min Ch El (ft)     | 55.00    | Shear (lb/sq ft)       |         | 0. 61   |          |
| Al pha             | 1.00     | Stream Power (lb/ft s) |         | 1. 62   |          |
| Frctn Loss (ft)    | 2. 58    | Cum Volume (acre-ft)   | 0. 01   | 2. 16   | 0. 01    |
| C & E Loss (ft)    | 0.03     | Cum SA (acrès)         | 0. 05   | 1. 90   | 0.04     |

ras82101\_Ex\_S\_Arroyo.rep
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

#### CROSS SECTION

RIVER: S\_Arroyo

REACH: 1 RS: 2062

I NPUT

Description:

| Stati on El | evati on | Data    | num=   | 43      |        |        |        |        |        |
|-------------|----------|---------|--------|---------|--------|--------|--------|--------|--------|
| Sta         | Elev     | Sta     | Elev   | Sta     | Elev   | Sta    | Elev   | Sta    | Elev   |
| 0           | 65. 75   | 2.83    | 65     | 5. 66   | 64     | 8. 49  | 64     | 9. 9   | 64. 71 |
| 11. 31      | 65. 13   | 12. 73  | 65.34  | 14. 14  | 65.49  | 15. 56 | 65.54  | 16. 97 | 65. 51 |
| 18. 38      | 65       | 21. 21  | 65     | 22.63   | 64. 16 | 24.04  | 64     | 25.46  | 63. 38 |
| 26. 87      | 62.85    | 31. 11  | 61. 16 | 33. 94  | 60. 6  | 35. 36 | 60. 14 | 36. 77 | 60     |
| 38. 18      | 59. 67   | 39. 6   | 59. 43 | 41. 01  | 59     | 45. 25 | 56. 16 | 46. 67 | 54.82  |
| 48. 08      | 54       | 50. 91  | 53.42  | 52. 33  | 52. 97 | 56. 57 | 52.65  | 57. 98 | 52.65  |
| 62. 23      | 53       | 63. 64  | 53     | 65. 05  | 55     | 67. 88 | 56. 47 | 73. 54 | 59. 7  |
| 74. 95      | 60       | 82. 02  | 62. 8  | 86. 27  | 64. 6  | 87. 68 | 65     | 91. 92 | 67. 15 |
| 97. 58      | 70       | 107. 48 | 72. 65 | 111. 72 | 73. 52 |        |        |        |        |
|             |          |         |        |         |        |        |        |        |        |

Manning's n Values num= n Val Sta n Val Sta 0 .06 36.77 Sta n Val 74.95 . 06

Lengths: Left Channel Right 160.23 160.23 160.23 Bank Sta: Left Ri ght Coeff Contr. Expan. 36. 77 74. 95 . 1

#### CROSS SECTION OUTPUT Profile #Ex EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft) | 53. 65<br>0. 20 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev`(ft)                  | 53.45           | Reach Len. (ft)        | 160. 23 | 160. 23          | 160. 23  |
| Crit W.S. (ft)                  | 53. 38          | Flow Area (sq ft)      |         | 7. 52            |          |
| <pre>E.G. Slope (ft/ft)</pre>   | 0.045880        | Area (sq ft)           |         | 7. 52            |          |
| Q Total (cfs)                   | 27. 00          | Flow (cfs)             |         | 27. 00           |          |
| Top Width (ft)                  | 13. 17          | Top Width (ft)         |         | 13. 17           |          |
| Vel Total (ft/s)                | 3. 59           | Avg. Vel. (ft/s)       |         | 3. 59            |          |
| Max Chl Dpth (ft)               | 0.80            | Hyďr. Depth (ft)       |         | 0. 57            |          |
| Conv. Total (cfs)               | 126. 1          | Conv. (cfs)            |         | 126. 1           |          |
| Length Wtd. (ft)                | 160. 23         | Wetted Per. (ft)       |         | 13. 50           |          |
| Min Ch El (ft)                  | 52.65           | Shear (lb/sq ft)       |         | 1. 60            |          |
| Al pha                          | 1. 00           | Stream Power (lb/ft s) |         | 5. 73            |          |
| Frctn Loss (ft)                 | 2.89            | Cum Volume (acre-ft)   |         | 0. 81            |          |
| C & E Loss (ft)                 | 0.05            | Cum SA (acrès)         |         | 1. 45            |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)      | 54. 57<br>0. 44     | Element<br>Wt. n-Val.             | Left OB | Channel<br>0.060 | Right OB |
|--------------------------------------|---------------------|-----------------------------------|---------|------------------|----------|
| W.S. Elev`(ft)                       | 54. 13              | Reach Len. (ft)                   | 160. 23 | 160. 23          | 160. 23  |
| Crit W.S. (ft)<br>E.G. Slope (ft/ft) | 54. 05<br>0. 044582 | Flow Area (sq ft)<br>Area (sq ft) |         | 17. 84<br>17. 84 |          |
| 0 Total (cfs)                        | 95.00               | Flow (cfs)                        |         | 95. 00           |          |
| Top Width (ft)                       | 16. 59              | Top Width (ft)                    |         | 16. 59           |          |
| Vel Total (ft/s)                     | 5. 32               | Avg. Vel. (ft/s)                  |         | 5. 32            |          |
| Max Chl_Dpth (ft)                    | 1. 48               | Hydr. Depth (ft)                  |         | 1. 08            |          |
| Conv. Total (cfs)                    | 449. 9              | Conv. (cfs)                       |         | 449. 9           |          |
| Length Wtd. (ft)                     | 160. 23             | Wetted Per. (ft)                  |         | 17. 36           |          |
| Min Ch El (ft)                       | 52.65               | Shear (lb/sq ft)                  |         | 2. 86            |          |
| Al pha                               | 1.00                | Stream Power (lb/ft s)            |         | 15. 23           |          |
| Frctn Loss (ft)                      | 3.00                | Cum Volume (acre-ft) ´            | 0. 01   | 2.04             | 0. 01    |
| C & E Loss (ft)                      | 0. 10               | Cum SA (acrès)                    | 0.05    | 1. 82            | 0.04     |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

#### CROSS SECTION

RIVER: S\_Arroyo REACH: 1 RS: 1902 I NPUT Description: Station Elevation Data num= Sta 2. 24 El ev 62. 79 52. 07 Elev Sta Sta El ev El ev 7. 71 64.29 6.71 60.14 59. 78 55 53.97 31.08 36.91 50.9 37.91 50.54 40.74 50 61.11 50 65.59 51.14 66.59 51.33 71.06 52.74 73.3 53.66 55 102.54 Manning's n Values num= Sta n Val Sta Sta n Val n Val 77.77 Bank Sta: Left Right Lengths: Left Channel Ri ght Coeff Contr. Expan. 77.77 245. 09 245. 09 18 245. 09 . 3 . 1 CROSS SECTION OUTPUT Profile #Ex EV 2yr E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) 50.72 Left OB Channel Right OB Element LI ement
Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs) 0. 060 245. 09 15. 73 15. 73 27. 00 0.05 50.67 245.09 245.09 E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Total (ft/s) 0.009555 27.00 26. 21 1. 72 26. 21 1. 72 Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch El (ft) 0.67 0.60 Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) 276. 2 276.2 245.09 26.36 50.00 0.36 Stream Power (lb/ft s) 1.00 0. 61 0. 77 Al pha Frctn Loss (ft) C & E Loss (ft) Cum Volume (acre-ft) 5.02

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

1.38

Cum SA (acrès)

#### CROSS SECTION OUTPUT Profile #Ex EV 100yr

0.02

| E.G. Elev (ft)<br>Vel Head (ft)       | 51. 47<br>0. 11   | Element<br>Wt. n-Val.                          | Left OB | Channel<br>0.060 | Ri ght OB |
|---------------------------------------|-------------------|------------------------------------------------|---------|------------------|-----------|
| W.S. Elev (ft)                        | 51. 36            | Reach Len. (ft)                                | 245. 09 | 245. 09          | 245. 09   |
| Crit W.S. (ft)<br>E.G. Slope (ft/ft)  | 0. 010268         | Flow Area (sq ft)<br>Area (sq ft)              |         | 35. 56<br>35. 56 |           |
| Q Total (cfs)                         | 95.00             | Flow (cfs)                                     |         | 95.00            |           |
| Top Width (ft)<br>Vel Total (ft/s)    | 32. 05<br>2. 67   | Top Width (ft)<br>Avg. Vel. (ft/s)             |         | 32. 05<br>2. 67  |           |
| Max Chl Dpth (ft)                     | 1. 36             | Hyďr. Depth (ft)                               |         | 1. 11            |           |
| Conv. Total (cfs)<br>Length Wtd. (ft) | 937. 5<br>245. 09 | Conv. (cfs)<br>Wetted Per. (ft)                |         | 937. 5<br>32. 38 |           |
| Min <sup>-</sup> Ch El (ft)           | 50.00             | Shear (Ib/sq`ft)                               |         | 0. 70            |           |
| Alpha<br>Frctn Loss (ft)              | 1. 00<br>4. 95    | Stream Power (lb/ft s)<br>Cum Volume (acre-ft) | 0. 01   | 1. 88<br>1. 94   | 0. 01     |
| C & E Loss (ft)                       | 0.03              | Cum SA (acrès)                                 | 0. 05   | 1. 73            | 0.04      |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 1657

I NPUT

| 0 67.68 5<br>33.45 56.22 35.69<br>57.14 45 71.4                                   | El ev<br>66. 18 - 8<br>55 - 4:<br>45 - 8 | 7. 03 48. 98                   | 25. 63 60. 21<br>49. 9 50 |              | El ev<br>59. 69<br>48. 53<br>50<br>60. 32 |          |
|-----------------------------------------------------------------------------------|------------------------------------------|--------------------------------|---------------------------|--------------|-------------------------------------------|----------|
| Manning's n Values<br>Sta n Val Sta<br>0 .06 49.9                                 | n Val                                    | 3<br>Sta n Val<br>0.68 .06     |                           |              |                                           |          |
| Bank Sta: Left Right<br>49.9 90.68                                                |                                          | eft Channel I<br>.82 193.82 19 |                           | Contr.<br>.1 | Expan.<br>. 3                             |          |
| CROSS SECTION OUTPUT Pro                                                          | ofile #Ex EV                             | 2yr                            |                           |              |                                           |          |
| E.G. Elev (ft)<br>Vel Head (ft)                                                   | 45. 68<br>0. 22                          | Element<br>Wt. n-Val.          | L                         | eft OB       | Channel<br>0.060                          | Right OB |
| Vel Head (ft)<br>W.S. Elev (ft)<br>Crit W.S. (ft)                                 | 45. 47<br>45. 47                         | Reach Len. (1                  | ft) 1                     | 93. 82       | 193. 82<br>7. 21                          | 193. 82  |
| E.G. Slope (ft/ft)                                                                | 0.0/1442                                 | Area (sq ft)                   | t)<br>t/s)                |              | 7. 21                                     |          |
| Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) | 27. 00<br>16. 75                         | Flow (cfs) Top Width (f        | +)                        |              | 27. 00<br>16. 75                          |          |
| Vel Total (ft/s)                                                                  | 3. 74                                    | Avg. Vel. (f                   | t/s)                      |              | 3. 74                                     |          |
| Max Chl Dpth (ft)                                                                 | 0.47                                     | Hydr. Depth                    | (ft)                      |              | 0. 43                                     |          |
| Length Wtd. (ft)                                                                  | 101. 0<br>193. 82                        | Conv. (cfs)<br>Wetted Per.     | (ft)                      |              | 101. 0<br>16. 95                          |          |
| Min Ch El (ft)                                                                    | 45.00                                    | Shear (Ib/sq                   | `ft)                      |              | 1. 90                                     |          |
| Alpha<br>Frctn Loss (ft)                                                          | 1.00                                     | Stream Power                   |                           |              | 7. 10<br>0. 70                            |          |
| C & E Loss (ft)                                                                   | 0.06                                     | Cum Volume (a<br>Cum SA (acres |                           |              | 1. 26                                     |          |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

#### CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)  | 46. 49<br>0. 45  | Element<br>Wt. n-Val.                | Left OB | Channel<br>0.060  | Right OB |
|----------------------------------|------------------|--------------------------------------|---------|-------------------|----------|
| W.S. Elev (ft)<br>Crit W.S. (ft) | 46. 04<br>46. 04 | Reach Len. (ft)<br>Flow Area (sg ft) | 193.82  | 193. 82<br>17. 68 | 193.82   |
| E.G. Slope`(ft/ft)               | 0.056464         | Area (sq ft)                         |         | 17. 68            |          |
| Q Total (cfs)                    | 95.00            | Flow (cfs)                           |         | 95.00             |          |
| Top Width (ft)                   | 19. 81           | Top Width (ft)                       |         | 19. 81            |          |
| Vel Total (ft/s)                 | 5. 37            | Avg. Vel. (ft/s)                     |         | 5. 37             |          |
| Max Chl Dpth (ft)                | 1. 04            | Hydr. Depth (ft)                     |         | 0. 89             |          |
| Conv. Total (cfs)                | 399. 8           | Conv. (cfs)                          |         | 399.8             |          |
| Length Wtd. (ft)                 | 193. 82          | Wetted Per. (ft)                     |         | 20. 27            |          |
| Min Ch El (ft)                   | 45.00            | Shear (lb/sq`ft)                     |         | 3. 08             |          |
| Al pha                           | 1.00             | Stream Power (lb/ft s)               |         | 16. 52            |          |
| Frctn Loss (ft)                  | 1. 79            | Cum Volume (acre-ft)                 | 0. 01   | 1. 79             | 0. 01    |
| C & E Loss (ft)                  | 0. 11            | Cum SA (acres)                       | 0.05    | 1. 58             | 0.04     |

RS: 1463

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

Dagger | 10 + 1 - 10

RIVER: S\_Arroyo REACH: 1

| I NPUT                                                                                                                                                              |                                                                      |                                                                                  |                                      |                                                                                                           |                                                                 |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|
| Description: Station Elevation Data Sta Elev Sta 0 59.42 0 41.06 45.83 43.3 68.07 40.44 75.14 91.43 51 92.84 101.14 54 102.56 108.8 55.91 110.8 115.21 56.45 116.63 | El ev<br>59. 38 14<br>45 46<br>45 89<br>51. 5 99<br>55 103<br>56 112 | 4. 87 55<br>6. 13 43. 98<br>5. 77 49. 14<br>4. 26 52<br>3. 97 55. 22<br>2. 21 56 | 21. 94<br>56. 76<br>87. 18<br>97. 91 | El ev Sta<br>52.69 29.75<br>40 66.66<br>50 88.6<br>53 98.91<br>55.7 107.8<br>56.09 114.21<br>57.45 122.28 | El ev<br>50<br>40<br>50. 37<br>53. 26<br>55. 81<br>56. 16<br>58 |          |
| 123. 7 58. 49                                                                                                                                                       | 50.72 110                                                            | 5.04 57                                                                          | 119.40                               | 57. 45 122. 26                                                                                            | 56                                                              |          |
| Manning's n Values<br>Sta n Val Sta<br>O .06 43.3                                                                                                                   | n Val                                                                | 3<br>Sta n Val<br>5.14 .06                                                       |                                      |                                                                                                           |                                                                 |          |
| Bank Sta: Left Right<br>43.3 75.14                                                                                                                                  | Lengths: Le                                                          | eft Channel<br>1.6 171.6                                                         | Ri ght<br>171. 6                     | Coeff Contr.<br>.1                                                                                        | Expan.<br>. 3                                                   |          |
| CROSS SECTION OUTPUT Pro                                                                                                                                            | ofile #Ex EV                                                         | 2yr                                                                              |                                      |                                                                                                           |                                                                 |          |
| E.G. Elev (ft)<br>Vel Head (ft)                                                                                                                                     | 41. 56<br>0. 03                                                      | Element<br>Wt. n-Val.                                                            |                                      | Left OB                                                                                                   | Channel<br>0.060                                                | Right OB |
| Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft)                                                                                                      | 41. 54                                                               | Reach Len.                                                                       | (ft)<br>(sa ft)                      | 171.60                                                                                                    | 171. 60<br>21. 19                                               | 171. 60  |
| E.G. Slope (ft/ft)                                                                                                                                                  | 0.002097                                                             | Area (sq ft                                                                      | :)                                   |                                                                                                           | 21. 19                                                          |          |
| Top Width (ft)                                                                                                                                                      | 17. 12<br>1 27                                                       | Top Width (                                                                      | ft)                                  |                                                                                                           | 17. 12                                                          |          |
| Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs)                                                                                   | 1.54                                                                 | Hydr. Depth                                                                      | (ft)                                 |                                                                                                           | 1. 24                                                           |          |
| Tenath Wia. (11)                                                                                                                                                    | 171.60                                                               | Wetted Per.                                                                      | (ft)                                 |                                                                                                           | 17. 79                                                          |          |
| Min Ch El (ft)<br>Alpha<br>Frctn Loss (ft)                                                                                                                          | 1.00                                                                 | Stream Powe                                                                      | er (lb/ft s                          | 5)                                                                                                        | 0. 16<br>0. 20<br>0. 64                                         |          |
| C & E Loss (ft)                                                                                                                                                     | 0. 01                                                                | Cum SA (acr                                                                      | es)                                  |                                                                                                           | 1. 18                                                           |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)        | 42. 71<br>0. 08  | Element<br>Wt. n-Val.                      | Left OB | Channel<br>0.060  | Right OB |
|----------------------------------------|------------------|--------------------------------------------|---------|-------------------|----------|
| W.S. Elev (ft)<br>Crit W.S. (ft)       | 42. 63           | Reach Len. (ft)<br>Flow Area (sg ft)       | 171. 60 | 171. 60<br>42. 32 | 171. 60  |
| E.G. Slope`(ft/ft)                     | 0.003624         | Area (sq ft)                               |         | 42. 32            |          |
| Q Total (cfs)<br>Top Width (ft)        | 95. 00<br>21. 72 | Flow (cfs)<br>Top Width (ft)               |         | 95. 00<br>21. 72  |          |
| Vel Total (ft/s)                       | 2. 24            | Avg. Vel. (ft/s)                           |         | 2. 24             |          |
| Max Chl Dpth (ft)<br>Conv. Total (cfs) | 2. 63<br>1578. 2 | Hydr. Depth (ft)<br>Conv. (cfs)            |         | 1. 95<br>1578. 2  |          |
| Length Wtd. (ft)´                      | 171. 60          | Wetted Per. (ft)                           |         | 22. 90            |          |
| Min <sup>-</sup> Ch El (ft)<br>Alpha   | 40. 00<br>1. 00  | Shear (Ib/sq ft)<br>Stream Power (Ib/ft s) |         | 0. 42<br>0. 94    |          |
| Frictn Loss (ft)                       | 1.61             | Cum Volume (acre-ft)                       | 0.01    | 1.66              | 0. 01    |
| C & E Loss (ft)                        | 0. 03            | Cum SA (acres)                             | 0.05    | 1. 49             | 0. 04    |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

REACH: 1 RS: 1292

INPUT

Description:

Station Elevation Data num= 40 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev

Page 6

|                                                                                                                                                                                                                                       |                                                                 | ras82101,                                                                                                                                                    | _EX_S_AFFC                                                                             | iyo. rep                                   |                                                                                                            |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                       | 05 43.63 4<br>37 40 7                                           | 4. 61 50<br>4. 08 45. 98<br>0. 53 42. 73<br>9. 79 40. 56                                                                                                     | 6. 84<br>26. 08<br>42. 76<br>81. 79<br>92. 97                                          | 49. 54 8.<br>45. 77 27.<br>42. 24<br>41 83 | 49 45.54<br>45 41.85<br>3.2 41.2                                                                           |          |
| 97.57 45.25 100.<br>115.17 48.36 116.<br>120.59 48.56 1                                                                                                                                                                               | 74 46 10<br>17 48.4 11                                          | 2. 97 46. 38<br>7. 17 48. 45                                                                                                                                 | 105. 21<br>118. 59                                                                     |                                            | 57 48<br>59 48.54                                                                                          |          |
| Manning's n Values<br>Sta n Val S<br>0 .06                                                                                                                                                                                            | ta n Val                                                        |                                                                                                                                                              |                                                                                        |                                            |                                                                                                            |          |
| Bank Sta: Left Right<br>45 85.2<br>CROSS SECTION OUTPUT                                                                                                                                                                               |                                                                 |                                                                                                                                                              | Ri ght<br>179. 73                                                                      | Coeff Cont<br>. 1                          | r. Expan.<br>. 3                                                                                           |          |
|                                                                                                                                                                                                                                       |                                                                 | Element                                                                                                                                                      |                                                                                        | Left 0                                     |                                                                                                            | Right OB |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft) | 27. 16<br>3. 19<br>0. 33<br>96. 4<br>179. 73<br>40. 00<br>1. 00 | Wt. n-Val. Reach Len. Flow Area (sq ft Flow (cfs) Top Width ( Avg. Vel. ( Hydr. Depth Conv. (cfs) Wetted Per. Shear (lb/s Stream Powe Cum Volume Cum SA (acr | (ft)<br>(sq ft)<br>(ft)<br>(ft/s)<br>(ft)<br>(ft)<br>(sq ft)<br>er (lb/ft<br>(acre-ft) | 179. 73<br>s)                              | 0.060<br>179.73<br>8.48<br>8.48<br>27.00<br>27.16<br>3.19<br>0.31<br>96.4<br>27.26<br>1.52<br>4.85<br>0.58 | 179. 73  |

ras82101 Ev S Arroyo ren

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

#### CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)       | 41. 08<br>0. 34     | Element<br>Wt. n-Val.                  | Left OB        | Channel<br>0.060  | Right OB       |
|---------------------------------------|---------------------|----------------------------------------|----------------|-------------------|----------------|
| W.S. Elev`(ft)<br>Crit W.S. (ft)      | 40. 74<br>40. 74    | Reach Len. (ft)<br>Flow Area (sq ft)   | 179. 73        | 179. 73<br>20. 45 | 179. 73        |
| E.G. Slope (ft/ft)                    | 0. 060563<br>95. 00 | Area (sq ft)                           |                | 20. 45<br>95. 00  |                |
| Q Total (cfs)<br>Top Width (ft)       | 30. 51              | Flow (cfs)<br>Top Width (ft)           |                | 30. 51            |                |
| Vel Total (ft/s)<br>Max Chl Dpth (ft) | 4. 65<br>0. 74      | Avg. Vel. (ft/s)<br>Hydr. Depth (ft)   |                | 4. 65<br>0. 67    |                |
| Conv. Total (cfs)                     | 386. 0              | Conv. (cfs)                            |                | 386. 0            |                |
| Length Wtd. (ft)<br>Min Ch El (ft)    | 179. 73<br>40. 00   | Wetted Per. (ft)<br>Shear (lb/sq ft)   |                | 30. 71<br>2. 52   |                |
| Al pha                                | 1.00                | Stream Power (lb/ft s)                 |                | 11. 69            |                |
| Frctn Loss (ft)<br>C & E Loss (ft)    | 1. 55<br>0. 08      | Cum Volume (acre-ft)<br>Cum SA (acres) | 0. 01<br>0. 05 | 1. 53<br>1. 38    | 0. 01<br>0. 04 |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

| 101.08 40.88 102.08                                                                                                                                                                                                                    | El ev<br>40 3:<br>34. 15 70<br>36 80<br>38. 02 9<br>41 10                                                                                        | 29<br>Sta Elev Sta<br>3.62 35.85 38.1<br>0.36 34.41 72.6<br>0.85 36.15 82.27<br>1.48 39.01 96.48<br>5.69 41.97 106.69<br>5.77 44.02 120.24                                                                                       | 35 48.39<br>34.65 76.2<br>36.71 83.27<br>40 97.48<br>42 107.69 | EI ev<br>34<br>35<br>37<br>40. 24<br>42. 07                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Manning's n Values<br>Sta n Val Sta<br>0 .06 33.62                                                                                                                                                                                     | n Val                                                                                                                                            | 3<br>Sta n Val<br>9.85 .06                                                                                                                                                                                                       |                                                                |                                                                                                      |
| Bank Sta: Left Right<br>33.62 79.85                                                                                                                                                                                                    | Lengths: Le                                                                                                                                      | eft Channel Right<br>. 95 215. 95 215. 95                                                                                                                                                                                        | Coeff Contr.<br>.1                                             | Expan.<br>. 3                                                                                        |
| CROSS SECTION OUTPUT Pr                                                                                                                                                                                                                | ofile #Ex EV                                                                                                                                     | 2yr                                                                                                                                                                                                                              |                                                                |                                                                                                      |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Al pha Frctn Loss (ft) C & E Loss (ft) | 35. 04<br>0. 02<br>35. 02<br>34. 44<br>0. 003363<br>34. 00<br>38. 26<br>1. 18<br>1. 02<br>586. 3<br>215. 95<br>34. 00<br>1. 00<br>1. 99<br>0. 01 | Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/f Cum Volume (acre-f Cum SA (acres) | Left OB<br>215.95<br>t s)<br>t)                                | Channel 0. 060 215. 95 28. 72 28. 72 34. 00 38. 26 1. 18 0. 75 586. 3 38. 36 0. 16 0. 19 0. 50 0. 96 |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)                  | 35. 99          | Element                       | Left OB           | Channel           | Right OB |
|---------------------------------|-----------------|-------------------------------|-------------------|-------------------|----------|
| Vel Head (ft)<br>W.S. Elev (ft) | 0. 07<br>35. 93 | Wt. n-Val.<br>Reach Len. (ft) | 0. 060<br>215. 95 | 0. 060<br>215. 95 | 215. 95  |
| Crit W.S. (ft)                  |                 | Flow Area (sq ft)             | 0. 01             | 66. 97            |          |
| E.G. Slope (ft/ft)              | 0.004225        | Area (sq ft)                  | 0. 01             | 66. 97            |          |
| Q Total (cfs)                   | 138. 00         | Flow (cfs)                    | 0.00              | 138. 00           |          |
| Top Width (ft)                  | 46. 31          | Top Width (ft)                | 0. 38             | 45. 93            |          |
| Vel Total (ft/s)                | 2.06            | Avg. Vel. (ft/s)              | 0. 18             | 2. 06             |          |
| Max Chl Dpth (ft)               | 1. 93           | Hydr. Depth (ft)              | 0.04              | 1. 46             |          |
| Conv. Total (cfs)               | 2123. 1         | Conv. (cfs)                   | 0. 0              | 2123. 0           |          |
| Length Wtd. (ft)                | 215. 95         | Wetted Per. (ft)              | 0. 39             | 46. 24            |          |
| Min Ch El (ft)                  | 34.00           | Shear (lb/sq ft)              | 0. 01             | 0. 38             |          |
| Al pha                          | 1.00            | Stream Power (lb/ft s)        | 0.00              | 0. 79             |          |
| Frctn Loss (ft)                 | 2. 29           | Cum Volume (acre-ft)          | 0. 01             | 1. 35             | 0. 01    |
| C & E Loss (ft)                 | 0. 03           | Cum SA (acres)                | 0.05              | 1. 23             | 0.04     |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

#### CROSS SECTION

| INPUT   Description:   Station Elevation Data   num=   40     Sta   Elev   Sta   |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

```
ras82101_Ex_S_Arroyo.rep 32.43 63.27 32.48 32.62 71.5 32.73
                                                  62.27
                           47.14
                                                                                                            32.48
                 32.6
                                       32.49
                                                                                                65.27
     44.9
    66. 27
75. 74
                                                  69. 5
77. 74
               32.54
                           67.27
                                       32.55
                                                                                                  73.5
                                                                                                            32.87
                           76.74
                    33
                                       33.08
                                                              33.11
                                                                         82.84
                                                                                     33.49
                                                                                                85.84
                                                                                                            33.67
    89.96
                    34
                           91.96
                                       34. 21
                                                  98.04
                                                                  35
                                                                        105.12
                                                                                     35.57
                                                                                               110. 21
                                                                                                                36
                                                             37. 6
38. 95
   112.21
               36.24
                           118.3
                                           37
                                                  122.3
                                                                        125.46
                                                                                         38
                                                                                               127.46
                                                                                                            38.33
               38.54
                                       38. 83
                                                 131.87
  128.46
                          130.46
                                                                        132.87
                                                                                         39
                                                                                               134.87
                                                                                                            39.25
Manning's n Values
                                     num=
                              Sta
       Sťa
               n Val
                                      n Val
                                                     Sta
                                                             n Val
                  . 06
                           34.74
                                                  82.84
                                         . 06
Bank Sta: Left
                        Ri ght
                                     Lengths: Left Channel
                                                                        Ri ght
                                                                                      Coeff Contr.
                                                                                                            Expan.
             34.74
                        82.84
                                               240. 26 240. 26
                                                                      240. 26
CROSS SECTION OUTPUT Profile #Ex EV 2yr
  E.G. Elev (ft)
                                          33.02
                                                      Element
                                                                                            Left OB
                                                                                                            Channel
                                                                                                                          Right OB
                                                      Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
  Vel Head (ft)
                                           0. 16
                                                                                                             0.060
  W.S. Elev (ft)
Crit W.S. (ft)
                                          32. 86
32. 86
                                                                                                            240. 26
                                                                                            240.26
                                                                                                                            240.26
                                                                                                             10.59
  E.G. Slope (ft/ft)
Q Total (cfs)
                                                      Area (sq ft)
Flow (cfs)
                                     0.078473
                                                                                                             10.59
                                          34.00
                                                                                                             34.00
                                                      Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
  Top Width (ft)
Vel Total (ft/s)
                                          33.62
                                                                                                             33. 62
                                           3. 21
                                                                                                               3. 21
  Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
                                           0.43
                                                                                                               0.31
                                                                                                             121. 4
                                          121.4
                                        240.26
                                                                                                             33.64
                                                      Shear (Ib/sq ft)
Stream Power (Ib/ft s)
Cum Volume (acre-ft)
  Min Ch El (ft)
                                         32. 43
                                                                                                               1. 54
  Al pha
                                           1.00
                                                                                                               4. 95
  Frctn Loss (ft)
C & E Loss (ft)
                                           3.36
                                                                                                               0.41
```

Cum SA (acrès)

0.04

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth is not a valid subcritical answer. The program defaulted to critical depth.

0.78

#### CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft) | 33. 68<br>0. 33 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 33. 34          | Reach Len. (ft)        | 240. 26 | 240. 26          | 240. 26  |
| Crit W.S. (ft)                  | 33. 34          | Flow Area (sq ft)      |         | 29. 77           |          |
| E.G. Slope (ft/ft)              | 0. 061155       | Area (sq ft)           |         | 29. 77           |          |
| 0 Total (cfs)                   | 138.00          | Flow (cfs)             |         | 138. 00          |          |
| Top Width (ft)                  | 45. 15          | Top Width (ft)         |         | 45. 15           |          |
| Vel Total (ft/s)                | 4.63            | Avg. Vel. (ft/s)       |         | 4. 63            |          |
| Max Chl Dpth (ft)               | 0. 91           | Hyďr. Depth (ft)       |         | 0. 66            |          |
| Conv. Total (cfs)               | 558. 0          | Conv. (cfs) ` ´        |         | 558.0            |          |
| Length Wtd. (ft)                | 240. 26         | Wetted`Per. (ft)       |         | 45. 22           |          |
| Min Ch El (ft)                  | 32. 43          | Shear (Ib/sq`ft)       |         | 2. 51            |          |
| Al pha                          | 1.00            | Stream`Power (lb/ft s) |         | 11. 65           |          |
| Frctn Loss (ft)                 | 3. 55           | Cum Volume (acre-ft) ´ | 0. 01   | 1. 11            | 0. 01    |
| C & E Loss (ft)                 | 0.08            | Cum SA (acrès)         | 0.05    | 1.00             | 0.04     |

Warning: The energy equation could not be balanced within the specified number of iterations.

Warni ng:

Warni ng:

The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Warni ng: This indicates that there

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 656

INPUT

|                                                                                                                                                                                                                                       |                                                                                                                                          | ras82101                                                                                                                                                            | _Ex_S_Arro                                                                    | yo. rep                                                                                                   |                                                                                                                                                  |                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 0 32.18<br>11.94 30 18<br>30.81 26.67 34<br>86.63 25.9 87<br>104.5 28 105<br>116.73 29 117<br>127.29 29.29 128                                                                                                                        | Sta El ev 32 1<br>3.03 28.95 2:<br>1.93 26 3:<br>2.63 26 9:<br>2.92 28.13 10:<br>2.73 29.04 11:<br>3.29 29.32 13:                        | 41<br>Sta El ev<br>5. 47 31. 11<br>3. 41 25. 32<br>3. 96 26. 88<br>6. 92 28. 25<br>9. 96 29. 13<br>2. 76 29. 38<br>4. 53 29. 52                                     | 6. 47<br>26. 57<br>41. 41<br>94. 96<br>112. 31<br>123. 13<br>136. 88          | 25                                                                                                        | El ev<br>30. 75<br>27<br>25<br>27. 88<br>28. 95<br>29. 22<br>29. 45<br>29. 57                                                                    |                                                                                                             |
| Manning's n Values<br>Sta n Val<br>0 .06 34                                                                                                                                                                                           | num=<br>Sta n Val<br>1.93 .06 8                                                                                                          | 3<br>Sta n Val<br>7.63 .06                                                                                                                                          |                                                                               |                                                                                                           |                                                                                                                                                  |                                                                                                             |
| Bank Sta: Left Righ<br>34.93 87.6                                                                                                                                                                                                     | nt Lengths: Le<br>53 175                                                                                                                 | eft Channel<br>.08 175.08                                                                                                                                           | Ri ght<br>175. 08                                                             | Coeff Contr.<br>.1                                                                                        | Expan.<br>. 3                                                                                                                                    |                                                                                                             |
| CROSS SECTION OUTPUT                                                                                                                                                                                                                  | Profile #Ex EV                                                                                                                           |                                                                                                                                                                     |                                                                               |                                                                                                           |                                                                                                                                                  |                                                                                                             |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft) | 25. 65<br>0. 03<br>25. 63<br>0. 005613<br>34. 00<br>47. 07<br>1. 27<br>0. 63<br>453. 8<br>175. 08<br>25. 00<br>1. 00<br>0. 99<br>0. 00   | Element Wt. n-Val. Reach Len. Flow Area Area (sq f Flow (cfs) Top Width Avg. Vel. Hydr. Deptl Conv. (cfs) Wetted Per. Shear (lb/: Stream Pow Cum Volume Cum SA (aci | (ft) (sq ft) t) (ft) (ft/s) (ft) ) (ft) sq ft) er (lb/ft s (acre-ft) res)     | Left 0B<br>175.08                                                                                         | Channel 0. 060 175. 08 26. 74 26. 74 34. 00 47. 07 1. 27 0. 57 453. 8 47. 16 0. 20 0. 25 0. 30 0. 56                                             | Ri ght OB<br>175. 08                                                                                        |
| CROSS SECTION OUTPUT                                                                                                                                                                                                                  |                                                                                                                                          | 100yr                                                                                                                                                               |                                                                               |                                                                                                           |                                                                                                                                                  |                                                                                                             |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft) | 26. 39<br>0. 08<br>26. 32<br>0. 006492<br>138. 00<br>56. 95<br>2. 20<br>1. 32<br>1712. 7<br>175. 08<br>25. 00<br>1. 01<br>0. 75<br>0. 01 | Element Wt. n-Val. Reach Len. Flow Area Area (sq fflow (cfs) Top Width Avg. Vel. Hydr. Deptl Conv. (cfs) Wetted Pers Shear (lb/s Stream Pow Cum Volume Cum SA (aci  | (ft) (sq ft) t) (ft) (ft/s) n (ft) ) c (ft) sq ft) er (lb/ft s (acre-ft) res) | Left 0B<br>0.060<br>175.08<br>0.31<br>0.18<br>1.96<br>0.58<br>0.16<br>2.3<br>1.99<br>0.06<br>0.04<br>0.01 | Channel<br>0. 060<br>175. 08<br>61. 99<br>61. 99<br>137. 61<br>52. 70<br>2. 22<br>1. 18<br>1707. 8<br>52. 84<br>0. 48<br>1. 06<br>0. 86<br>0. 73 | Ri ght 0B<br>0.060<br>175.08<br>0.37<br>0.21<br>2.29<br>0.58<br>0.16<br>2.6<br>2.31<br>0.06<br>0.04<br>0.01 |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

# CROSS SECTION

| RI VER: S_A<br>REACH: 1 | Arroyo   |         | RS: 481 |         |        |         |        |         |        |
|-------------------------|----------|---------|---------|---------|--------|---------|--------|---------|--------|
| I NPUT                  |          |         |         |         |        |         |        |         |        |
| Description             |          |         |         |         |        |         |        |         |        |
| Stati on El             | evati on | Data    | num=    | 46      |        |         |        |         |        |
| Sta                     | Elev     | Sta     | Elev    | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   |
| 0                       | 37. 91   | 3. 16   | 37. 28  | 4. 16   | 37     | 6. 4    | 36. 61 | 9. 56   | 36     |
| 10. 56                  | 35.82    | 13. 72  | 35      | 15. 14  | 34.43  | 17. 37  | 34     | 20. 98  | 33     |
| 24. 58                  | 32.09    | 25. 58  | 32      | 27      | 31.62  | 29. 23  | 30. 96 | 31. 47  | 30     |
| 32.88                   | 29. 73   | 37. 36  | 29      | 39. 59  | 28     | 41.01   | 27. 75 | 43. 24  | 27     |
| 47.72                   | 26. 76   | 57. 15  | 26, 27  | 71. 09  | 25. 53 | 80. 53  | 25     | 86. 36  | 24.73  |
| 103.36                  | 24       | 120.86  | 24      | 141. 45 | 23.87  | 144. 28 | 24     | 161. 28 | 25     |
| 168. 49                 | 25. 51   | 176, 55 | 26      | 183. 26 | 26. 6  | 186, 87 | 27     | 190.47  | 28     |
| 191. 89                 | 28. 21   | 194. 12 | 29      | 195. 12 | 29. 21 | 200. 12 | 30     | 202. 36 | 30. 47 |
|                         |          |         |         |         |        | Page 10 |        |         |        |

30. 65 210. 57 203.36 230. 3 37.02 232.54 37.67

Manning's n Values

num= Sta 80. 53 Sta n Val 0 .06 n Val Sta n Val . 06 161. 28

Bank Sta: Left Right 80.53 161.28 Lengths: Left Channel 149.6 149.6 Ri ght 149. 6 Coeff Contr. Expan. 149. 6

CROSS SECTION OUTPUT Profile #Ex EV 2yr

| E.G. Elev (ft)     | 24.67    | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 02    | Wt. n-Val.             |         | 0.060   | Ü        |
| W.S. Elev (ft)     | 24.64    | Reach Len. (ft)        | 149. 60 | 149. 60 | 149.60   |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 36. 24  |          |
| E.G. Slope (ft/ft) | 0.005694 | Area (sq ft)           |         | 36. 24  |          |
| Q Total (cfs)      | 45.00    | Flow (cfs)             |         | 45. 00  |          |
| Top Width (ft)     | 66. 87   | Top Width (ft)         |         | 66. 87  |          |
| Vel Total (ft/s)   | 1. 24    | Avg. Vel. (ft/s)       |         | 1. 24   |          |
| Max Chl Dpth (ft)  | 0. 77    | Hydr. Depth (ft)       |         | 0. 54   |          |
| Conv. Total (cfs)  | 596. 3   | Conv. (cfs)            |         | 596. 3  |          |
| Length Wtd. (ft)   | 149. 60  | Wetted Per. (ft)       |         | 66. 91  |          |
| Min Ch El (ft)     | 23. 87   | Shear (lb/sq ft)       |         | 0. 19   |          |
| Al pha             | 1. 00    | Stream Power (lb/ft s) |         | 0. 24   |          |
| Frctn Loss (ft)    | 1. 18    | Cum Volume (acre-ft)   |         | 0. 18   |          |
| C & E Loss (ft)    | 0. 01    | Cum SA (acres)         |         | 0. 33   |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)           | 25.64          | Element                                        | Left OB        | Channel        | Right OB       |
|--------------------------|----------------|------------------------------------------------|----------------|----------------|----------------|
| Vel Head (ft)            | 0. 05          | Wt. n-Val.                                     | 0. 060         | 0.060          | Ŏ. 060         |
| W.S. Elev (ft)           | 25. 59         | Reach Len. (ft)                                | 149. 60        | 149. 60        | 149.60         |
| Crit W.S. (ft)           |                | Flow Area (sq ft)                              | 3. 14          | 110. 49        | 2.50           |
| E.G. Slope (ft/ft)       | 0.003327       | Area (sq ft) '                                 | 3. 14          | 110. 49        | 2.50           |
| Q Total (cfs)            | 198.00         | Flow (cfs)                                     | 1. 99          | 194. 44        | 1. 57          |
| Top Width (ft)           | 99. 99         | Top Wi`dth´(ft)                                | 10. 65         | 80. 75         | 8. 59          |
| Vel Total (ft/s)         | 1. 70          | Avg. Vel. (ft/s)                               | 0.63           | 1. 76          | 0.63           |
| Max Chl Dpth (ft)        | 1. 72          | Hydr. Depth (ft)                               | 0. 30          | 1. 37          | 0. 29          |
| Conv. Total (cfs)        | 3432.6         | Conv. (cfs)                                    | 34.5           | 3370. 9        | 27. 2          |
| Length Wtd. (ft)         | 149.60         | Wetted`Per. (ft)                               | 10.66          | 80. 80         | 8. 61          |
| Min Ch El (ft)           | 23. 87         | Shear (lb/sq ft)                               | 0.06           | 0. 28          | 0.06           |
| Al pha                   | 1. 05          | Stream Power (lb/ft s)                         | 0.04           | 0.50           | 0.04           |
| Frctn Loss (ft)          | 0. 92          | Cum Volume (acre-ft)                           | 0. 01          | 0. 51          | 0.00           |
| C & E Loss (ft)          | 0. 02          | Cum SA (acrès)                                 | 0. 02          | 0. 46          | 0. 01          |
| Alpha<br>Frctn Loss (ft) | 1. 05<br>0. 92 | Stream Power (lb/ft s)<br>Cum Volume (acre-ft) | 0. 04<br>0. 01 | 0. 50<br>0. 51 | 0. 04<br>0. 00 |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 331

I NPUT

Description:

| Description | <i>/</i> 11. |         |        |         |        |         |        |         |        |
|-------------|--------------|---------|--------|---------|--------|---------|--------|---------|--------|
| Stati on El | evati on     | Data    | num=   | 55      |        |         |        |         |        |
| Sta         | El ev        | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   |
| 0           | 28. 1        | 1       | 28     | 2.41    | 27.82  | 3.83    | 27.75  | 6.06    | 27.53  |
| 7.48        | 27.45        | 9. 71   | 27. 28 | 10. 71  | 27. 21 | 12. 95  | 27     | 15. 19  | 26.87  |
| 18. 79      | 26. 71       | 28. 23  | 26. 6  | 31.05   | 26. 69 | 33. 29  | 26.74  | 34. 29  | 26.72  |
| 35. 29      | 26. 68       | 38. 9   | 26. 91 | 41. 13  | 27     | 66. 24  | 27     | 67. 65  | 26. 94 |
| 69. 07      | 26.64        | 72.67   | 26. 17 | 74.08   | 26     | 75.08   | 25.87  | 84.52   | 24. 98 |
| 88. 76      | 24           | 95. 47  | 23. 17 | 96.88   | 23     | 100. 49 | 22. 18 | 101. 49 | 22     |
| 107. 15     | 22           | 111. 62 | 22.74  | 113. 85 | 23     | 121. 07 | 24. 01 | 126. 07 | 24. 46 |
| 132.47      | 25           | 135.63  | 25. 23 | 138. 46 | 25.53  | 139. 46 | 25.64  | 140.46  | 25.72  |
| 141. 46     | 25.81        | 143. 7  | 26     | 146. 52 | 26. 73 | 147. 52 | 27. 1  | 151. 13 | 28     |
| 152. 13     | 28. 05       | 153. 13 | 28. 14 | 155. 96 | 29     | 159. 56 | 29.84  | 160. 56 | 30     |
| 161. 56     | 30. 21       | 162. 98 | 30. 64 | 173. 79 | 33. 57 | 178. 79 | 35     | 182. 4  | 35.89  |

Manning's n Values

num=

Page 11

n Val Sta n Val Sta n Val Sta . 06 132. 47 . 06 84. 52

Bank Sta: Left Right 84.52 132.47 Lengths: Left Channel Right 206.09 206.09 206.09 Ri ght Coeff Contr. Expan. . 1 . 3

CROSS SECTION OUTPUT Profile #Ex EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft) | 23. 49<br>0. 09 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev`(ft)                  | 23. 40          | Reach Len. (ft)        | 206.09  | 206.09           | 206.09   |
| Crit W.S. (ft)                  | 22. 93          | Flow Area (sq ft)      |         | 19. 19           |          |
| E.G. Slope (ft/ft)              | 0. 011637       | Area (sq ft)           |         | 19. 19           |          |
| Q Total (cfs)                   | 45.00           | Flow (cfs)             |         | 45.00            |          |
| Top Width (ft)                  | 23. 11          | Top Width (ft)         |         | 23. 11           |          |
| Vel Total (ft/s)                | 2.34            | Avg. Vel. (ft/s)       |         | 2. 34            |          |
| Max Chl Dpth (ft)               | 1. 40           | Hydr. Depth (ft)       |         | 0.83             |          |
| Conv. Total (cfs)               | 417. 1          | Conv. (cfs)            |         | 417. 1           |          |
| Length Wtd. (ft)                | 206.09          | Wetted Per. (ft)       |         | 23. 35           |          |
| Min Ch El (ft)                  | 22.00           | Shear (lb/sq`ft)       |         | 0.60             |          |
| Al pha                          | 1.00            | Stream Power (lb/ft s) |         | 1. 40            |          |
| Frctn Loss (ft)                 | 5. 02           | Cum Volume (acre-ft)   |         | 0.08             |          |
| C & E Loss (ft)                 | 0. 01           | Cum SA (acrès)         |         | 0. 18            |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)     | 24. 71    | Element                | Left OB | Channel | Right OB |
|--------------------|-----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 21     | Wt. n-Val.             |         | 0.060   |          |
| W.S. Elev (ft)     | 24. 50    | Reach Len. (ft)        | 206. 09 | 206. 09 | 206. 09  |
| Crit W.S. (ft)     | 23. 93    | Flow Area (sq ft)      |         | 53. 67  |          |
| E.G. Slope (ft/ft) | 0. 015136 | Area (sq ft)           |         | 53. 67  |          |
| Q Total (cfs)      | 198. 00   | Flow (cfs)             |         | 198. 00 |          |
| Top Width (ft)     | 39.89     | Top Width (ft)         |         | 39. 89  |          |
| Vel Total (ft/s)   | 3. 69     | Avg. Vel. (ft/s)       |         | 3. 69   |          |
| Max Chl Dpth (ft)  | 2. 50     | Hydr. Depth (ft)       |         | 1. 35   |          |
| Conv. Total (cfs)  | 1609. 4   | Conv. (cfs)            |         | 1609. 4 |          |
| Length Wtd. (ft)   | 206. 09   | Wetted Per. (ft)       |         | 40. 29  |          |
| Min Ch El (ft)     | 22.00     | Shear (Ib/sq ft)       |         | 1. 26   |          |
| Al pha             | 1.00      | Stream Power (lb/ft s) |         | 4. 64   |          |
| Frctn Loss (ft)    | 5. 58     | Cum Volume (acre-ft)   |         | 0. 23   |          |
| C & E Loss (ft)    | 0. 01     | Cum SA (acrès)         |         | 0. 26   |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

#### CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 125

| I NPUT      |          |         |        |         |        |         |        |         |        |
|-------------|----------|---------|--------|---------|--------|---------|--------|---------|--------|
| Description | n:       |         |        |         |        |         |        |         |        |
| Stati on El | evati on | Data    | num=   | 79      |        |         |        |         |        |
| Sta         | Elev     | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   |
| 0           | 32. 23   | 0       | 32     | 2. 24   | 31. 31 | 3.65    | 30. 94 | 6.89    | 30.68  |
| 8. 3        | 30. 57   | 14. 13  | 30. 45 | 15. 13  | 30.46  | 16. 55  | 30.46  | 18. 78  | 30.49  |
| 21.02       | 30.48    | 22.02   | 30.47  | 23.43   | 30.45  | 27.04   | 30. 26 | 29. 27  | 30. 12 |
| 30. 27      | 30       | 31. 69  | 29. 72 | 33. 92  | 29     | 35.34   | 28. 4  | 36.34   | 27.69  |
| 38. 57      | 27       | 40.81   | 26. 14 | 41. 81  | 26     | 42.81   | 25.65  | 45.05   | 25     |
| 47. 28      | 24.46    | 48. 7   | 23.83  | 51. 86  | 23     | 53. 27  | 22. 59 | 55. 51  | 22     |
| 58. 34      | 21. 23   | 59. 34  | 21     | 62. 94  | 20. 18 | 63. 94  | 20     | 65. 36  | 20     |
| 69.83       | 19. 53   | 74. 3   | 19     | 78. 77  | 18. 76 | 83. 25  | 18. 51 | 89. 08  | 18. 17 |
| 90. 49      | 18. 11   | 92.73   | 18     | 132. 94 | 18     | 137. 94 | 18. 3  | 143. 77 | 18. 63 |
| 149. 6      | 19       | 152. 76 | 19. 31 | 158. 59 | 20     | 159. 59 | 20. 52 | 161. 01 | 21. 17 |
| 163. 24     | 23.08    | 166. 85 | 25     | 167.85  | 26     | 169. 26 | 26. 58 | 170. 26 | 27. 22 |
| 171. 68     | 28. 27   | 173. 09 | 29     | 175. 33 | 29. 59 | 176. 33 | 29. 78 | 178. 56 | 30. 08 |
| 179. 98     | 30. 15   | 184. 45 | 30. 63 | 185. 45 | 30. 77 | 188. 28 | 31     | 191. 44 | 31. 27 |
| 192. 85     | 31. 31   | 193.85  | 31. 39 | 195. 27 | 31. 43 | 196. 27 | 31. 49 | 199. 1  | 31. 59 |
| 202. 26     | 32       | 203. 67 | 32     | 207. 28 | 32. 66 | 208. 28 | 33     | 209. 69 | 33. 19 |
|             |          |         |        |         |        | Dago 12 |        |         |        |

Page 12

# 

Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .06 63.94 .06 158.59 .06

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 63.94 158.59 124.97 124.97 124.97 .1 .3

# CROSS SECTION OUTPUT Profile #Ex EV 2yr

| E.G. Elev (ft)     | 18. 46   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 14    | Wt. n-Val.             |         | 0.060   | 3        |
| W.S. Elev (ft)     | 18. 32   | Reach Len. (ft)        |         |         |          |
| Crit W.S. (ft)     | 18. 32   | Flow Area (sq ft)      |         | 14.82   |          |
| E.G. Slope (ft/ft) | 0.079816 | Area (sq ft) ′         |         | 14. 82  |          |
| Q Total (cfs)      | 45.00    | Flow (cfs)             |         | 45.00   |          |
| Top Width (ft)     | 51. 83   | Top Width (ft)         |         | 51.83   |          |
| Vel Total (ft/s)   | 3. 04    | Avg. Vel. (ft/s)       |         | 3. 04   |          |
| Max Chl Dpth (ft)  | 0. 32    | Hydr. Depth (ft)       |         | 0. 29   |          |
| Conv. Total (cfs)  | 159. 3   | Conv. (cfs)            |         | 159. 3  |          |
| Length Wtd. (ft)   |          | Wetted Per. (ft)       |         | 51. 84  |          |
| Min Ch El (ft)     | 18. 00   | Shear (lb/sq ft)       |         | 1. 42   |          |
| Al pha             | 1. 00    | Stream Power (lb/ft s) |         | 4. 33   |          |
| Frctn Loss (ft)    |          | Cum Volume (acre-ft)   |         |         |          |
| C & E Loss (ft)    |          | Cum SA (acres)         |         |         |          |

# CROSS SECTION OUTPUT Profile #Ex EV 100yr

| E.G. Elev (ft)                  | 19. 12          | Element                       | Left OB | Channel | Right OB |
|---------------------------------|-----------------|-------------------------------|---------|---------|----------|
| Vel Head (ft)<br>W.S. Elev (ft) | 0. 32<br>18. 80 | Wt. n-Val.<br>Reach Len. (ft) |         | 0.060   |          |
| Crit W.S. (ft)                  | 18. 80          | Flow Area (sq ft)             |         | 43. 54  |          |
| E.G. Slope (ft/ft)              | 0.061593        | Area (sq ft)                  |         | 43.54   |          |
| Q Total (cfs)                   | 198. 00         | Flow (cfs)                    |         | 198. 00 |          |
| Top Width (ft)                  | 68. 38          | Top Width (ft)                |         | 68. 38  |          |
| Vel Total (ft/s)                | 4. 55           | Avg. Vel. (ft/s)              |         | 4. 55   |          |
| Max Chl Dpth (ft)               | 0.80            | Hydr. Depth (ft)              |         | 0. 64   |          |
| Conv. Total (cfs)               | 797. 8          | Conv. (cfs)                   |         | 797.8   |          |
| Length Wtd. (ft)                |                 | Wetted Per. (ft)              |         | 68. 42  |          |
| Min Ch El (ft)                  | 18.00           | Shear (lb/sq ft)              |         | 2. 45   |          |
| Al pha                          | 1.00            | Stream Power (lb/ft s)        |         | 11. 13  |          |
| Frctn Loss (ft)                 |                 | Cum Volume (acre-ft)          |         |         |          |
| C & E Loss (ft)                 |                 | Cum SA (acres)                |         |         |          |

# SUMMARY OF MANNING'S N VALUES

Ri ver: S\_Arroyo

|             | Reach | Ri ver Sta.          | n1                   | n2                   | n3                   |
|-------------|-------|----------------------|----------------------|----------------------|----------------------|
| 1<br>1<br>1 |       | 2256<br>2062<br>1902 | . 06<br>. 06<br>. 06 | . 06<br>. 06<br>. 06 | . 06<br>. 06<br>. 06 |
| 1           |       | 1657<br>1463         | . 06<br>. 06         | . 06<br>. 06         | . 06                 |
| 1           |       | 1292<br>1112         | . 06<br>. 06         | . 06<br>. 06         | . 06<br>. 06         |
| 1           |       | 896                  | . 06                 | . 06                 | . 06                 |
| 1           |       | 656<br>481           | . 06<br>. 06         | . 06<br>. 06         | . 06<br>. 06         |
| 1<br>1      |       | 331<br>125           | . 06<br>. 06         | . 06<br>. 06         | . 06<br>. 06         |

# SUMMARY OF REACH LENGTHS

Ri ver: S\_Arroyo

|   | Reach | Ri ver Sta.  | Left               | Channel                       | Ri ght             |
|---|-------|--------------|--------------------|-------------------------------|--------------------|
| 1 |       | 2256<br>2062 | 193. 64<br>160. 23 | 193. 64<br>160. 23<br>Page 13 | 193. 64<br>160. 23 |

|   |      | ras821  | 01_Ex_S_Ar | royo. rep |
|---|------|---------|------------|-----------|
| 1 | 1902 | 245. 09 | 245.09     | Ž45. 09   |
| 1 | 1657 | 193.82  | 193.82     | 193.82    |
| 1 | 1463 | 171. 6  | 171. 6     | 171. 6    |
| 1 | 1292 | 179. 73 | 179. 73    | 179. 73   |
| 1 | 1112 | 215. 95 | 215. 95    | 215. 95   |
| 1 | 896  | 240. 26 | 240. 26    | 240. 26   |
| 1 | 656  | 175. 08 | 175. 08    | 175.08    |
| 1 | 481  | 149. 6  | 149. 6     | 149. 6    |
| 1 | 331  | 206.09  | 206.09     | 206.09    |
| 1 | 125  | 124. 97 | 124. 97    | 124. 97   |

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: S\_Arroyo

|                                      | Reach | Ri ver Sta.                                                               | Contr.                                 | Expan.                     |
|--------------------------------------|-------|---------------------------------------------------------------------------|----------------------------------------|----------------------------|
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |       | 2256<br>2062<br>1902<br>1657<br>1463<br>1292<br>1112<br>896<br>656<br>481 | .1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 | .3 .3 .3 .3 .3 .3 .3 .3 .3 |
| 1                                    |       | 331<br>125                                                                | . I<br>. 1                             | . 3<br>. 3                 |











C3 HEC-RAS Modeling Report for Southerly Arroyo Channel under Proposed Condition

#### ras82101\_S\_Pr\_Arroyo.rep

HEC-RAS Version 3.1.3 May 2005 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street Davis, California



PROJECT DATA

Project Title: Newport Banning Ranch Project File: ras82101.prj Run Date and Time: 4/15/2008 3:58:31 PM

Project in English units

#### PLAN DATA

Plan Title: Pr. S Arroyo Run
Plan File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.p03

Geometry Title: P South Arroyo Geometry File : p:  $\Projects\821\01\Wat\HH\EIR\ Study\HEC_RAS\ras82101.g03$ 

Flow Title

: Pr. S\_Arryo Flows
: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.f03 Flow File

Plan Summary Information: Number of: Cross Sections = Multiple Openings = 11 0

Inline Structures = Lateral Structures = Cul verts = 0 0 Bri dges Ω

Computational Information
Water surface calculation tolerance = Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance 0.3 Flow tolerance factor 0.001

Computation Options

Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Subcritical Flow

# FLOW DATA

Flow Title: Pr. S\_Arryo Flows

Flow File: p:\Projects\821\01\Wat\HH\EIR Study\HEC\_RAS\ras82101.f03

Flow Data (cfs)

| Ri ver   | Reach | RS   | Pr EV 2yr | Pr EV 100yr |
|----------|-------|------|-----------|-------------|
| S_Arroyo | 1     | 2062 | 30        | 1Ŏ7         |
| S_Arroyo | 1     | 1112 | 32        | 122         |
| S Arroyo | 1     | 481  | 32        | 130         |

# Boundary Conditions

| Ri ver   | Reach | Profile   | Upstream   | Downstream |
|----------|-------|-----------|------------|------------|
| S_Arroyo | 1     | Pr EV 2yr | Cri ti cal | Cri ti cal |

# ras82101\_S\_Pr\_Arroyo.rep

#### GEOMETRY DATA

Geometry Title: P South Arroyo Geometry File: p:  $\Projects\821\01\Wat\HH\EIR\ Study\HEC_RAS\ras82101.g03$ 

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 2062

I NPUT

| Descri | pti | on: |
|--------|-----|-----|
| o      |     |     |

| Station El | evation | Data   | num=   | 43     |        |        |        |        |        |
|------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Sta        | Elev    | Sta    | Elev   | Sta    | Elev   | Sta    | Elev   | Sta    | Elev   |
| 0          | 65. 75  | 2.83   | 65     | 5. 66  | 64     | 8. 49  | 64     | 9. 9   | 64. 71 |
| 11. 31     | 65. 13  | 12. 73 | 65. 34 | 14. 14 | 65.49  | 15. 56 | 65. 54 | 16. 97 | 65. 51 |
| 18. 38     | 65      | 21. 21 | 65     | 22.63  | 64. 16 | 24.04  | 64     | 25.46  | 63.38  |
| 26.87      | 62.85   | 31. 11 | 61. 16 | 33. 94 | 60. 6  | 35.36  | 60. 14 | 36.77  | 60     |
| 38. 18     | 59. 67  | 39. 6  | 59. 43 | 41. 01 | 59     | 45. 25 | 56. 16 | 46. 67 | 54.82  |
| 48. 08     | 54      | 50. 91 | 53.42  | 52.33  | 52.97  | 56.57  | 52.65  | 57. 98 | 52.65  |
| 62. 23     | 53      | 63.64  | 53     | 65.05  | 55     | 67.88  | 56.47  | 73.54  | 59. 7  |
| 74. 95     | 60      | 82.02  | 62. 8  | 86. 27 | 64. 6  | 87.68  | 65     | 91. 92 | 67. 15 |
| 97 58      | 70      | 107 48 | 72 65  | 111 72 | 73 52  |        |        |        |        |

Manni ng's n Val ues Sta n Val Sta 0 .06 36.77 num= 3 n Val Šta n Val . 06 74. 95

Bank Sta: Left 36.77 Lengths: Left Channel Right 160. 23 160. 23 160. 23 Ri ght 74. 95 Coeff Contr. Expan. . 1

CROSS SECTION OUTPUT Profile #Pr EV 2yr

| E.G. Elev (ft)                | 53.70     | Element                | Left OB | Channel | Right OB |
|-------------------------------|-----------|------------------------|---------|---------|----------|
| Vel Head (ft)                 | 0. 21     | Wt. n-Val.             |         | 0.060   |          |
| W.S. Elev (ft)                | 53. 49    | Reach Len. (ft)        | 160. 23 | 160. 23 | 160. 23  |
| Crit W.S. (ft)                | 53. 41    | Flow Area (sq ft)      |         | 8. 08   |          |
| <pre>E.G. Slope (ft/ft)</pre> | 0. 045684 | Area (sq ft)           |         | 8. 08   |          |
| Q Total (cfs)                 | 30.00     | Flow (cfs)             |         | 30.00   |          |
| Top Width (ft)                | 13. 41    | Top Width (ft)         |         | 13. 41  |          |
| Vel Total (ft/s)              | 3. 71     | Avg. Vel. (ft/s)       |         | 3. 71   |          |
| Max Chl Dpth (ft)             | 0.84      | Hydr. Depth (ft)       |         | 0.60    |          |
| Conv. Total (cfs)             | 140. 4    | Conv. (cfs)            |         | 140. 4  |          |
| Length Wtd. (ft)              | 160. 23   | Wetted Per. (ft)       |         | 13. 77  |          |
| Min Ch El (ft)                | 52.65     | Shear (lb/sq ft)       |         | 1. 67   |          |
| Al pha                        | 1.00      | Stream Power (lb/ft s) |         | 6. 22   |          |
| Frctn Loss (ft)               | 2. 90     | Cum Volume (acre-ft)   |         | 0. 75   |          |
| C & E Loss (ft)               | 0.05      | Cum SA (acrès)         |         | 1. 41   |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

#### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)  | 54. 70<br>0. 48  | Element<br>Wt. n-Val.                | Left OB | Channel<br>0.060  | Right OB |
|----------------------------------|------------------|--------------------------------------|---------|-------------------|----------|
| W.S. Elev (ft)<br>Crit W.S. (ft) | 54. 21<br>54. 14 | Reach Len. (ft)<br>Flow Area (sg ft) | 160. 23 | 160. 23<br>19. 20 | 160. 23  |
| E.G. Slope (ft/ft)               | 0.045174         | Area (sq ft)                         |         | 19. 20            |          |
| Q Total (cfs)                    | 107.00           | Flow (cfs)                           |         | 107. 00           |          |
| Top Width (ft)                   | 16. 78           | Top Width (ft)                       |         | 16. 78            |          |
| Vel Total (ft/s)                 | 5. 57            | Avg. Vel. (ft/s)                     |         | 5. 57             |          |
| Max Chl Dpth (ft)                | 1. 56            | Hydr. Depth (ft)                     |         | 1. 14             |          |
| Conv. Total (cfs)                | 503. 4           | Conv. (cfs)                          |         | 503.4             |          |
| Length Wtd. (ft)                 | 160. 23          | Wetted Per. (ft)                     |         | 17. 62            |          |
| Min Ch El (ft)                   | 52. 65           | Shear (Ib/sq ft)                     |         | 3. 07             |          |
| Al pha                           | 1. 00            | Stream Power (lb/ft s)               |         | 17. 12            |          |
| Frctn Loss (ft)                  | 3. 03            | Cum Volume (acre-ft)                 | 0.00    | 1. 82             | 0.00     |
| C & E Loss (ft)                  | 0. 11            | Cum SA (acres)                       | 0.02    | 1. 78             | 0.02     |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than Page 2

ras82101\_S\_Pr\_Arroyo.rep
0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 1902

65.27

I NPUT Description:

103.95

Station Elevation Data num= El ev 64. 29 Sta 2. 24 Sta Elev El ev 62. 79 52. 07 7.71 6.71 60.14 53.97 31.08 36. 91 50.9 37.91 50.54 40.74 50 51. 14 57. 7 61.11 50 65.59 51.33 71.06 52.74 73.3 66.59 53.66

Manning's n Values Sta n Val 3 num= n Val Sta Sta n Val . 06 18

Ri ght 77.77 Lengths: Left Channel Right 245.09 245.09 245.09 Bank Sta: Left Ri ght Coeff Contr. Expan. 18 . 1

### CROSS SECTION OUTPUT Profile #Pr EV 2yr

| E.G. Elev (ft)     | 50. 76   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 05    | Wt. n-Val.             |         | 0. 060  |          |
| W.S. Elev (ft)     | 50. 71   | Reach Len. (ft)        | 245. 09 | 245. 09 | 245. 09  |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 16. 79  |          |
| E.G. Slope (ft/ft) | 0.009636 | Area (sq ft) '         |         | 16. 79  |          |
| 0 Total (cfs)      | 30.00    | Flow (cfs)             |         | 30.00   |          |
| Top Width (ft)     | 26. 48   | Top Width (ft)         |         | 26. 48  |          |
| Vel Total (ft/s)   | 1. 79    | Avg. Vel. (ft/s)       |         | 1. 79   |          |
| Max Chl Dpth (ft)  | 0. 71    | Hyďr. Depth (ft)       |         | 0. 63   |          |
| Conv. Total (cfs)  | 305. 6   | Conv. (cfs)            |         | 305.6   |          |
| Length Wtd. (ft)´  | 245.09   | Wetted`Per. (ft)       |         | 26. 65  |          |
| Min Ch El (ft)     | 50.00    | Shear (lb/sq`ft)       |         | 0. 38   |          |
| Al pha             | 1.00     | Stream Power (lb/ft s) |         | 0. 68   |          |
| Frctn Loss (ft)    | 5. 02    | Cum Volume (acre-ft) ´ |         | 0. 71   |          |
| C & E Loss (ft)    | 0.02     | Cum SA (acrès)         |         | 1. 34   |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft) | 51. 57<br>0. 12 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 51. 45          | Reach Len. (ft)        | 245.09  | 245. 09          | 245.09   |
| Crit W.S. (ft)                  |                 | Flow Area (sq ft)      |         | 38. 50           |          |
| E.G. Slope (ft/ft)              | 0. 010308       | Area (sq ft)           |         | 38. 50           |          |
| Q Total (cfs)                   | 107. 00         | Flow (cfs)             |         | 107. 00          |          |
| Top Width (ft)                  | 32.79           | Top Width (ft)         |         | 32. 79           |          |
| Vel Total (ft/s)                | 2. 78           | Avg. Vel. (ft/s)       |         | 2. 78            |          |
| Max Chl Dpth (ft)               | 1. 45           | Hydr. Depth (ft)       |         | 1. 17            |          |
| Conv. Total (cfs)               | 1053. 9         | Conv. (cfs)            |         | 1053. 9          |          |
| Length Wtd. (ft)                | 245.09          | Wetted Per. (ft)       |         | 33. 14           |          |
| Min Ch El (ft)                  | 50.00           | Shear (lb/sq ft)       |         | 0. 75            |          |
| Al pha                          | 1. 00           | Stream Power (lb/ft s) |         | 2. 08            |          |
| Frctn Loss (ft)                 | 4.94            | Cum Volume (acre-ft)   | 0.00    | 1. 72            | 0.00     |
| C & E Loss (ft)                 | 0. 04           | Cum SA (acrès)         | 0. 02   | 1. 69            | 0. 02    |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: S\_Arroyo

REACH: 1 RS: 1657

I NPUT Description: Station Elevation Data num= Sta El ev Sta Elev Sta El ev Sta Elev Elev 8.61 27.05 0 67.68 5 66.18 65 25.63 60.21 59.69 56. 22 50 33.45 35.69 55 42.09 52.76 49.9 52.14 48.53 49. 72 57.14 45 71.4 45 87.03 48.98 89.26 90.68 50 53. 9 99.9 55 112.13 60.32 60.44 Manning's n Values num= Sta n Val Sta Sťa n Val n Val 49.9 90.68 . 06 Lengths: Bank Sta: Left Ri ght Left Channel Ri ght Coeff Contr. Expan.

193. 82 193. 82 193. 82 49.9 90.68 . 1

### CROSS SECTION OUTPUT Profile #Pr EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft) | 45. 73<br>0. 23 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 45. 50          | Reach Len. (ft)        | 193.82  | 193. 82          | 193.82   |
| Crit W.S. (ft)                  | 45. 50          | Flow Area (sq ft)      |         | 7. 77            |          |
| E.G. Slope (ft/ft)              | 0. 069784       | Area (sq ft)           |         | 7. 77            |          |
| Q Total (cfs)                   | 30.00           | Flow (cfs)             |         | 30. 00           |          |
| Top Width (ft)                  | 16. 92          | Top Width (ft)         |         | 16. 92           |          |
| Vel Total (ft/s)                | 3.86            | Avg. Vel. (ft/s)       |         | 3. 86            |          |
| Max Chl Dpth (ft)               | 0.50            | Hyďr. Depth (ft)       |         | 0. 46            |          |
| Conv. Total (cfs)               | 113. 6          | Conv. (cfs)            |         | 113.6            |          |
| Length Wtd. (ft)                | 193. 82         | Wetted Per. (ft)       |         | 17. 14           |          |
| Min Ch El (ft) ´                | 45.00           | Shear (lb/sq`ft)       |         | 1. 97            |          |
| Al pha                          | 1.00            | Stream`Power (lb/ft s) |         | 7. 62            |          |
| Frctn Loss (ft)                 | 1. 23           | Cum Volume (acre-ft)   |         | 0. 64            |          |
| C & E Loss (ft)                 | 0.06            | Cum SA (acrès)         |         | 1. 22            |          |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)    | 46. 60<br>0. 48   | Element<br>Wt. n-Val.                  | Left OB        | Channel<br>0.060  | Right OB       |
|------------------------------------|-------------------|----------------------------------------|----------------|-------------------|----------------|
| W.S. Elev (ft)<br>Crit W.S. (ft)   | 46. 12<br>46. 12  | Reach Len. (ft)<br>Flow Area (sq ft)   | 193. 82        | 193. 82<br>19. 22 | 193. 82        |
| E.G. Slope (ft/ft)                 | 0.055810          | Area (sq ft)                           |                | 19. 22            |                |
| Q Total (cfs)                      | 107.00            | Flow (cfs)                             |                | 107. 00           |                |
| Top Width (ft)<br>Vel Total (ft/s) | 20. 22<br>5. 57   | Top Width (ft)<br>Avg. Vel. (ft/s)     |                | 20. 22<br>5. 57   |                |
| Max Chl Dpth (ft)                  | 1. 12             | Hyďr. Depth (ft)                       |                | 0. 95             |                |
| Conv. Total (cfs)                  | 452. 9            | Conv. (cfs)                            |                | 452.9             |                |
| Length Wtd. (ft)<br>Min Ch El (ft) | 193. 82<br>45. 00 | Wetted Per. (ft)<br>Shear (Ib/sq ft)   |                | 20. 71<br>3. 23   |                |
| Al pha                             | 1.00              | Stream Power (lb/ft s)                 |                | 18. 00            |                |
| Frctn Loss (ft)<br>C & E Loss (ft) | 1. 85<br>0. 12    | Cum Volume (acre-ft)<br>Cum SA (acres) | 0. 00<br>0. 02 | 1. 55<br>1. 54    | 0. 00<br>0. 02 |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

119.46

57.45

122.28

50

40

RI VER: S\_Arroyo RS: 1463 REACH: 1 I NPUT Description: Station Elevation Data num= Sta El ev Elev Sta 59.38 14.87 21.94 29.75 59.42 0 55 52.69 43. 3 43.98 41.06 45.83 45 46.13 56.76 40 66.66 75. 14 92. 84 87. 18 97. 91 50. 37 53. 26 68.07 40.44 45 85.77 49.14 50 88.6 98. 91 91.43 51 94.26 52 53 103. 97 112. 21 106. 8 113. 21 107. 8 114. 21 101.14 54 102.56 55 55.22 55.7 55.81 108. 8 115. 21 55.91 110.8 56 56.09 56.16

118.04

Manning's n Values num= n Val Sta n Val Sta n Val Sťa 43.3 75.14

56.72

Ri ght 171. 6 Bank Sta: Left Ri ght Lengths: Left Channel Coeff Contr. Expan. . 3 43.3 75. 14 171.6 171.6 . 1

### CROSS SECTION OUTPUT Profile #Pr EV 2yr

116.63

56.45

| E.G. Elev (ft)<br>Vel Head (ft)        | 41. 64<br>0. 03  | Element<br>Wt. n-Val.                      | Left OB | Channel<br>0.060 | Ri ght OB |
|----------------------------------------|------------------|--------------------------------------------|---------|------------------|-----------|
| W.S. Elev`(ft)                         | 41. 61           | Reach Len. (ft)                            | 171. 60 | 171. 60          | 171. 60   |
| Crit W.S. (ft)<br>E.G. Slope (ft/ft)   | 0.002203         | Flow Area (sq ft)<br>Area (sq ft)          |         | 22. 41<br>22. 41 |           |
| Q Total (cfs)<br>Top Width (ft)        | 30. 00<br>17. 42 | Flow (cfs)<br>Top Width (ft)               |         | 30. 00<br>17. 42 |           |
| Vel Total (ft/s)                       | 1. 34            | Avg. Vel. (ft/s)                           |         | 1. 34            |           |
| Max Chl Dpth (ft)<br>Conv. Total (cfs) | 1. 61<br>639. 2  | Hydr. Depth (ft)<br>Conv. (cfs)            |         | 1. 29<br>639. 2  |           |
| Length Wtd. (ft)´                      | 171. 60          | Wetted Per. (ft)                           |         | 18. 12           |           |
| Min <sup>-</sup> Ch El (ft)<br>Alpha   | 40. 00<br>1. 00  | Shear (lb/sq ft)<br>Stream Power (lb/ft s) |         | 0. 17<br>0. 23   |           |
| Frctn Loss (ft)                        | 1. 10            | Cum Volume (acre-ft)                       |         | 0. 57            |           |
| C & E Loss (ft)                        | 0. 01            | Cum SA (acres)                             |         | 1. 14            |           |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)     | 42.85    | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0. 09    | Wt. n-Val.             |         | 0.060   |          |
| W.S. Elev (ft)     | 42. 76   | Reach Len. (ft)        | 171. 60 | 171. 60 | 171. 60  |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      |         | 45. 32  |          |
| E.G. Slope (ft/ft) | 0.003797 | Area (sq ft) '         |         | 45. 32  |          |
| Q Total (cfs)      | 107.00   | Flow (cfs)             |         | 107.00  |          |
| Top Width (ft)     | 22. 29   | Top Width (ft)         |         | 22. 29  |          |
| Vel Total (ft/s)   | 2. 36    | Avg. Vel. (ft/s)       |         | 2. 36   |          |
| Max Chl Dpth (ft)  | 2. 76    | Hyďr. Depth (ft)       |         | 2. 03   |          |
| Conv. Total (cfs)  | 1736. 6  | Conv. (cfs)            |         | 1736. 6 |          |
| Length Wtd. (ft)   | 171. 60  | Wetted Per. (ft)       |         | 23. 54  |          |
| Min Ch El (ft)     | 40.00    | Shear (lb/sq`ft)       |         | 0.46    |          |
| Al pha             | 1.00     | Stream Power (lb/ft s) |         | 1. 08   |          |
| Frctn Loss (ft)    | 1. 66    | Cum Volume (acre-ft)   | 0.00    | 1. 41   | 0.00     |
| C & E Loss (ft)    | 0. 03    | Cum SA (acrès)         | 0. 02   | 1. 45   | 0. 02    |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

RS: 1292

I NPUT

| Description:                                                                                                                                                                                            |                                                                                  |                                                                                                                           |                     |                                                                                                                   |                                                                                       |                       |                                            |                                                                                                    |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|
| Station Elevati<br>Sta Ele<br>0 51.5                                                                                                                                                                    | v Sta<br>1 1<br>8 18.69<br>5 36.05<br>0 78.37<br>2 88.81<br>5 100.74<br>6 116.17 | El ev<br>51. 07<br>47. 36<br>43. 63<br>40<br>43                                                                           | 102. 97<br>117. 17  | 42. 73<br>40. 56<br>44<br>46. 38<br>48. 45                                                                        | Sta<br>6. 84<br>26. 08<br>42. 76<br>81. 79<br>92. 97<br>105. 21<br>118. 59<br>128. 36 | 44. 05<br>47<br>48. 5 | 27. 49<br>45<br>83. 2<br>96. 57<br>111. 57 | El ev<br>49. 23<br>45. 54<br>41. 85<br>41. 2<br>45<br>48<br>48. 54<br>49. 49                       |                      |
| Manning's n Val<br>Sta n Va<br>0 .0                                                                                                                                                                     | I Sta                                                                            | num=<br>n Val<br>.06                                                                                                      | 3<br>Sta<br>85. 2   | n Val<br>.06                                                                                                      |                                                                                       |                       |                                            |                                                                                                    |                      |
| Bank Sta: Left<br>45                                                                                                                                                                                    | Ri ght<br>85. 2                                                                  | Lengths                                                                                                                   | : Left Cl<br>179.73 | hannel<br>179. 73                                                                                                 | Ri ght<br>179. 73                                                                     | Coeff                 | Contr.<br>.1                               | Expan.<br>. 3                                                                                      |                      |
| CROSS SECTION O                                                                                                                                                                                         | UTPUT Pro                                                                        | ofile #Pr                                                                                                                 | EV 2yr              |                                                                                                                   |                                                                                       |                       |                                            |                                                                                                    |                      |
| E.G. Elev (ft Vel Head (ft) W.S. Elev (ft Crit W.S. (ft E.G. Slope (f Q Total (cfs) Top Width (ft Vel Total (ft Max Chl Dpth Conv. Total (Length Wtd. (Min Ch El (ft Alpha Frctn Loss (f C & E Loss (ft | ) ) t/ft) ) /s) (ft) cfs) ft) )                                                  | 40. 5<br>0. 1<br>40. 3<br>40. 3<br>0. 07595<br>30. 00<br>27. 3<br>3. 2<br>0. 3<br>108.<br>179. 7<br>40. 0<br>1. 5<br>0. 0 |                     | ment n-Val. ch Len. w Area ( a (sq ft w (cfs) Width ( r. Depth v. (cfs) ted Per. ar (lb/s eam Powe Volume SA (acr | (ft) (sq ft) (ft) (ft) (ft) (ft) (gq ft) er (lb/ft (acre-ft)                          | s)<br>)               | eft OB<br>79.73                            | Channel 0. 060 179. 73 9. 14 9. 14 30. 00 27. 34 3. 28 0. 33 108. 9 27. 44 1. 58 5. 18 0. 51 1. 05 | Ri ght 0B<br>179. 73 |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)      | 41. 16<br>0. 36     | Element<br>Wt. n-Val.             | Left OB | Channel<br>0.060 | Right OB |
|--------------------------------------|---------------------|-----------------------------------|---------|------------------|----------|
| W.S. Elev (ft)                       | 40.80               | Reach Len. (ft)                   | 179. 73 | 179. 73          | 179. 73  |
| Crit W.S. (ft)<br>E.G. Slope (ft/ft) | 40. 80<br>0. 059757 | Flow Area (sq ft)<br>Area (sq ft) |         | 22. 20<br>22. 20 |          |
| Q Total (cfs)                        | 107.00              | Flow (cfs)                        |         | 107.00           |          |
| Top Width (ft)                       | 31.03               | Top Width (ft)                    |         | 31. 03           |          |
| Vel Total (ft/s)                     | 4. 82               | Avg. Vel. (ft/s)                  |         | 4. 82            |          |
| Max Chl Dpth (ft)                    | 0.80                | Hydr. Depth (ft)                  |         | 0. 72            |          |
| Conv. Total (cfs)                    | 437. 7              | Conv. (cfs)                       |         | 437.7            |          |
| Length Wtd. (ft)                     | 179. 73             | Wetted Per. (ft)                  |         | 31. 25           |          |
| Min <sup>-</sup> Ch El (ft)          | 40.00               | Shear (Ib/sq ft)                  |         | 2. 65            |          |
| Al pha                               | 1. 00               | Stream Power (lb/ft s)            |         | 12. 77           |          |
| Frctn Loss (ft)                      | 1. 73               | Cum Volume (acre-ft)              | 0.00    | 1. 28            | 0.00     |
| C & E Loss (ft)                      | 0. 09               | Cum SA (acres)                    | 0. 02   | 1. 34            | 0. 02    |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RI VER: S\_Arroyo

REACH: 1 RS: 1112

I NPUT

Description:

| Station El | evati on | Data   | num=   | 29      |        |         |       |        |        |
|------------|----------|--------|--------|---------|--------|---------|-------|--------|--------|
| Sta        | Elev     | Sta    | Elev   | Sta     | Elev   | Sta     | Elev  | Sta    | Elev   |
| 0          | 43.01    | 12.53  | 40     | 33.62   | 35.85  | 38. 1   | 35    | 48. 39 | 34     |
| 65.89      | 34       | 68. 13 | 34. 15 | 70.36   | 34.41  | 72.6    | 34.65 | 76. 2  | 35     |
| 77.62      | 35.44    | 79.85  | 36     | 80.85   | 36. 15 | 82. 27  | 36.71 | 83. 27 | 37     |
| 86.87      | 37. 93   | 87.87  | 38. 02 | 91.48   | 39. 01 | 96. 48  | 40    | 97.48  | 40. 24 |
| 101. 08    | 40.88    | 102.08 | 41     | 105.69  | 41. 97 | 106.69  | 42    | 107.69 | 42.07  |
| 111. 3     | 43       | 113.53 | 43.42  | 115. 77 | 44.02  | 120. 24 | 44.67 |        |        |

Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .06 33.62 .06 79.85 .06

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 33.62 79.85 215.95 215.95 215.95 .1 .3

CROSS SECTION OUTPUT Profile #Pr EV 2yr

| E.G. Elev (ft)<br>Vel Head (ft) | 35. 01<br>0. 02 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 34. 99          | Reach Len. (ft)        | 215. 95 | 215. 95          | 215. 95  |
| Crit W.S. (ft)                  | 34.42           | Flow Area (sq ft)      |         | 27. 55           |          |
| E.G. Slope (ft/ft)              | 0.003370        | Area (sq ft)           |         | 27. 55           |          |
| Q Total (cfs)                   | 32.00           | Flow (cfs)             |         | 32.00            |          |
| Top Width (ft)                  | 37. 86          | Top Wi`dth´(ft)        |         | 37. 86           |          |
| Vel Total (ft/s)                | 1. 16           | Avg. Vel. (ft/s)       |         | 1. 16            |          |
| Max Chl Dpth (ft)               | 0. 99           | Hydr. Depth (ft)       |         | 0. 73            |          |
| Conv. Total (cfs)               | 551. 2          | Conv. (cfs)            |         | 551. 2           |          |
| Length Wtd. (ft)                | 215. 95         | Wetted Per. (ft)       |         | 37. 95           |          |
| Min <sup>-</sup> Ch El (ft)     | 34.00           | Shear (Ib/sq ft)       |         | 0. 15            |          |
| Al pha                          | 1. 00           | Stream Power (lb/ft s) |         | 0. 18            |          |
| Frctn Loss (ft)                 | 1. 99           | Cum Volume (acre-ft)   |         | 0. 43            |          |
| C & E Loss (ft)                 | 0. 01           | Cum SA (acres)         |         | 0. 92            |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft) | 35. 88<br>0. 06 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev (ft)                  | 35. 82          | Reach Len. (ft)        | 215. 95 | 215. 95          | 215. 95  |
| Crit W.S. (ft)                  | 34.94           | Flow Area (sq ft)      |         | 62. 32           |          |
| E.G. Slope (ft/ft)              | 0.004129        | Area (sq ft)           |         | 62. 32           |          |
| Q Total (cfs)                   | 122.00          | Flow (cfs)             |         | 122. 00          |          |
| Top Width (ft)                  | 45. 39          | Top Width (ft)         |         | 45. 39           |          |
| Vel Total (ft/s)                | 1. 96           | Avg. Vel. (ft/s)       |         | 1. 96            |          |
| Max Chl Dpth (ft)               | 1. 82           | Hydr. Depth (ft)       |         | 1. 37            |          |
| Conv. Total (cfs)               | 1898. 5         | Conv. (cfs)            |         | 1898. 5          |          |
| Length Wtd. (ft)                | 215. 95         | Wetted Per. (ft)       |         | 45. 68           |          |
| Min Ch El (ft)                  | 34.00           | Shear (Ib/sq ft)       |         | 0. 35            |          |
| Al pha                          | 1. 00           | Stream Power (lb/ft s) |         | 0. 69            |          |
| Frctn Loss (ft)                 | 2. 26           | Cum Volume (acre-ft)   | 0.00    | 1. 10            | 0.00     |
| C & E Loss (ft)                 | 0. 03           | Cum SA (acres)         | 0. 02   | 1. 18            | 0. 02    |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: S\_Arroyo REACH: 1

REACH: 1 RS: 896

I NPUT

Description:

Station Elevation Data num= 40

|                                           |                                 |                  |                         | r                                | as82101                                    | _S_Pr_Arr                               | royo. rep   |                    |                                                                                        |          |
|-------------------------------------------|---------------------------------|------------------|-------------------------|----------------------------------|--------------------------------------------|-----------------------------------------|-------------|--------------------|----------------------------------------------------------------------------------------|----------|
| Sta<br>0                                  | El ev<br>43. 13                 | 1                | 42.74                   | Sta<br>11. 2                     | El ev<br>40                                | Sta<br>27. 32                           | EI ev<br>35 | Sta<br>30. 32      | El ev<br>34. 3                                                                         |          |
| 31. 74<br>44. 9                           | 34<br>32. 6                     | 34. 74<br>47. 14 | 33. 51<br>32. 49        |                                  | 33                                         |                                         | 32.79       | 43. 9<br>65. 27    | 32. 61<br>32. 48                                                                       |          |
| 66. 27                                    | 32. 6<br>32. 54                 | 67. 14           |                         | 69.5                             | 32. 43                                     | 63. 27<br>71. 5                         | 32. 40      | 73. 5              | 32. 46<br>32. 87                                                                       |          |
| 75. 74                                    | 33                              |                  | 33.08                   | 77.74                            | 33. 11                                     | 82.84                                   | 33.49       | 85.84              | 33. 67                                                                                 |          |
| 89. 96<br>112. 21                         | 34<br>36 24                     | 91. 96<br>118. 3 | 34. 21<br>37            | 98.04<br>122 3                   | 35<br>37 6                                 | 105. 12<br>125. 46                      | 35.57<br>38 | 110. 21<br>127. 46 | 36<br>38. 33                                                                           |          |
| 128. 46                                   | 38. 54                          | 130. 46          | 38. 83                  | 131.87                           | 38. 95                                     | 125. 46<br>132. 87                      | 39          | 134. 87            | 39. 25                                                                                 |          |
| Manni ng' s                               |                                 |                  |                         | 3                                |                                            |                                         |             |                    |                                                                                        |          |
| Sta<br>0                                  | n Val<br>. 06                   |                  | n Val<br>. 06           |                                  | n Val<br>. 06                              |                                         |             |                    |                                                                                        |          |
| Bank Sta:                                 | Left                            | Ri aht           | Lenaths                 | : Left C                         | hannel                                     | Ri aht                                  | Coeff       | Contr.             | Expan.                                                                                 |          |
| Bank Sta:                                 | 34. 74                          | 82.84            |                         | 240. 26                          | 240. 26                                    | 240. 26                                 |             | . 1                | . 3                                                                                    |          |
| CROSS SECT                                | TION OUT                        | PUT Pro          | file #Pr                | EV 2yr                           |                                            |                                         |             |                    |                                                                                        |          |
| E.G. Ele                                  | ev (ft)                         |                  | 33.0                    | 0 Ele                            | ment                                       |                                         | L           | eft OB             | Channel                                                                                | Right OB |
| W.S. Ele                                  | a (II)<br>ev (ft)               |                  | 0. i<br>32. 8           | 5 W.L.<br>5 Rea                  | n-var.<br>ch Len.                          | (ft)                                    | 2           | 40. 26             | 240. 26                                                                                | 240. 26  |
| Crit W.S                                  | S. (ft)                         |                  | 32. 8                   | 5 Flo                            | w Area                                     | (sq ft)                                 | _           |                    | 10. 21                                                                                 |          |
| E. G. SI o                                | ope (ft/                        | ft)              | 0.07740                 | O Are                            | a (sq fi                                   | t)                                      |             |                    | 10. 21                                                                                 |          |
| Top Widt                                  | th (ft)                         |                  | 32.0                    | 9 Top                            | Width                                      | (ft)                                    |             |                    | 32. 00<br>33. 29                                                                       |          |
| Vel Tota                                  | al (ft/s                        | 5)               | 3. 1                    | 3 Avg                            | . Vel.                                     | (ft/s)                                  |             |                    | 3. 13                                                                                  |          |
| Max Chl                                   | Dpth (f                         | t)               | 0. 4<br>115             | 2 Hyd                            | r. Depth                                   | n (ft)<br>N                             |             |                    | 0.31                                                                                   |          |
| COITV. TO                                 |                                 |                  |                         |                                  | v. (CI3                                    | ,                                       |             |                    | 115.0                                                                                  |          |
| Length V                                  | Ntd. (ft                        | ()               | 240. 2                  | 6 Wet                            | ted Perí                                   | (ft)                                    |             |                    | 33. 31                                                                                 |          |
| Length W<br>Min Ch E                      | otal (CI<br>Wtd. (ft<br>El (ft) | )                | 240. 2<br>32. 4         | 6 Wet<br>3 She                   | ted Perí                                   | (ft)<br>sq ft)                          | -)          |                    | 33. 31<br>1. 48                                                                        |          |
| Length W<br>Min Ch E<br>Alpha<br>Froth Lo | otai (Ci<br>Wtd. (ft<br>El (ft) | ))               | 240. 2<br>32. 4<br>1. 0 | 6 Wet<br>3 She<br>0 Str<br>4 Cum | ted Perí<br>ar (lb/s<br>eam Powe<br>Volume | (ft)<br>sq ft)<br>er (lb/ft<br>(acre-ft | s)          |                    | Channel 0.060 240.26 10.21 10.21 32.00 33.29 3.13 0.31 115.0 33.31 1.48 4.64 0.34 0.74 |          |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft) | 33. 60<br>0. 31 | Element<br>Wt. n-Val.  | Left OB | Channel<br>0.060 | Right OB |
|---------------------------------|-----------------|------------------------|---------|------------------|----------|
| W.S. Elev`(ft)                  | 33. 28          | Reach Len. (ft)        | 240. 26 | 240. 26          | 240. 26  |
| Crit W.S. (ft)                  | 33. 28          | Flow Area (sq ft)      |         | 27. 15           |          |
| <pre>E.G. Slope (ft/ft)</pre>   | 0. 062843       | Area (sq ft)           |         | 27. 15           |          |
| Q Total (cfs)                   | 122. 00         | Flow (cfs)             |         | 122. 00          |          |
| Top Width (ft)                  | 44. 01          | Top Width (ft)         |         | 44. 01           |          |
| Vel Total (ft/s)                | 4. 49           | Avg. Vel. (ft/s)       |         | 4. 49            |          |
| Max Chl Dpth (ft)               | 0. 85           | Hydr. Depth (ft)       |         | 0. 62            |          |
| Conv. Total (cfs)               | 486. 7          | Conv. (cfs)            |         | 486. 7           |          |
| Length Wtd. (ft)                | 240. 26         | Wetted Per. (ft)       |         | 44. 08           |          |
| Min Ch El (ft)                  | 32.43           | Shear (lb/sq ft)       |         | 2. 42            |          |
| Al pha                          | 1.00            | Stream Power (lb/ft s) |         | 10. 86           |          |
| Frctn Loss (ft)                 | 4. 27           | Cum Volume (acre-ft)   | 0.00    | 0. 88            | 0.00     |
| C & E Loss (ft)                 | 0. 07           | Cum SA (acrès)         | 0. 02   | 0. 96            | 0. 02    |

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

RI VER: S\_Arroyo

ras82101\_S\_Pr\_Arroyo.rep RS: 656 REACH: 1 I NPUT Description: Station Elevation Data num= El ev Sta El ev Sta El ev Sta Sta El ev Elev 7.47 32 28. 95 5.47 0 32.18 31.11 6.47 31 30.75 11.94 18.03 30 23.41 28 26.57 27.45 28.81 27 26 26 25 27 26.67 25. 32 25 30.81 34.93 39.41 41.41 86.63 25. 9 87.63 93.96 26.88 94.96 103.5 104. 5 116. 73 28 29 105. 92 117. 73 28. 13 29. 04 29. 32 28. 25 29. 13 29. 38 112. 31 123. 13 28. 73 29. 2 29. 41 28. 95 29. 22 106.92 115.31 119.96 124. 13 128. 29 143. 53 127.29 29.29 132.76 136.88 139.12 29.45 142.12 29.49 29.5 144.53 146.95 29.52 150.11 29.58 Manning's n Values Sta n Val num= Sta n Val Šta n Val 34.93 . 06 87.63 . 06 Ri ght 87. 63 Lengths: Left Channel Right 175.08 175.08 175.08 Bank Sta: Left Coeff Contr. Expan. 34.93 . 3 . 1 CROSS SECTION OUTPUT Profile #Pr EV 2yr 25.62 Left OB Channel Element 0. 060 175. 08 0.03 25. 60 25. 28 175.08

E.G. Elev (ft)
Vel Head (ft)
W.S. Elev (ft)
Crit W.S. (ft)
E.G. Slope (ft/ft)
Q Total (cfs)
Top Width (ft)
Vel Total (ft/s)
Max Chl Dpth (ft)
Conv. Total (cfs)
Length Wtd. (ft)
Min Ch El (ft)
Alpha Element
Wt. n-Val.
Reach Len. (ft)
Flow Area (sq ft)
Area (sq ft)
Flow (cfs)
Top Width (ft)
Avg. Vel. (ft/s)
Hydr. Depth (ft)
Conv. (cfs)
Wetted Per. (ft)
Shear (lb/sq ft)
Stream Power (lb/ft s)
Cum Volume (acre-ft)
Cum SA (acres) Right OB 175.08 25. 14 25. 14 0.006028 32.00 32.00 46. 57 46. 57 0. 54 0.60 412.2 412.2 175.08 46. 65 0. 20 0. 26 25.00 1.00 Al pha Freth Loss (ft) C & E Loss (ft) 0.24 1. 10 Cum SA (acrès) 0.00 0.52

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)     | 26. 24   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0.08     | Wt. n-Val.             | 0.060   | 0.060   | Ō. 060   |
| W.S. Elev (ft)     | 26. 16   | Reach Len. (ft)        | 175. 08 | 175. 08 | 175. 08  |
| Crit W.S. (ft)     |          | Flow Area (sìg ft)     | 0.08    | 53. 65  | 0.09     |
| E.G. Slope (ft/ft) | 0.008254 | Area (sq ft)           | 0.08    | 53. 65  | 0.09     |
| Q Total (cfs)      | 122.00   | Flow (cfs)             | 0.03    | 121. 93 | 0.04     |
| Top Width (ft)     | 54.84    | Top Width (ft)         | 0. 99   | 52. 70  | 1. 15    |
| Vel Total (ft/s)   | 2. 27    | Avg. Vel. (ft/s)       | 0.41    | 2. 27   | 0.42     |
| Max Chl Dpth (ft)  | 1. 16    | Hyďr. Depth (ft)       | 0.08    | 1. 02   | 0.08     |
| Conv. Total (cfs)  | 1342. 9  | Conv. (cfs)            | 0.4     | 1342. 1 | 0.4      |
| Length Wtd. (ft)   | 175.08   | Wetted Per. (ft)       | 1.00    | 52.84   | 1. 16    |
| Min Ch El (ft)     | 25.00    | Shear (lb/sq`ft)       | 0.04    | 0. 52   | 0.04     |
| Al pha             | 1.00     | Stream Power (lb/ft s) | 0.02    | 1. 19   | 0.02     |
| Frctn Loss (ft)    | 0. 93    | Cum Volume (acre-ft)   | 0.00    | 0. 66   | 0.00     |
| C & E Loss (ft)    | 0. 01    | Cum SA (acrès)         | 0.02    | 0. 69   | 0.02     |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

### CROSS SECTION

RIVER: S\_Arroyo REACH: 1 RS: 481

I NPUT Description:

Station Elevation Data num=

46 El ev 37. 91 35. 82 Sta 3. 16 13. 72 El ev 37. 28 35 Sta El ev ELev Sta Sta Sta El ev 4. 16 37 9. 56 20. 98 n 6. 4 17. 37 36 33 36. 61 34. 43 10.56 15.14 34 Page 9

|                                                                                                                                                                                                               |                                              | ras82101                    | _S_Pr_Arro       | vo. rep            |                                          |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------|------------------|--------------------|------------------------------------------|----------|
| 24. 58     32. 09     25. 58       32. 88     29. 73     37. 36       47. 72     26. 76     57. 15       103. 36     24     120. 86       168. 49     25. 51     176. 55       191. 89     28. 21     194. 12 | 32<br>29 39<br>26. 27 71<br>24 141<br>26 183 | 27 31.62                    | 29. 23<br>41. 01 | 30. 96 31. 47      | 30<br>27<br>24. 73<br>25<br>28<br>30. 47 |          |
| 203. 36 30. 65 210. 57<br>232. 54 37. 67                                                                                                                                                                      | 32. 22 214                                   | 1. 17 32. 97                | 224. 47          | 35 230. 3          | 37. 02                                   |          |
| Manning's n Values<br>Sta n Val Sta<br>0 .06 80.53                                                                                                                                                            |                                              | 3<br>Sta n Val<br>. 28 . 06 |                  |                    |                                          |          |
| Bank Sta: Left Right<br>80.53 161.28                                                                                                                                                                          | Lengths: Le                                  | eft Channel<br>9.6 149.6    | Ri ght<br>149. 6 | Coeff Contr.<br>.1 | Expan.<br>. 3                            |          |
| CROSS SECTION OUTPUT Pro                                                                                                                                                                                      | file #Pr EV                                  | 2yr                         |                  |                    |                                          |          |
| E.G. Elev (ft)<br>Vel Head (ft)                                                                                                                                                                               | 24. 53<br>0. 02                              | Element<br>Wt. n-Val.       |                  | Left OB            | Channel<br>0.060                         | Right OB |
| Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft)                                                                                                                                                | 24. 51                                       | Reach Len.                  | (ft)             | 149. 60            | 149. 60<br>27. 40                        | 149. 60  |
| E.G. Slope (ft/ft)                                                                                                                                                                                            | 0.006512                                     | Area (sq ft                 | )                |                    | 27. 40                                   |          |
| Q Total (cfs)<br>Top Width (ft)                                                                                                                                                                               | 32. 00<br>61. 32                             | Flow (cfs)<br>Top Width (   | ft)              |                    | 32. 00<br>61. 32                         |          |
| Vel Total (ft/s)                                                                                                                                                                                              | 1. 17                                        | Avg. Vel. (                 | ft/s)            |                    | 1. 17                                    |          |
| Conv. Total (cfs)                                                                                                                                                                                             | 396. 5                                       | Conv. (cfs)                 | (11)             |                    | 396. 5                                   |          |
| Length Wtd. (ft)                                                                                                                                                                                              | 149. 60<br>23. 87                            | Wetted Per.                 | (ft)             |                    | 61. 35<br>0. 18                          |          |
| Al pha                                                                                                                                                                                                        | 1.00                                         | Stream Powe                 | r (lb/ft         | s)                 | 0. 21                                    |          |
| E.G. STOPE (TITT) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Al pha Frctn Loss (ft) C & E Loss (ft)                                    | 1. 24<br>0. 00                               | Cum Volume<br>Cum SA (acr   | (acre-ft)<br>es) | 149. 60<br>(5)     | 0. 14<br>0. 31                           |          |

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)     | 25. 29   | Element                | Left OB | Channel | Right OB |
|--------------------|----------|------------------------|---------|---------|----------|
| Vel Head (ft)      | 0.04     | Wt. n-Val.             | 0.060   | 0.060   | Ŏ. 060   |
| W.S. Elev (ft)     | 25. 26   | Reach Len. (ft)        | 149. 60 | 149. 60 | 149. 60  |
| Crit W.S. (ft)     |          | Flow Area (sq ft)      | 0. 58   | 83. 15  | 0.46     |
| E.G. Slope (ft/ft) | 0.003812 | Area (sq ft)           | 0. 58   | 83. 15  | 0. 46    |
| Q Total (cfs)      | 130.00   | Flow (cfs)             | 0. 23   | 129. 60 | 0. 18    |
| Top Width (ft)     | 88. 91   | Top Width (ft)         | 4. 55   | 80. 75  | 3. 61    |
| Vel Total (ft/s)   | 1. 54    | Avg. Vel. (ft/s)       | 0. 39   | 1. 56   | 0. 39    |
| Max Chl Dpth (ft)  | 1. 39    | Hydr. Depth (ft)       | 0. 13   | 1. 03   | 0. 13    |
| Conv. Total (cfs)  | 2105. 5  | Conv. (cfs)            | 3. 6    | 2099. 0 | 2. 9     |
| Length Wtd. (ft)   | 149. 60  | Wetted Per. (ft)       | 4. 56   | 80. 80  | 3. 62    |
| Min Ch El (ft)     | 23.87    | Shear (Ib/sq ft)       | 0.03    | 0. 24   | 0. 03    |
| Al pha             | 1. 02    | Stream Power (lb/ft s) | 0. 01   | 0. 38   | 0. 01    |
| Frctn Loss (ft)    | 0. 98    | Cum Volume (acre-ft)   | 0.00    | 0. 38   | 0.00     |
| C & E Loss (ft)    | 0. 01    | Cum SA (acres)         | 0. 01   | 0. 43   | 0. 01    |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

### CROSS SECTION

RI VER: S\_Arroyo REACH: 1 RS: 331

I NPUT Description: Station Elevation Data Sta Elev Sta num= Elev Sta Elev Sta Elev Sta El ev 5ta 1 9. 71 28. 23 38. 9 72. 67 95. 47 111. 62 135. 63 143. 7 28 27. 28 26. 6 26. 91 26. 17 23. 17 22. 74 25. 23 26 27. 82 27. 21 26. 69 27 26 23 23 25. 53 26. 73 2. 41 10. 71 31. 05 27. 75 27 26. 74 28. 1 27. 45 26. 71 3. 83 12. 95 33. 29 6. 06 15. 19 34. 29 27.53 Ω 7. 48 18. 79 35. 29 69. 07 88. 76 107. 15 132. 47 141. 46 26. 87 26. 72 26. 71 26. 68 26. 64 24 22 25 25. 81 33. 29 66. 24 75. 08 100. 49 121. 07 139. 46 147. 52 26. 74 27 25. 87 22. 18 24. 01 25. 64 27. 1 34. 29 67. 65 84. 52 101. 49 126. 07 140. 46 151. 13 41. 13 74. 08 26. 94 24. 98 22 96. 88 113. 85 138. 46 146. 52 24. 46 25. 72 28 Page 10

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .06 84.52 .06 132.47 .06

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 84.52 132.47 206.09 206.09 206.09 1.1 3

CROSS SECTION OUTPUT Profile #Pr EV 2yr

|                               |          | =                      |         |         |          |
|-------------------------------|----------|------------------------|---------|---------|----------|
| E.G. Elev (ft)                | 23. 28   | Element                | Left OB | Channel | Right OB |
| Vel Head (ft)                 | 0. 07    | Wt. n-Val.             |         | 0.060   |          |
| W.S. Elev (ft)                | 23. 21   | Reach Len. (ft)        | 206.09  | 206.09  | 206.09   |
| Crit W.S. (ft)                | 22.77    | Flow Area (sq ft)      |         | 15. 09  |          |
| <pre>E.G. Slope (ft/ft)</pre> | 0.010982 | Area (sq ft)           |         | 15. 09  |          |
| Q Total (cfs)                 | 32.00    | Flow (cfs)             |         | 32.00   |          |
| Top Width (ft)                | 20. 23   | Top Width (ft)         |         | 20. 23  |          |
| Vel Total (ft/s)              | 2. 12    | Avg. Vel. (ft/s)       |         | 2. 12   |          |
| Max Chl Dpth (ft)             | 1. 21    | Hyďr. Depth (ft)       |         | 0. 75   |          |
| Conv. Total (cfs)             | 305. 4   | Conv. (cfs)            |         | 305.4   |          |
| Length Wtd. (ft)              | 206.09   | Wetted Per. (ft)       |         | 20. 44  |          |
| Min Ch El (ft)                | 22.00    | Shear (Ib/sq`ft)       |         | 0. 51   |          |
| Al pha                        | 1.00     | Stream`Power (lb/ft s) |         | 1. 07   |          |
| Frctn Loss (ft)               | 4. 90    | Cum Volume (acre-ft)   |         | 0.06    |          |
| C & E Loss (ft)               | 0.00     | Cum SA (acrès)         |         | 0. 17   |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #Pr EV 100yr

| E.G. Elev (ft)<br>Vel Head (ft)     | 24. 29<br>0. 16      | Element<br>Wt. n-Val.      | Left OB | Channel<br>0.060  | Right OB |
|-------------------------------------|----------------------|----------------------------|---------|-------------------|----------|
| W.S. Elev (ft)                      | 24. 13               | Reach Len. (ft)            | 206.09  | 206.09            | 206.09   |
| Crit W.S. (ft)                      | 23.59                | Flow Area (sq ft)          |         | 40. 16            |          |
| E.G. Slope (ft/ft)<br>Q Total (cfs) | 0. 013995<br>130. 00 | Area (sq ft)<br>Flow (cfs) |         | 40. 16<br>130. 00 |          |
| Top Width (ft)                      | 34. 24               | Top Width (ft)             |         | 34. 24            |          |
| Vel Total (ft/s)                    | 3. 24                | Avg. Vel. (ft/s)           |         | 3. 24             |          |
| Max Chl Dpth (ft)                   | 2. 13                | Hydr. Depth (ft)           |         | 1. 17             |          |
| Conv. Total (cfs)                   | 1098. 9              | Conv. (cfs)                |         | 1098. 9           |          |
| Length Wtd. (ft)                    | 206. 09              | Wetted Per. (ft)           |         | 34. 57            |          |
| Min <sup>-</sup> Ch El (ft)         | 22. 00               | Shear (Ib/sq ft)           |         | 1. 01             |          |
| Al pha                              | 1. 00                | Stream Power (lb/ft s)     |         | 3. 29             |          |
| Frctn Loss (ft)                     | 5. 41                | Cum Volume (acre-ft)       |         | 0. 17             |          |
| C & E Loss (ft)                     | 0. 01                | Cum SA (acres)             |         | 0. 23             |          |

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

### CROSS SECTION

RI VER: S\_Arroyo REACH: 1 RS: 125

Description:

| bescriptic | JH:      |         |        |         |        |         |        |         |        |
|------------|----------|---------|--------|---------|--------|---------|--------|---------|--------|
| Station El | evati on | Data    | num=   | 79      |        |         |        |         |        |
| Sta        | El ev    | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   | Sta     | Elev   |
| 0          | 32. 23   | 0       | 32     | 2. 24   | 31. 31 | 3. 65   | 30. 94 | 6. 89   | 30. 68 |
| 8. 3       | 30. 57   | 14. 13  | 30. 45 | 15. 13  | 30.46  | 16. 55  | 30.46  | 18. 78  | 30. 49 |
| 21.02      | 30.48    | 22.02   | 30.47  | 23.43   | 30.45  | 27.04   | 30. 26 | 29. 27  | 30. 12 |
| 30. 27     | 30       | 31. 69  | 29. 72 | 33. 92  | 29     | 35.34   | 28. 4  | 36.34   | 27.69  |
| 38. 57     | 27       | 40. 81  | 26. 14 | 41. 81  | 26     | 42.81   | 25. 65 | 45. 05  | 25     |
| 47. 28     | 24.46    | 48. 7   | 23.83  | 51.86   | 23     | 53. 27  | 22.59  | 55. 51  | 22     |
| 58. 34     | 21. 23   | 59. 34  | 21     | 62. 94  | 20. 18 | 63. 94  | 20     | 65. 36  | 20     |
| 69.83      | 19. 53   | 74. 3   | 19     | 78. 77  | 18. 76 | 83. 25  | 18. 51 | 89. 08  | 18. 17 |
| 90. 49     | 18. 11   | 92. 73  | 18     | 132. 94 | 18     | 137. 94 | 18. 3  | 143. 77 | 18. 63 |
| 149. 6     | 19       | 152. 76 | 19. 31 | 158. 59 | 20     | 159. 59 | 20.52  | 161.01  | 21. 17 |
| 163. 24    | 23.08    | 166. 85 | 25     | 167.85  | 26     | 169. 26 | 26. 58 | 170. 26 | 27. 22 |
|            |          |         |        |         |        | Page 11 |        |         |        |
|            |          |         |        |         |        |         |        |         |        |

| 179. 98 30. 15 18<br>192. 85 31. 31 19                                                                                                                                                                                                |                                                                                                                      | 5. 45       30. 77     188. 28<br>5. 27       31. 43     196. 27<br>7. 28       32. 66     208. 28                                                                                                                               | 29 78 178 56                               | 30. 08<br>31. 27<br>31. 59<br>33. 19                                                                               |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|
| Manning's n Values<br>Sta n Val<br>0 .06 6                                                                                                                                                                                            | num=<br>Sta n Val<br>53.94 .06 158                                                                                   |                                                                                                                                                                                                                                  |                                            |                                                                                                                    |          |
| Bank Sta: Left Ric<br>63.94 158.                                                                                                                                                                                                      | ght Lengths: Le<br>59 124.                                                                                           | eft Channel Right<br>97 124.97 124.97                                                                                                                                                                                            | Coeff Contr.<br>.1                         | Expan.<br>. 3                                                                                                      |          |
| CROSS SECTION OUTPUT                                                                                                                                                                                                                  |                                                                                                                      | 2yr                                                                                                                                                                                                                              |                                            |                                                                                                                    |          |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft)                                                                                                                                                                                           | 18. 38<br>0. 12<br>18. 26                                                                                            | Element<br>Wt. n-Val.<br>Reach Len. (ft)                                                                                                                                                                                         | Left OB                                    | 0.060                                                                                                              | Right OB |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft) | 18.26<br>0.084876<br>32.00<br>49.70<br>2.74<br>0.26<br>109.8<br>18.00<br>1.00                                        | Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/f Cum Volume (acre-f Cum SA (acres)                    | et s)<br>et)                               | 11. 66<br>11. 66<br>32. 00<br>49. 70<br>2. 74<br>0. 23<br>109. 8<br>49. 71<br>1. 24<br>3. 41                       |          |
| CROSS SECTION OUTPUT                                                                                                                                                                                                                  |                                                                                                                      | 100yr                                                                                                                                                                                                                            |                                            |                                                                                                                    |          |
| E.G. Elev (ft) Vel Head (ft) W.S. Elev (ft) Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft) Conv. Total (cfs) Length Wtd. (ft) Min Ch El (ft) Alpha Frctn Loss (ft) C & E Loss (ft) | 18. 88<br>0. 26<br>18. 62<br>18. 62<br>0. 065892<br>130. 00<br>62. 36<br>4. 07<br>0. 62<br>506. 4<br>18. 00<br>1. 00 | Element Wt. n-Val. Reach Len. (ft) Flow Area (sq ft) Area (sq ft) Flow (cfs) Top Width (ft) Avg. Vel. (ft/s) Hydr. Depth (ft) Conv. (cfs) Wetted Per. (ft) Shear (lb/sq ft) Stream Power (lb/f Cum Volume (acre-f Cum SA (acres) |                                            | Channel<br>0. 060<br>31. 95<br>31. 95<br>130. 00<br>62. 36<br>4. 07<br>0. 51<br>506. 4<br>62. 40<br>2. 11<br>8. 57 | Right OB |
| SUMMARY OF MANNING'S                                                                                                                                                                                                                  | S N VALUES                                                                                                           |                                                                                                                                                                                                                                  |                                            |                                                                                                                    |          |
| Ri ver: S_Arroyo                                                                                                                                                                                                                      | Divor Sto                                                                                                            | n1 n2                                                                                                                                                                                                                            | n?                                         |                                                                                                                    |          |
| Reach  1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                      | Ri ver Sta.  2062 1902 1657 1463 1292 1112 896 656 481 331 125                                                       | n1 n2  . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06                                                                     | n3 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06 |                                                                                                                    |          |

### SUMMARY OF REACH LENGTHS

Ri ver: S\_Arroyo

Reach River Sta. Left Channel Right
Page 12

| 1 | 2062 | 160, 23 | 160. 23 | 160. 23 |
|---|------|---------|---------|---------|
| 1 | 1902 | 245.09  | 245.09  | 245.09  |
| 1 | 1657 | 193. 82 | 193.82  | 193.82  |
| 1 | 1463 | 171. 6  | 171. 6  | 171. 6  |
| 1 | 1292 | 179. 73 | 179. 73 | 179. 73 |
| 1 | 1112 | 215. 95 | 215. 95 | 215. 95 |
| 1 | 896  | 240. 26 | 240. 26 | 240. 26 |
| 1 | 656  | 175. 08 | 175. 08 | 175. 08 |
| 1 | 481  | 149. 6  | 149. 6  | 149. 6  |
| 1 | 331  | 206. 09 | 206. 09 | 206. 09 |
| 1 | 125  | 124. 97 | 124. 97 | 124. 97 |

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River:  $S\_{Arroyo}$ 

| Reach                 | River Sta.                                   | Contr.                          | Expan                           |
|-----------------------|----------------------------------------------|---------------------------------|---------------------------------|
| 1<br>1<br>1<br>1<br>1 | 2062<br>1902<br>1657<br>1463<br>1292<br>1112 | . 1<br>. 1<br>. 1<br>. 1<br>. 1 | . 3<br>. 3<br>. 3<br>. 3<br>. 3 |
| 1<br>1<br>1<br>1      | 896<br>656<br>481<br>331<br>125              | . 1<br>. 1<br>. 1<br>. 1<br>. 1 | . 3<br>. 3<br>. 3<br>. 3        |











D1 Northerly Arroyo under Existing Condition

### NEWPORT BANNING RANCH

### Northerly Arroyo Habitat Under Existing Condition

| Average Temperature (F) |     |     |     |     |     |     |     |     |     |     |     |     |
|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                         | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
| Max                     | 64  | 64  | 63  | 65  | 66  | 69  | 72  | 73  | 73  | 72  | 67  | 64  |
| Min                     | 47  | 48  | 50  | 52  | 56  | 59  | 62  | 64  | 62  | 58  | 52  | 47  |

| Average Rainfall (inch) |      |      |      |     |      |      |      |      |      |      |      |      |              |
|-------------------------|------|------|------|-----|------|------|------|------|------|------|------|------|--------------|
|                         | Jan  | Feb  | Mar  | Apr | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year (total) |
| Р                       | 2.08 | 2.05 | 1.84 | 0.9 | 0.17 | 0.05 | 0.01 | 0.09 | 0.36 | 0.18 | 1.55 | 1.57 | 10.85        |

|     |      |      |      | F    | Potential Ev | apotranspi | iration (inch | nes) |      |      |      |      |              |
|-----|------|------|------|------|--------------|------------|---------------|------|------|------|------|------|--------------|
|     | Jan  | Feb  | Mar  | Apr  | May          | Jun        | Jul           | Aug  | Sep  | Oct  | Nov  | Dec  | Year (total) |
| PET | 1.44 | 1.60 | 1.78 | 2.16 | 2.66         | 3.21       | 3.68          | 3.77 | 3.35 | 2.77 | 1.91 | 1.41 | 29.74        |

### Offsite Drainage Area:

DA = 129.25 acres

| Land Use              | Acreage | Imp |
|-----------------------|---------|-----|
| Road                  | 5.35    | 0.9 |
| Ex. Residential       | 5.94    | 0.8 |
| Commercial/Industrial | 80.09   | 0.9 |
| School                | 9.91    | 0.4 |
| Upland Area           | 27.96   | 0.1 |

Average = 0.68RV = 0.7xImp+0.1

= 0.58

Habitat Footprint = 5.86 ac

|             |      |      |      |      | Offsit | e Surface I | nflow Si |     |     |     |      |      |              |
|-------------|------|------|------|------|--------|-------------|----------|-----|-----|-----|------|------|--------------|
|             | Jan  | Feb  | Mar  | Apr  | May    | Jun         | Jul      | Aug | Sep | Oct | Nov  | Dec  | Year (total) |
| Vol (ac-ft) | 13.0 | 12.8 | 11.5 | 5.6  | 1.1    | 0.3         | 0.1      | 0.6 | 2.2 | 1.1 | 9.7  | 9.8  | 67.6         |
| Depth (in)  | 26.6 | 26.2 | 23.5 | 11.5 | 2.2    | 0.6         | 0.1      | 1.1 | 4.6 | 2.3 | 19.8 | 20.0 | 138.5        |

<sup>1)</sup> Depth (in) = Volume (ac-ft) / Habitat Footprint (ac) \*12 (in/ft)

Loss Fraction = 30%

|         | Water Balance (inches) |      |      |      |       |       |       |       |     |       |      |      |              |  |
|---------|------------------------|------|------|------|-------|-------|-------|-------|-----|-------|------|------|--------------|--|
|         | Jan                    | Feb  | Mar  | Apr  | May   | Jun   | Jul   | Aug   | Sep | Oct   | Nov  | Dec  | Year (total) |  |
| Р       | 2.1                    | 2.1  | 1.8  | 0.9  | 0.2   | 0.1   | 0.0   | 0.1   | 0.4 | 0.2   | 1.6  | 1.6  | 10.9         |  |
| Si      | 26.6                   | 26.2 | 23.5 | 11.5 | 2.2   | 0.6   | 0.1   | 1.1   | 4.6 | 2.3   | 19.8 | 20.0 | 138.5        |  |
| Go      | 8.6                    | 8.5  | 7.6  | 3.7  | 0.7   | 0.2   | 0.0   | 0.4   | 1.5 | 0.7   | 6.4  | 6.5  | 44.8         |  |
| ET      | 1.4                    | 1.6  | 1.8  | 2.2  | 2.7   | 3.2   | 3.7   | 3.8   | 3.4 | 2.8   | 1.9  | 1.4  | 29.7         |  |
| Balance | 18.6                   | 18.2 | 16.0 | 6.5  | (1.0) | (2.7) | (3.6) | (2.9) | 0.1 | (1.0) | 13.0 | 13.7 | 74.8         |  |

<sup>1)</sup> Balance = P + Si - Go - ET

### **NEWPORT BANNING RANCH**

### Northerly Arroyo Habitat Under Proposed Condition

|     |     |     |     | Α   | verage Ten | Average Temperature (F) |     |     |     |     |     |     |  |  |  |  |  |  |  |
|-----|-----|-----|-----|-----|------------|-------------------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|
|     | Jan | Feb | Mar | Apr | May        | Jun                     | Jul | Aug | Sep | Oct | Nov | Dec |  |  |  |  |  |  |  |
| Max | 64  | 64  | 63  | 65  | 66         | 69                      | 72  | 73  | 73  | 72  | 67  | 64  |  |  |  |  |  |  |  |
| Min | 47  | 48  | 50  | 52  | 56         | 59                      | 62  | 64  | 62  | 58  | 52  | 47  |  |  |  |  |  |  |  |

|                                                                                      | Average Rainfall (inch) |      |      |     |      |      |      |      |      |      |      |      |       |  |
|--------------------------------------------------------------------------------------|-------------------------|------|------|-----|------|------|------|------|------|------|------|------|-------|--|
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec   Year (total) |                         |      |      |     |      |      |      |      |      |      |      |      |       |  |
| P                                                                                    | 2.08                    | 2.05 | 1.84 | 0.9 | 0.17 | 0.05 | 0.01 | 0.09 | 0.36 | 0.18 | 1.55 | 1.57 | 10.85 |  |

|     | Potential Evapotranspiration (inches) |      |      |      |      |      |      |      |      |      |      |      |              |  |
|-----|---------------------------------------|------|------|------|------|------|------|------|------|------|------|------|--------------|--|
|     | Jan                                   | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year (total) |  |
| PET | 1.44                                  | 1.60 | 1.78 | 2.16 | 2.66 | 3.21 | 3.68 | 3.77 | 3.35 | 2.77 | 1.91 | 1.41 | 29.74        |  |

Offsite Drainage Area:

DA = 122.09 acres

| Land Use              | Acreage | Imp  |
|-----------------------|---------|------|
| Road                  | 5.35    | 0.90 |
| Ex. Residential       | 5.94    | 0.80 |
| Prop. Residential     | 4.43    | 0.65 |
| Commercial/Industrial | 78.14   | 0.90 |
| School                | 9.91    | 0.40 |
| Upland Area           | 18.32   | 0.10 |

Average= 0.70

RV = 0.7xImp+0.1

= 0.59

Habitat Footprint = 5.86 ac

| Offsite Surface Inflow Si |      |      |      |      |     |     |     |     |     |     |      |      |              |
|---------------------------|------|------|------|------|-----|-----|-----|-----|-----|-----|------|------|--------------|
|                           | Jan  | Feb  | Mar  | Apr  | May | Jun | Jul | Aug | Sep | Oct | Nov  | Dec  | Year (total) |
| Vol (ac-ft)               | 12.5 | 12.3 | 11.1 | 5.4  | 1.0 | 0.3 | 0.1 | 0.5 | 2.2 | 1.1 | 9.3  | 9.4  | 65.3         |
| Depth (in)                | 25.6 | 25.3 | 22.7 | 11.1 | 2.1 | 0.6 | 0.1 | 1.1 | 4.4 | 2.2 | 19.1 | 19.3 | 133.7        |

<sup>1)</sup> Depth (in) = Volume (ac-ft) / Habitat Footprint (ac) \*12 (in/ft)

Loss Fraction = 30%

|         | Water Balance (inches) |      |      |      |       |       |       |       |     |       |      |      |              |  |
|---------|------------------------|------|------|------|-------|-------|-------|-------|-----|-------|------|------|--------------|--|
|         | Jan                    | Feb  | Mar  | Apr  | May   | Jun   | Jul   | Aug   | Sep | Oct   | Nov  | Dec  | Year (total) |  |
| Р       | 2.1                    | 2.1  | 1.8  | 0.9  | 0.2   | 0.1   | 0.0   | 0.1   | 0.4 | 0.2   | 1.6  | 1.6  | 10.9         |  |
| Si      | 25.6                   | 25.3 | 22.7 | 11.1 | 2.1   | 0.6   | 0.1   | 1.1   | 4.4 | 2.2   | 19.1 | 19.3 | 133.7        |  |
| Go      | 8.3                    | 8.2  | 7.4  | 3.6  | 0.7   | 0.2   | 0.0   | 0.4   | 1.4 | 0.7   | 6.2  | 6.3  | 43.4         |  |
| ET      | 1.4                    | 1.6  | 1.8  | 2.2  | 2.7   | 3.2   | 3.7   | 3.8   | 3.4 | 2.8   | 1.9  | 1.4  | 29.7         |  |
| Balance | 18.0                   | 17.5 | 15.4 | 6.2  | (1.1) | (2.7) | (3.6) | (2.9) | 0.0 | (1.1) | 12.5 | 13.2 | 71.4         |  |

<sup>1)</sup> Balance = P + Si - Go - ET

### NEWPORT BANNING RANCH

### **Southerly Arroyo Habitat Under Existing Condition**

|     |     |     |     | A   | verage Ten | nperature ( | F)  |     |     |     |     |     |
|-----|-----|-----|-----|-----|------------|-------------|-----|-----|-----|-----|-----|-----|
|     | Jan | Feb | Mar | Apr | May        | Jun         | Jul | Aug | Sep | Oct | Nov | Dec |
| Max | 64  | 64  | 63  | 65  | 66         | 69          | 72  | 73  | 73  | 72  | 67  | 64  |
| Min | 47  | 48  | 50  | 52  | 56         | 59          | 62  | 64  | 62  | 58  | 52  | 47  |

|                                                            |      |      |      |     | Aver | age Rainfa | II (inch) |      |      |      |      |      |       |
|------------------------------------------------------------|------|------|------|-----|------|------------|-----------|------|------|------|------|------|-------|
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year (tota |      |      |      |     |      |            |           |      |      |      |      |      |       |
| Р                                                          | 2.08 | 2.05 | 1.84 | 0.9 | 0.17 | 0.05       | 0.01      | 0.09 | 0.36 | 0.18 | 1.55 | 1.57 | 10.85 |

| Potential Evapotranspiration (inches) |      |      |      |      |      |      |      |      |      |      |      |      |              |
|---------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------|
|                                       | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year (total) |
| PET                                   | 1.44 | 1.60 | 1.78 | 2.16 | 2.66 | 3.21 | 3.68 | 3.77 | 3.35 | 2.77 | 1.91 | 1.41 | 29.74        |

### Offsite Drainage Area:

DA = 114.64 acres

| Land Use              | Acreage | Imp |
|-----------------------|---------|-----|
| Ex. Residential       | 11.7    | 0.8 |
| Commercial/Industrial | 31.91   | 0.9 |
| Upland Area           | 71.03   | 0.1 |

Average = 0.39

RV = 0.7xImp+0.1

= 0.38

Habitat Footprint = 25.71 a

|             | Offsite Surface Inflow Si |     |     |     |     |     |      |     |     |     |     |     |              |
|-------------|---------------------------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|--------------|
|             | Jan                       | Feb | Mar | Apr | May | Jun | Jul  | Aug | Sep | Oct | Nov | Dec | Year (total) |
| Vol (ac-ft) | 7.5                       | 7.4 | 6.6 | 3.2 | 0.6 | 0.2 | 0.04 | 0.3 | 1.3 | 0.6 | 5.6 | 5.6 | 39.0         |
| Depth (in)  | 3.5                       | 3.4 | 3.1 | 1.5 | 0.3 | 0.1 | 0.02 | 0.2 | 0.6 | 0.3 | 2.6 | 2.6 | 18.2         |

<sup>1)</sup> Depth (in) = Volume (ac-ft) / Habitat Footprint (ac) \*12 (in/ft)

Loss Fraction = 30%

|         | Water Balance (inches) |     |     |       |       |       |       |       |       |       |     |     |              |
|---------|------------------------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-----|-----|--------------|
|         | Jan                    | Feb | Mar | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov | Dec | Year (total) |
| Р       | 2.1                    | 2.1 | 1.8 | 0.9   | 0.2   | 0.1   | 0.0   | 0.1   | 0.4   | 0.2   | 1.6 | 1.6 | 10.9         |
| Si      | 3.5                    | 3.4 | 3.1 | 1.5   | 0.3   | 0.1   | 0.0   | 0.2   | 0.6   | 0.3   | 2.6 | 2.6 | 18.2         |
| Go      | 1.7                    | 1.6 | 1.5 | 0.7   | 0.1   | 0.0   | 0.0   | 0.1   | 0.3   | 0.1   | 1.2 | 1.3 | 8.7          |
| ET      | 1.4                    | 1.6 | 1.8 | 2.2   | 2.7   | 3.2   | 3.7   | 3.8   | 3.4   | 2.8   | 1.9 | 1.4 | 29.7         |
| Balance | 2.5                    | 2.2 | 1.7 | (0.5) | (2.3) | (3.1) | (3.7) | (3.6) | (2.7) | (2.4) | 1.0 | 1.5 | (9.4)        |

<sup>1)</sup> Balance = P + Si - Go - ET

D4 Southerly Arroyo under Proposed Condition

### **NEWPORT BANNING RANCH**

### **Southerly Arroyo Habitat Under Proposed Condition**

|     | Average Temperature (F) |     |     |     |     |     |     |     |     |     |     |     |  |
|-----|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|     | Jan                     | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |  |
| Max | 64                      | 64  | 63  | 65  | 66  | 69  | 72  | 73  | 73  | 72  | 67  | 64  |  |
| Min | 47                      | 48  | 50  | 52  | 56  | 59  | 62  | 64  | 62  | 58  | 52  | 47  |  |

| Average Rainfall (inch) |      |      |      |     |      |      |      |      |      |      |      |      |              |
|-------------------------|------|------|------|-----|------|------|------|------|------|------|------|------|--------------|
|                         | Jan  | Feb  | Mar  | Apr | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year (total) |
| P                       | 2.08 | 2.05 | 1.84 | 0.9 | 0.17 | 0.05 | 0.01 | 0.09 | 0.36 | 0.18 | 1.55 | 1.57 | 10.85        |

|   | Potential Evapotranspiration (inches) |      |      |      |      |      |      |      |      |      |      |      |      |              |
|---|---------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------|
|   |                                       | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Year (total) |
| Г | PET                                   | 1.44 | 1.60 | 1.78 | 2.16 | 2.66 | 3.21 | 3.68 | 3.77 | 3.35 | 2.77 | 1.91 | 1.41 | 29.74        |

Offsite Drainage Area:

DA = 57.13acres

| Land Use              | Acreage | Imp  |
|-----------------------|---------|------|
| Road                  | 2.47    | 0.9  |
| Ex. Residential       | 11.7    | 0.8  |
| Commercial/Industrial | 31.91   | 0.9  |
| Park                  | 6.35    | 0.15 |
| Upland Area           | 4.7     | 0.1  |

Average= 0.73 RV = 0.7xImp+0.1

= 0.61

Habitat Footprint = 23.5 ac

|             | Offsite Surface Inflow Si |     |     |     |     |     |      |     |     |     |     |     |              |
|-------------|---------------------------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|--------------|
|             | Jan                       | Feb | Mar | Apr | May | Jun | Jul  | Aug | Sep | Oct | Nov | Dec | Year (total) |
| Vol (ac-ft) | 6.1                       | 6.0 | 5.4 | 2.6 | 0.5 | 0.1 | 0.03 | 0.3 | 1.0 | 0.5 | 4.5 | 4.6 | 31.6         |
| Depth (in)  | 3.1                       | 3.0 | 2.7 | 1.3 | 0.3 | 0.1 | 0.01 | 0.1 | 0.5 | 0.3 | 2.3 | 2.3 | 16.1         |

<sup>1)</sup> Depth (in) = Volume (ac-ft) / Habitat Footprint (ac) \*12 (in/ft)

Loss Fraction = 30%

|         | Water Balance (inches) |     |     |       |       |       |       |       |       |       |     |     |              |
|---------|------------------------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-----|-----|--------------|
|         | Jan                    | Feb | Mar | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov | Dec | Year (total) |
| Р       | 2.1                    | 2.1 | 1.8 | 0.9   | 0.2   | 0.1   | 0.0   | 0.1   | 0.4   | 0.2   | 1.6 | 1.6 | 10.9         |
| Si      | 3.1                    | 3.0 | 2.7 | 1.3   | 0.3   | 0.1   | 0.0   | 0.1   | 0.5   | 0.3   | 2.3 | 2.3 | 16.1         |
| Go      | 1.6                    | 1.5 | 1.4 | 0.7   | 0.1   | 0.0   | 0.0   | 0.1   | 0.3   | 0.1   | 1.2 | 1.2 | 8.1          |
| ET      | 1.4                    | 1.6 | 1.8 | 2.2   | 2.7   | 3.2   | 3.7   | 3.8   | 3.4   | 2.8   | 1.9 | 1.4 | 29.7         |
| Balance | 2.2                    | 2.0 | 1.4 | (0.6) | (2.4) | (3.1) | (3.7) | (3.6) | (2.7) | (2.5) | 0.8 | 1.3 | (10.9)       |

<sup>1)</sup> Balance = P + Si - Go - ET

D5

# TABLE 2: THORNTHWAITE EQUATION

The Thornthwaite equation,

 $ET_u = 0.63(10t_C/I)^a$ 

where a = 
$$0.000000675(I)^3$$
- $0.0000771(I)^2$ + $0.01792(I)$ + $0.49239$   $t_C$  = degrees C

classification of climate, is the sum of 12 monthly values of the heat index  $i = (t/5)^{1.514}$ , where  $t_C$ with latitude, it becomes necessary to reduce or increase the unadjusted rates by a factor (N) evapotranspiration in the morning and its termination in the evening varies with the season and the month varies from 28 to 31 and since the number of hours in the day between the onset of gives only unadjusted rates (ETu) of potential evapotranspiration. Since the number of days in is the mean monthly temperature in degrees centigrade. The Thornthwaite equation, however, States. The temperature-efficiency index, I, an integral element of the Thornthwaite's consumptive use. The relationship is based largely on experience in central and eastern United is based on an exponential relationship between mean monthly temperature and mean monthly listed in Table 3 which varies with the month and the latitude.

 $t_F$  = temperature (degrees F) P = precipitation (inches)

 $t_C$  = temperature (degrees C)  $i = (t_c/5)^{1.514}$ 

 $ET_u$  = unadjusted potential evapotranspiration (inches)

 $ET_a = adjusted potential evapotranspiration (inches)$ 

N = monthly adjustment factor related to hours of daylight

| $\mathrm{ET}_{\mathrm{a}}$ | $ET_u$  | <b></b> | ਨਿੱ   | ੜੀ   | þ    | term  |
|----------------------------|---------|---------|-------|------|------|-------|
| -0.80                      | -0.97   | -1.21   | -5.67 | 21.8 | 1.15 | Jan   |
| -0.74                      | -0.91   | -1.10   | -5.33 | 22.4 | 0.67 | Feb   |
| 0.04                       | 0.04    | 0.016   | 0.33  | 32.6 | 2.13 | Mar   |
| 1.42                       | 1.30    | 1.74    | 7.22  | 45.0 | 1.44 | April |
| 3.24                       | 2.18    | 4.64    | 13.78 | 56.8 | 6.57 | May   |
| l.<br>                     | ·<br> - | 1.<br>  | 19.0  | 66.2 | 3.61 | June  |

| $\mathrm{ET}_{\mathtt{a}}$ | $\mathrm{ET}_{\mathrm{u}}$ | <b></b> | Ć.    | <del>s</del> | Р    | term |
|----------------------------|----------------------------|---------|-------|--------------|------|------|
| 5.46                       | 4.21                       | 9.14    | 21.56 | 70.8         | 0.93 | July |
| 4.77                       | 3.99                       | 8.47    | 20.5  | 68.9         | 4.90 | Aug  |
| 3.25                       | 3.13                       | 6.06    | 16.44 | 61.6         | 4.49 | Sept |
| 1.75                       | 1.84                       | 2.93    | 10.16 | 50.3         | 1.29 | Oct  |
| 0.44                       | 0.54                       | 0.54    | 3.33  | 38.0         | 3.65 | Nov  |
| -0.38                      | -0.49                      | -0.47   | -3.06 | 26.5         | 0.86 | Dec  |

# TABLE 3: ADJUSTING FACTOR (N) FOR POTENTIAL EVAPOTRANSPIRATION COMPUTED BY THE THORNTHWAITE EQUATION (NORTHERN HEMISPHERE)

| 45<br>50     | 35<br>40      | 30   | 20   | 10   | 0    | deg. | Lat.        |
|--------------|---------------|------|------|------|------|------|-------------|
| 0.80<br>0.74 | 0.87<br>0.84  | 0.90 | 200  | 1.00 | 1.04 |      | J           |
| 0.81<br>0.78 | 0. <b>8</b> 5 | 0.87 | 0 90 | 0.91 | 0.94 |      | স           |
| 1.02<br>1.02 | 1.03          | 1.03 | 1.03 | 1.03 | 1.04 |      | Z           |
| 1.13<br>1.15 | 1.09<br>1.11  | 1.08 | 105  | 1.03 | 1.01 |      | ≻           |
| 1.28<br>1.33 | 1.21<br>1.24  | 1.18 | 1.13 | 1.08 | 1.04 |      | X           |
| 1.29<br>1.36 | 1.21<br>1.25  | 1.17 |      | 1.06 | 1.01 |      | J           |
| 1.31<br>1.37 | 1.23<br>1.27  | 1.20 | 1.14 | 1.08 | 1.04 |      | <b>u</b>    |
| 1.21<br>1.25 | 1.16          | 1.14 |      | 1.07 | 1.04 |      | <b>&gt;</b> |
| 1.04<br>1.06 | 1.03<br>1.04  | 1.03 | 1.02 | 1.02 | 1.01 |      | S           |
| 0.94<br>0.92 | 0.97<br>0.96  | 0.98 | 1.00 | 1.02 | 1.04 |      | 0           |
| 0.79<br>0.76 | 0.86<br>0.83  | 0.89 | 0.93 | 0.98 | 1.01 |      | Z           |
| 0.75<br>0.70 | 0.85<br>0.81  | 0.88 | 0.94 | 0.99 | 1.04 |      | D           |

Εl

# SITE DESIGN & LOW IMPACT DEVELOPMENT (LID) BEST MANAGEMENT PRACTICES (BMPs)

(excerpted, with minor revision from the Orange County Drainage Area Management Plan (DAMP), Exhibit 7.II, Model Water Quality Management Plan)

## DESIGN CONCEPT 1: MINIMIZE STORMWATER RUNOFF, MINIMIZE PROJECT'S IMPERVIOUS FOOTPRINT AND CONSERVE NATURAL AREAS

Minimize and/or control the post-development peak storm water runoff discharge rates, velocities and volumes by utilizing measures that reduce runoff rates and volumes, and increase infiltration. A reduction in the storm water runoff from a development project using properly designed BMPs, can yield a corresponding reduction in the amount of pollutants transported from the site. The undeveloped runoff volume should be determined by considering the project site to be in a natural condition with surface vegetation in place.

The following site design options shall be considered and incorporated where applicable and feasible, during the site planning and approval process consistent with applicable General Plan policies, other development standards and regulations and with any Site Design BMPs included in an applicable regional or watershed program.

- 1. Maximize the permeable area. This can be achieved in various ways, including, but not limited to increasing building density (number of stories above or below ground) and developing land use regulations seeking to limit impervious surfaces. Decrea sing the project's footprint can substantially reduce the project's impacts to water quality and hydrologic conditions, provided that the undeveloped area remains open space.
- 2. Conserve natural areas. This can be achieved by concentrating or clustering development on the least environmentally sensitive portions of a site while leaving the remaining land in a natural, undisturbed condition. Where available, permittees should also refer to their Multiple Species Conservation Plans or other biological regulations, as appropriate to assist in determining sensitive portions of the site. Sensitive areas include, but are not limited to: areas necessary to maintain the viability of wildlife corridors, occupied habitat of sensitive species and all wetlands, and coastal scrub and other upland communities.
- Construct walkways, trails, patios, overflow parking lots, alleys, driveways, low -traffic streets and other low-traffic areas with open-jointed paving materials or permeable surfaces, such as pervious concrete, porous asphalt, unit pavers, and granular materials
- 4. Construct streets, sidewalks and parking lot aisles to the minimum widths necessary, provided that public safety and a walk able environment for pedestrians are not compromised 3. Incorporate landscaped buffer areas between sidewalks and streets.
- 5. Reduce widths of street where off-street parking is available 4

- 6. Maximize canopy interception and water conservation by preserving existing native trees and shrubs, and planting additional native or drought tolerant trees and large shrubs
- 7. Minimize the use of impervious surfaces, such as decorative concrete, in the landscape design
- 8. Use natural drainage systems.
- 9. Where soils conditions are suitable, use perforated pipe or gravel filtration pits for low flow infiltration 5
- 10. Construct onsite ponding areas or retention facilities to increase opportunities for infiltration
- 11. Other site design options that are comparable, and equally effective

### DESIGN CONCEPT 2: MINIMIZE DIRECTLY CONNECTED IMPERVIOUS AREAS (DCIAs)

Priority Projects shall incorporate the following design characteristics, as appropriate, and incorporate any Site Design BMPs included in any regional or watershed program that the project relies upon for Treatment Control BMPs.

- 1. Where landscaping is proposed, drain rooftops into adjacent landscaping prior to discharging to the storm drain
- 2. Where landscaping is proposed, drain impervious sidewalks, walkways, trails, and patios into adjacent landscaping
- 3. Increase the use of vegetated drainage swales in lieu of underground piping or imperviously lined swales
- 4. Use one or more of the following (for further guidance, see Start at the Source [1999]):
  - Rural swale system: street sheet flows to vegetated swale or gravel shoulder, curbs at street corners, culverts under driveways and street crossings
  - Urban curb/swale system: street slopes to curb; periodic swale inlets drain to vegetated swale/biofilter
  - Dual drainage system: First flush captured in street catch basins and discharged to adjacent vegetated swale or gravel shoulder, high flows connect directly to municipal storm drain systems d. Other design concepts that are comparable and equally effective
- 5. Use one or more of the following features for design of driveways and private residential parking areas:
  - Design driveways with shared access, flared (single lane at street) or wheel strips (paving only under tires); or, drain into landscaping prior to discharging to the municipal storm drain system
  - Uncovered temporary or guest parking on private residential lots may be: paved with a permeable surface; or, designed to drain into landscaping prior to discharging to the municipal storm drain system

- Other design concepts that are comparable and equally effective
- 6. Use one or more of the following design concepts for the design of parking areas:
  - Where landscaping is proposed in parking areas, incorporate landscape areas into the drainage design
  - Overflow parking (parking stalls provided in excess of the City's minimum parking requirements) may be constructed with permeable paving
  - Other design concepts that are comparable and equally effective
- 7. Other design characteristics that are comparable and equally effective

### SOURCE CONTROL BEST MANAGEMENT PRACTICES (BMPs)

(excerpted, with minor revision from the Orange County Drainage Area Management Plan (DAMP), Exhibit 7.II, Model Water Quality Management Plan)

### N1 Education for Property Owners, Tenants and Occupants

For developments with no Property Owners Association (POA) or with POAs of less than fifty (50) dwelling units, practical information materials will be provided to the first residents/occupants/tenants on general housekeeping practices that contribute to the protection of stormwater quality. These materials will be initially developed and provided to first residents/occupants/tenants by the developer. Thereafter such materials will be available through the City's education program. Different materials for residential, office commercial, retail commercial, vehicle-related commercial and industrial uses will be involved.

For developments with POA and residential projects of more than fifty (50) dwelling units, project conditions of approval will require that the POA provide environmental awareness education materials, made available by the municipalities, to all member periodically. Among other things, these materials will describe the use of chemicals (including household type) that should be limited to the property, with no discharge of wastes via hosing or other direct discharge to gutters, catch basins and storm drains.

### N2 Activity Restrictions

If a POA is formed, conditions, covenants and restrictions (CCRs) shall be prepared by the developer for the purpose of surface water quality protection. An example would be not allowing car washing outside of established community car wash areas in multi-unit complexes. Alternatively, use restrictions may be developed by a building operator through lease terms, etc. These restrictions must be included in the Project WQMP.

### N3 Common Area Landscape Management

On-going maintenance consistent with County Water Conservation Resolution or city equivalent, plus fertilizer and/or pesticide usage consistent with Management Guidelines for Use of Fertilizers (DAMP Section 5.5). Statements regarding the specific applicable guidelines must be included in the Project WQMP.

### N4 BMP Maintenance

Identify responsibility for implementation of each non-structural BMP and scheduled cleaning and/or maintenance of all structural BMP facilities.

### N5 Title 22 CCR Compliance

Compliance with Title 22 of the California Code of Regulations (CCR) and relevant sections of the California Health & Safety Code regarding hazardous waste management shall be enforced by County Environmental Health on behalf of the State. The Project WQMP must describe how the development will comply with the applicable hazardous waste management section(s) of Title 22.

### N6 Local Water Quality Permit Compliance

The City, under the Water Quality Ordinance, may issue permits to ensure clean storm water discharges from fuel dispensing areas and other areas of concern to public properties.

### N7 Spill Contingency Plan

Prepared by building operator for use by specified types of building or suite occupancies and which mandates stockpiling of cleanup materials, notification of responsible agencies, disposal of cleanup materials, documentation, etc.

### N8 Underground Storage Tank Compliance

Compliance with State regulations dealing with underground storage tanks, enforced by County Environmental Health on behalf of State.

### N9 Hazardous Materials Disclosure Compliance

Compliance with City ordinances typically enforced by respective fire protection agency for the management of hazardous materials. The Orange County, health care agencies, and/or other appropriate agencies (i.e. Department of Toxics Substances Control are typically responsible for enforcing hazardous materials and hazardous waste handling and disposal regulations.

### N10 Uniform Fire Code Implementation

Compliance with Article 80 of the Uniform Fire Code enforced by fire protection agency.

### N11 Common Area Litter Control

For industrial/commercial developments and for developments with POAs, the owner/POA shall be required to implement trash management and litter control procedures in the common areas aimed at reducing pollution of drainage water. The owner/POA may contract with their landscape maintenance firms to provide this service during regularly scheduled maintenance, which should consist of litter patrol, emptying of trash receptacles in common areas, and noting trash disposal violations by tenants/homeowners or businesses and reporting the violations to the owner/POA for investigation.

### N12 Employee Training

Education program (see N1) as it would apply to future employees of individual businesses. Developer either prepares manual(s) for initial purchasers of business site

or for development that is constructed for an unspecified use makes commitment on behalf of POA or future business owner to prepare.

## N13 Housekeeping of Loading Docks

Loading docks typically found at large retail and warehouse-type commercial and industrial facilities shall be kept in a clean and orderly condition through a regular program of sweeping and litter control and immediate cleanup of spills and broken containers. Cleanup procedures should minimize or eliminate the use of water. If washdown water is used, it must be disposed of in an approved manner and not discharged to the storm drain system. If there are no other alternatives, discharge of non-storm water flow to the sanitary sewer may be considered only if allowed by the local sewering agency through a permitted connection.

## N14 Common Area Catch Basin Inspection

For industrial/commercial developments and for developments with privately maintained drainage systems, the owner is required to have at least 80 percent of drainage facilities inspected, cleaned and maintained on an annual basis with 100 percent of the facilities included in a two-year period. Cleaning should take place in the late summer/early fall prior to the start of the rainy season. Drainage facilities include catch basins (storm drain inlets) detention basins, retention basins, sediment basins, open drainage channels and lift stations.

## N15 Street Sweeping Private Streets and Parking Lots

Streets and parking lots are required to be swept prior to the storm season, in late summer or early fall, prior to the start of the rainy season.

#### N16 Commercial Vehicle Washing

This BMP Has Been Removed.

#### N17 Retail Gasoline Outlets

Retail gasoline outlets (RGOs) are required to follow operations and maintenance best management practices shown in the California Stormwater Quality Association (CASQA, formerly California Stormwater Quality Task Force) Best Management Practice Guide for Retail Gasoline Outlets. This document may be obtained by downloading from the CASQA website at

http://www.stormwatertaskforce.org/swqtf/RGOGuide.htm or from forthcoming CASQA website.

#### Provide Storm Drain System Stenciling and Signage

Storm drain stencils are highly visible source control messages, typically placed directly adjacent to storm drain inlets. The stencils contain a brief statement that prohibits the dumping of improper materials into the municipal storm drain system. Graphical icons, either illustrating anti-dumping symbols or images of receiving water fauna, are effective supplements to the anti-dumping message. Stencils and signs alert the public to the destination of pollutants discharged into stormwater.

The following requirements shall be included in the project design and shown on the project plans:

- Provide stenciling or labeling of all storm drain inlets and catch basins, constructed or modified, within the project area with prohibitive language (such as: "NO DUMPING-DRAINS TO OCEAN") and/or graphical icons to discourage illegal dumping.
- 2. Post signs and prohibitive language and/or graphical icons, which prohibit illegal dumping at public access points along channels and creeks within the project area.
- 3. Maintain legibility of stencils and signs.

## Design Outdoor Hazardous Material Storage Areas to Reduce Pollutant Introduction

Improper storage of materials outdoors may increase the potential for toxic compounds, oil and grease, fuels, solvents, coolants, wastes, heavy metals, nutrients, suspended solids, and other pollutants to enter the municipal storm drain system. Where the plan of development includes outdoor areas for storage of hazardous materials that may contribute pollutants to the municipal storm drain system, the following storm water BMPs are required:

- Hazardous materials with the potential to contaminate urban runoff shall either be:

   placed in an enclosure such as, but not limited to, a cabinet, shed, or similar structure that prevents contact with runoff or spillage to the municipal storm drain system; or (2) protected by secondary containment structures (not double wall containers) such as berms, dikes, or curbs.
- 2. The storage area shall be paved and sufficiently impervious to contain leaks and spills.
- 3. The storage area shall have a roof or awning to minimize direct precipitation and collection of storm water within the secondary containment area.
- 4. Any storm water retained within the containment structure must not be discharged to the street or storm drain system. Location(s) of installations of where these preventative measures will be employed must be included on the map or plans identifying BMPs.

#### Design Trash Storage Areas To Reduce Pollutant Introduction

All trash container areas shall meet the following requirements (limited exclusion: detached residential homes):

- 1. Paved with an impervious surface, designed not to allow run-on from adjoining areas, designed to divert drainage from adjoining roofs and pavements diverted around the area, screened or walled to prevent off-site transport of trash; and
- 2. Provide attached lids on all trash containers that exclude rain, or roof or awning to minimize direct precipitation.

3. Connection of trash area drains to the municipal storm drain system is prohibited.

#### Use Efficient Irrigation Systems and Landscape Design

Projects shall design the timing and application methods of irrigation water to minimize the runoff of excess irrigation water into the municipal storm drain system. (Limited exclusion: detached residential homes.) The following methods to reduce excessive irrigation runoff shall be considered, and incorporated on common areas of development and other areas where determined applicable and feasible by the City:

- 1. Employing rain shutoff devices to prevent irrigation after precipitation.
- 2. Designing irrigation systems to each landscape area's specific water requirements.
- 3. Using flow reducers or shutoff valves triggered by a pressure drop to control water loss in the event of broken sprinkler heads or lines.
- 4. Implementing landscape plan consistent with County Water Conservation Resolution or city equivalent, which may include provision of water sensors, programmable irrigation times (for short cycles), etc.
- 5. The timing and application methods of irrigation water shall be designed to minimize the runoff of excess irrigation water into the municipal storm drain system.
- 6. Employing other comparable, equally effective, methods to reduce irrigation water runoff.
- 7. Group plants with similar water requirements in order to reduce excess irrigation runoff and promote surface filtration. Choose plants with low irrigation requirements (for example, native or drought tolerant species). Consider other design features, such as:
  - Use mulches (such as wood chips or shredded wood products) in planter areas without ground cover to minimize sediment in runoff.
  - Install appropriate plant materials for the location, in accordance with amount of sunlight and climate, and use native plant material where possible and/or as recommended by the landscape architect.
  - Leave a vegetative barrier along the property boundary and interior watercourses, to act as a pollutant filter, where appropriate and feasible.
  - Choose plants that minimize or eliminate the use of fertilizer or pesticides to sustain growth.

#### **Protect Slopes and Channels**

Project plans shall include Source Control BMPs to decrease the potential for erosion of slopes and/or channels, consistent with local codes and ordinances and with the approval of all agencies with jurisdiction, e.g., the U.S. Army Corps of Engineers, the Regional Boards and the California Department of Fish and Game. The following design principles shall be considered, and incorporated and implemented where determined applicable and feasible by the City:

- 1. Convey runoff safely from the tops of slopes.
- 2. Avoid disturbing steep or unstable slopes.
- 3. Avoid disturbing natural channels.
- 4. Install permanent stabilization BMPs on disturbed slopes as quickly as possible.
- 5. Vegetate slopes with native or drought tolerant vegetation.
- 6. Control and treat flows in landscaping and/or other controls prior to reaching existing natural drainage systems.
- 7. Install permanent stabilization BMPs in channel crossings as quickly as possible, and ensure that increases in runoff velocity and frequency caused by the project do not erode the channel.
- 8. Install energy dissipaters, such as riprap, at the outlets of new storm drains, culverts, conduits, or channels that enter unlined channels in accordance with applicable specifications to minimize erosion. Energy dissipaters shall be installed in such a way as to minimize impacts to receiving waters.
- 9. Onsite conveyance channels should be lined, where appropriate, to reduce erosion caused by increased flow velocity due to increases in tributary impervious area. The first choice for linings should be grass or some other vegetative surface, since these materials not only reduce runoff velocities, but also provide water quality benefits from filtration and infiltration. If velocities in the channel are large enough to erode grass or other vegetative linings, riprap, concrete soil cement or geo-grid stabilization may be substituted or used in combination with grass or other vegetation stabilization.
- 10. Other design principles that are comparable and equally effective.

#### Loading Dock Areas

Loading/unloading dock areas shall include the following:

- 1. Cover loading dock areas, or design drainage to preclude urban run-on and runoff.
- Direct connections to the municipal storm drain system from below grade loading docks (truck wells) or similar structures are prohibited. Storm water can be discharged through a permitted connection to the storm drain system with a Treatment Control BMP applicable to the use.
- 3. Other comparable and equally effective features that prevent unpermitted discharges to the municipal storm drain system.
- 4. Housekeeping of loading docks shall be consistent with N13.

#### Maintenance Bays

Maintenance bays shall include the following:

1. Repair/maintenance bays shall be indoors; or, designed to preclude urban run-on and runoff.

- 2. Design a repair/maintenance bay drainage system to capture all wash water, leaks and spills. Provide impermeable berms, drop inlets, trench catch basins, or overflow containment structures around repair bays to prevent spilled materials and wash -down waters from entering the storm drain system. Connect drains to a sump for collection and disposal. Discharge from the repair/maintenance bays to the municipal storm drain system is prohibited. If there are no other alternatives, discharge of non-storm water flow to the sanitary sewer may be considered, but only when allowed by the local sewering agency through permitted connection.
- 3. Other comparable and equally effective features, that prevent discharges to the municipal storm drain system.

#### Vehicle Wash Areas

Projects that include areas for washing/steam cleaning of vehicles shall use the following:

- 1. Self-contained or covered with a roof or overhang.
- 2. Equipped with a wash racks constructed in accordance with the guidelines in Attachment C, and with the prior approval of the sewering agency (Note: Discharge monitoring may be required by the sewering agency).
- 3. Equipped with a clarifier or other pretreatment facility.
- 4. Other comparable and equally effective features that prevent unpermitted discharges, to the municipal storm drain system.

## **Outdoor Processing Areas**

Outdoor process equipment operations, such as rock grinding or crushing, painting or coating, grinding or sanding, degreasing or parts cleaning, landfills, waste piles, and wastewater and solid waste handling, treatment, and disposal, and other operations determined to be a potential threat to water quality by the City shall adhere to the following requirements.

- Cover or enclose areas that would be the sources of pollutants; or, slope the area
  toward a sump that will provide infiltration or evaporation with no discharge; or, if
  there are no other alternatives, discharge of non-storm water flow to the sanitary
  sewer may be considered only when allowed by the local sewering agency through
  permitted connection
- 2. Grade or berm area to prevent run-on from surrounding areas.
- 3. Installation of storm drains in areas of equipment repair is prohibited.
- 4. Other comparable or equally effective features that prevent unpermitted discharges to the municipal storm drain system.
- 5. Where wet material processing occurs (e.g. electroplating), secondary containment structures (not double wall containers) shall be provided to hold spills resulting from accidents, leaking tanks or equipment, or any other unplanned releases (Note: If these are plumbed to the sanitary sewer, the structures and plumbing shall be in accordance with Section 7.II-Attachment C, and with the

prior approval of the sewering agency). See also Section 7.II-3.4.2, N10. Design of secondary containment structures shall be consistent with Design of Outdoor Material Storage Areas To Reduce Pollutant Introduction.

Some of these land uses (e.g. landfills, waste piles, wastewater and solid waste handling, treatment and disposal) may be subject to other permits including Phase I Industrial Permits that may require additional BMPs.

#### **Equipment Wash Areas**

Outdoor equipment/accessory washing and steam cleaning activities shall use the following:

- 1. Be self-contained or covered with a roof or overhang.
- 2. Design an equipment wash area drainage system to capture all wash water. Provide impermeable berms, drop inlets, trench catch basins, or overflow containment structures around equipment wash areas to prevent wash -down waters from entering the storm drain system. Connect drains to a sump for collection and disposal. Discharge from equipment wash areas to the municipal storm drain system is prohibited. If there are no other alternatives, discharge of non-storm water flow to the sanitary sewer may be considered, but only when allowed by the local sewering agency through a permitted connection.
- 3. Other comparable or equally effective features that prevent unpermitted discharges to the municipal storm drain system.

## **Fueling Areas**

Fuel dispensing areas shall contain the following:

- 1. At a minimum, the fuel dispensing area must extend 6.5 feet (2.0 meters) from the corner of each fuel dispenser, or the length at which the hose and nozzle assembly may be operated plus 1 foot (0.3 meter), whichever is less.
- 2. The fuel dispensing area shall be paved with Portland cement concrete (or equivalent smooth impervious surface). The use of asphalt concrete shall be prohibited.
- 3. The fuel dispensing area shall have an appropriate slope (2% -4%) to prevent ponding, and must be separated from the rest of the site by a grade break that prevents run-on of storm water.
- 4. An overhanging roof structure or canopy shall be provided. The cover's minimum dimensions must be equal to or greater than the area of the fuel dispensing area in #1 above. The cover must not drain onto the fuel dispensing area and the downspouts must be routed to prevent drainage across the fueling area. The fueling area shall drain to the project's Treatment Control BMP(s) prior to discharging to the municipal storm drain system.

#### Hillside Landscaping

Hillside areas that are disturbed by project development shall be landscaped with deep-rooted, drought tolerant plant species selected for erosion control, satisfactory to the City.

#### Wash Water Controls For Food Preparation Areas

Food establishments (per State Health & Safety Code 27520) shall have either contained areas or sinks, each with sanitary sewer connections for disposal of wash waters containing kitchen and food wastes. If located outside, the contained area s or sinks shall also be structurally covered to prevent entry of storm water. Adequate signs shall be provided and appropriately placed stating the prohibition of discharging washwater to the storm drain system.

## Community Car Wash Racks

In complexes larger than 100 dwelling units where car washing is allowed, a designated car wash area that does not drain to a storm drain system shall be provided for common usage. Wash waters from this area may be directed to the sanitary sewer (in accordance with Attachment C, and with the prior approval of the sewering agency); to an engineered infiltration system; or to an equally effective alternative. Pre-treatment may also be required. Signage shall be provided prohibiting discharges of washwater outside of the designated area.

## LID / TREATMENT CONTROL BMP SIZING CALCULATIONS

Date: April 17, 2008

Project: Newport Banning Ranch

Job: 821.01.02

## Stormwater Quality Design Volume (SQDV) Calculation

(Source: Orange County Drainage Area Management Plan (DAMP), Exhibit 7.11 – Model Water Quality Management Plan, September 26, 2003)

Calculate the storm water quality design volume for the site (or each sub-drainage area that will discharge to a separate BMP) produced by a 24-hour, 85<sup>th</sup> percentile storm event using the following equation:

SQDV = C \* I \* A \* (unit conversion)

Where:

C = runoff coefficient obtained from Table A-1

I = rainfall intensity (see map on following page)

A = area of the site treated by the BMP, in acres

## Vegetated Biocell Sizing

(Source: Los Angeles Regional Water Quality Control Board (RWQCB). Example Standard Urban Storm Water Management Plan [SUSMP]; Appendix A: Water Quality Volume Calculations. Website: <a href="http://www.waterboards.ca.gov/losangeles/water\_issues/programs/stormwater/municipal/general/sams">http://www.waterboards.ca.gov/losangeles/water\_issues/programs/stormwater/municipal/general/sams</a> club/Appendix%20A.pdf )

Calculate the volume of water treated by each biocell based on the depths and properties of the various layers of the biocell:

$$V_{BC} = V_P + V_{MGS} + V_{SO} + V_1$$

Where:

 $V_{BC}$  = volume treated by biocell in ft<sup>3</sup> (must be equal to or greater than SQDV)

 $V_P$  = volume ponded in biocell in  $ft^3$ 

 $V_{MGS}$  = volume stored in mulch, gravel, and topsoil in ft<sup>3</sup>

 $V_1$  = volume infiltrated in  $ft^3$ 

The volumes in the equation above can be determined by the following sequence of equations:

### Volume Ponded in Biocell (V<sub>P</sub>):

$$V_P = [(A_T + A_B) * P] / 2$$

Where:

 $A_T$  = area of top of biocell, in square feet

 $A_B$  = area of bottom of biocell, in square feet

P = ponding depth, in feet

## Volume in Mulch, Topsoil and Gravel Layer (V<sub>MGS</sub>)

$$V_{MGS} = A_T * [(M*\eta_M) + (G*\eta_G) + (S*\eta_S)]$$

Where:

 $A_T$  = area of top of biocell, in square feet

M = depth of mulch, in feet

 $\eta_{\text{M}} = \text{porosity of mulch, in percent void space}$ 

G = depth of gravel layer, in feet

 $\eta_G$  = porosity of gravel layer, in percent void space

S = depth of topsoil

 $\eta_{\text{S}} = \text{porosity of top soil, in percent void space}$ 

## Velocity of Water in Amended Soil Layer (vi)

$$V_i = F_P / [12 * \eta_{SO} * (1-w)]$$

Where:

 $F_P$  = infiltration capacity of the amended soil, or hydraulic conductivity (in inches per hour)

 $\eta_{SO} =$ 

w = soil water content before rain event, in percent of voids assumed saturated

## Duration of Infiltration During 24 hr Storm Event (T)

$$T = 24 - (S_0 / v_i)$$

Where:

 $S_{\odot}$  = depth of amended soil layer, in feet

## Volume Infiltrated (V1)

$$V_1 = T * A_T * [F_P / (12 * SF)]$$

Where:

SF = safety factor for infiltration capacity. Assumed to be 1 if overflow drain is provided.



| Table A-1: C Values Based on Impervious/Pervious Area Ratios |            |      |  |  |  |  |
|--------------------------------------------------------------|------------|------|--|--|--|--|
| % Impervious                                                 | % Pervious | С    |  |  |  |  |
| 0                                                            | 100        | 0.15 |  |  |  |  |
| 5                                                            | 95         | 0.19 |  |  |  |  |
| 10                                                           | 90         | 0.23 |  |  |  |  |
| 15                                                           | 85         | 0.26 |  |  |  |  |
| 20                                                           | 80         | 0.30 |  |  |  |  |
| 25                                                           | 75         | 0.34 |  |  |  |  |
| 30                                                           | 70         | 0.38 |  |  |  |  |
| 35                                                           | 65         | 0.41 |  |  |  |  |
| 40                                                           | 60         | 0.45 |  |  |  |  |
| 45                                                           | 55         | 0.49 |  |  |  |  |
| 50                                                           | 50         | 0.53 |  |  |  |  |
| 55                                                           | 45         | 0.56 |  |  |  |  |
| 60                                                           | 40         | 0.60 |  |  |  |  |
| 65                                                           | 35         | 0.64 |  |  |  |  |
| 70                                                           | 30         | 0.68 |  |  |  |  |
| 75                                                           | 25         | 0.71 |  |  |  |  |
| 80                                                           | 20         | 0.75 |  |  |  |  |
| 85                                                           | 15         | 0.79 |  |  |  |  |
| 90                                                           | 10         | 0.83 |  |  |  |  |
| 95                                                           | 5          | 0.86 |  |  |  |  |
| 100                                                          | 0          | 0.90 |  |  |  |  |

# **Storm Water Quality Design Volume Calculations - Newport Banning Ranch**

SQDV = C \* I \* A \* (Conversion)

C = Runoff Coefficient I = Rainfall Intensity

I = volume / C \* A \* conversion

depth = volume / area

conversion = (1/12)\*(43560)

| Drainage<br>Area | Development Area      | %<br>impervious | Runoff<br>Coefficient | Rainfall<br>Intensity<br>(in) | Drainage<br>Area (acres) | Conversion<br>Factor | Treatment Required (ft <sup>3</sup> ) | Treatment<br>Required<br>(acre-ft) |
|------------------|-----------------------|-----------------|-----------------------|-------------------------------|--------------------------|----------------------|---------------------------------------|------------------------------------|
| A19.1            | Road                  | 90%             | 0.83                  | 0.7                           | 2.81                     | 3630                 | 5,901.38                              | 0.135                              |
| A19.11           | Park (4b)             | 10%             | 0.23                  | 0.7                           | 2.21                     | 3630                 | 1,271.94                              | 0.029                              |
| A17              | Park (4b)             | 10%             | 0.23                  | 0.7                           | 1.6                      | 3630                 | 920.86                                | 0.021                              |
| A16.4            | Park (4b)             | 10%             | 0.23                  | 0.7                           | 3.71                     | 3630                 | 2,135.24                              | 0.049                              |
| A19.8            | Road                  | 90%             | 0.83                  | 0.7                           | 1.85                     | 3630                 | 3,885.25                              | 0.089                              |
| A12.12           | Resort Colony (5a/6a) | 65%             | 0.64                  | 0.7                           | 7.17                     | 3630                 | 11,641.92                             | 0.267                              |
| A12.9            | Road                  | 90%             | 0.83                  | 0.7                           | 1.01                     | 3630                 | 2,121.14                              | 0.049                              |
| A12.14           | Resort Colony (6a/6b) | 65%             | 0.64                  | 0.7                           | 6.6                      | 3630                 | 10,716.41                             | 0.246                              |
| A12.13           | Road                  | 90%             | 0.83                  | 0.7                           | 0.44                     | 3630                 | 924.06                                | 0.021                              |
| A12.11           | Townhomes (9a)        | 75%             | 0.71                  | 0.7                           | 1.33                     | 3630                 | 2,412.98                              | 0.055                              |
| A12.8            | Townhomes (9a)        | 75%             | 0.71                  | 0.7                           | 0.48                     | 3630                 | 870.85                                | 0.020                              |
| A19.9            | Townhomes (9a)        | 75%             | 0.71                  | 0.7                           | 2.51                     | 3630                 | 4,553.83                              | 0.105                              |
| A12.7            | Townhomes (9a)        | 75%             | 0.71                  | 0.7                           | 0.62                     | 3630                 | 1,124.85                              | 0.026                              |
| A12.4            | Townhomes (9a)        | 75%             | 0.71                  | 0.7                           | 4.05                     | 3630                 | 7,347.81                              | 0.169                              |
| A12.2            | Road                  | 90%             | 0.83                  | 0.7                           | 0.43                     | 3630                 | 903.06                                | 0.021                              |
| A12.1            | Townhomes (9a)        | 75%             | 0.71                  | 0.7                           | 1.54                     | 3630                 | 2,793.98                              | 0.064                              |
| A12.3            | Bluff Top Homes (9b)  | 60%             | 0.60                  | 0.7                           | 1.14                     | 3630                 | 1,742.39                              | 0.040                              |
| A12.5            | Road                  | 90%             | 0.83                  | 0.7                           | 0.41                     | 3630                 | 861.06                                | 0.020                              |
| A12.6            | Bluff Top Homes (9b)  | 60%             | 0.60                  | 0.7                           | 1.13                     | 3630                 | 1,727.10                              | 0.040                              |
| A12.10           | Bluff Top Homes (9b)  | 60%             | 0.60                  | 0.7                           | 2.1                      | 3630                 | 3,209.66                              | 0.074                              |
| A7.4             | Road                  | 90%             | 0.83                  | 0.7                           | 2.47                     | 3630                 | 5,187.34                              | 0.119                              |
| A7.3             | Park (4a)             | 10%             | 0.23                  | 0.7                           | 6.35                     | 3630                 | 3,654.66                              | 0.084                              |
| A19.6            | Park (4a)             | 10%             | 0.23                  | 0.7                           | 2.54                     | 3630                 | 1,461.86                              | 0.034                              |
| A19.5            | Road                  | 90%             | 0.83                  | 0.7                           | 3.09                     | 3630                 | 6,489.42                              | 0.149                              |
| A19.1            | Park Flats (7c)       | 75%             | 0.71                  | 0.7                           | 1.8                      | 3630                 | 3,265.69                              | 0.075                              |
| A19.2            | Park Flats (7c)       | 75%             | 0.71                  | 0.7                           | 2.42                     | 3630                 | 4,390.54                              | 0.101                              |
| A19.3            | Road                  | 90%             | 0.83                  | 0.7                           | 0.9                      | 3630                 | 1,890.12                              | 0.043                              |
| A19.4            | Park (4a)             | 10%             | 0.23                  | 0.7                           | 1.92                     | 3630                 | 1,105.03                              | 0.025                              |
| A19.7            | Park (4a)             | 10%             | 0.23                  | 0.7                           | 2.54                     | 3630                 | 1,461.86                              | 0.034                              |
| A11.2            | Road                  | 90%             | 0.83                  | 0.7                           | 0.25                     | 3630                 | 525.03                                | 0.012                              |
| A11.5            | Road                  | 90%             | 0.83                  | 0.7                           | 1.18                     | 3630                 | 2,478.16                              | 0.057                              |

| Drainage<br>Area | Development Area         | %<br>impervious | Runoff<br>Coefficient | Rainfall<br>Intensity<br>(in) | Drainage<br>Area (acres) | Conversion<br>Factor | Treatment Required (ft <sup>3</sup> ) | Treatment<br>Required<br>(acre-ft) |
|------------------|--------------------------|-----------------|-----------------------|-------------------------------|--------------------------|----------------------|---------------------------------------|------------------------------------|
| A11.6            | Bluff Traditional (9c)   | 75%             | 0.71                  | 0.7                           | 1.15                     | 3630                 | 2,086.42                              | 0.048                              |
| A11.4            | Park (4e)                | 10%             | 0.23                  | 0.7                           | 1.84                     | 3630                 | 1,058.99                              | 0.024                              |
| A11.7            | Bluff Traditional (9c)   | 75%             | 0.71                  | 0.7                           | 4.75                     | 3630                 | 8,617.80                              | 0.198                              |
| A11.8            | Bluff Top Homes (8a)     | 60%             | 0.60                  | 0.7                           | 6.1                      | 3630                 | 9,323.31                              | 0.214                              |
| A11.1            | Road                     | 90%             | 0.83                  | 0.7                           | 0.19                     | 3630                 | 399.03                                | 0.009                              |
| B11.2            | North Terrace Lofts (7a) | 75%             | 0.71                  | 0.7                           | 4.43                     | 3630                 | 8,037.23                              | 0.185                              |
| C3.3             | Bluff Traditional (9c)   | 75%             | 0.71                  | 0.7                           | 3.05                     | 3630                 | 5,533.54                              | 0.127                              |
| C4.1             | Road                     | 90%             | 0.83                  | 0.7                           | 0.73                     | 3630                 | 1,533.10                              | 0.035                              |
| C5.2             | Bluff Traditional (9c)   | 75%             | 0.71                  | 0.7                           | 2.49                     | 3630                 | 4,517.54                              | 0.104                              |
| C6.1             | Road                     | 90%             | 0.83                  | 0.7                           | 0.62                     | 3630                 | 1,302.08                              | 0.030                              |
| C6.2             | Bluff Traditional (9c)   | 75%             | 0.71                  | 0.7                           | 3.14                     | 3630                 | 5,696.82                              | 0.131                              |
| C3.2             | Coastal Beach (8b)       | 75%             | 0.71                  | 0.7                           | 2.09                     | 3630                 | 3,791.83                              | 0.087                              |
| C4.2             | Coastal Beach (8b)       | 75%             | 0.71                  | 0.7                           | 1.21                     | 3630                 | 2,195.27                              | 0.050                              |
| C5.1             | Road                     | 90%             | 0.83                  | 0.7                           | 0.32                     | 3630                 | 672.04                                | 0.015                              |
| C6.3             | Park (4f)                | 10%             | 0.23                  | 0.7                           | 1.37                     | 3630                 | 788.49                                | 0.018                              |
| C7.3             | Coastal Beach (8b)       | 75%             | 0.71                  | 0.7                           | 3.51                     | 3630                 | 6,368.10                              | 0.146                              |
| C7.1             | Road                     | 90%             | 0.83                  | 0.7                           | 1.12                     | 3630                 | 2,352.15                              | 0.054                              |
| C8.2             | Coastal Beach (8b)       | 75%             | 0.71                  | 0.7                           | 5.34                     | 3630                 | 9,688.22                              | 0.222                              |
| C8.1             | Road                     | 90%             | 0.83                  | 0.7                           | 0.48                     | 3630                 | 1,008.07                              | 0.023                              |
| C8.3             | Bluff Top Homes (8a)     | 60%             | 0.60                  | 0.7                           | 2.16                     | 3630                 | 3,301.37                              | 0.076                              |
| C9.1             | Road                     | 90%             | 0.83                  | 0.7                           | 2.55                     | 3630                 | 5,355.35                              | 0.123                              |
| C9.2             | Coastal Beach (8b)       | 75%             | 0.71                  | 0.7                           | 2.41                     | 3630                 | 4,372.40                              | 0.100                              |
| C14.2            | Coastal Beach (8b)       | 75%             | 0.71                  | 0.7                           | 2.24                     | 3630                 | 4,063.97                              | 0.093                              |
| C13.2            | Park (4j)                | 10%             | 0.23                  | 0.7                           | 3.8                      | 3630                 | 2,187.04                              | 0.050                              |
| C14.1            | Road                     | 90%             | 0.83                  | 0.7                           | 0.2                      | 3630                 | 420.03                                | 0.010                              |
| C3.1             | Road                     | 90%             | 0.83                  | 0.7                           | 2.81                     | 3630                 | 5,901.38                              | 0.135                              |
| C12.3            | South Terrace Lofts (7b) | 75%             | 0.71                  | 0.7                           | 8.66                     | 3630                 | 15,711.61                             | 0.361                              |
| C12.1            | Road                     | 90%             | 0.83                  | 0.7                           | 2.34                     | 3630                 | 4,914.32                              | 0.113                              |
| C12.2            | South Terrace Lofts (7b) | 75%             | 0.71                  | 0.7                           | 5.84                     | 3630                 | 10,595.36                             | 0.243                              |
| C13.1            | Road                     | 90%             | 0.83                  | 0.7                           | 0.27                     | 3630                 | 567.04                                | 0.013                              |
| C15              | Eco-Guest Retreat        | 15%             | 0.26                  | 0.7                           | 5.07                     | 3630                 | 3,401.08                              | 0.078                              |
| C11              | Off-site drainage        | 90%             | 0.83                  | 0.7                           | 1.06                     | 3630                 | 2,226.14                              | 0.051                              |
| C10              | Off-site drainage        | 90%             | 0.83                  | 0.7                           | 0.88                     | 3630                 | 1,848.12                              | 0.042                              |
|                  | Total                    | 62%             | 0.62                  | 0.7                           | 152.82                   | 3630                 | 238,814.11                            | 5.482                              |